Classifying Minerals using Deep Learning Algorithms
A mineral is an inorganic substance that occurs in nature with specific chemical content and an ordered atomic positioning. Minerals are identified by their physical properties. Minerals’ physical properties are related to their chemical composition and bonding. Quartz is extremely valuable economic...
Saved in:
| Published in | IOP conference series. Earth and environmental science Vol. 1032; no. 1; pp. 12046 - 12060 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bristol
IOP Publishing
01.06.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1755-1307 1755-1315 1755-1315 |
| DOI | 10.1088/1755-1315/1032/1/012046 |
Cover
| Abstract | A mineral is an inorganic substance that occurs in nature with specific chemical content and an ordered atomic positioning. Minerals are identified by their physical properties. Minerals’ physical properties are related to their chemical composition and bonding. Quartz is extremely valuable economically. Valuable minerals and some examples of gemstones are citrine, amethyst, quartz with smoky texture and quartz of rose color can be said as rose quartz are some examples of gemstones. Sandstone, primarily composing quartz, is the most used building stone. Biotite has limited number of applications for commercial use. Deep learning is the subset of machine learning. It is based on self-learning and improvement through the examination of computer algorithms. TensorFlow library of machine learning combines a number of different algorithms and models which allows users to build deep neural networks for projects/model such as image recognition/classification and many more. Image Classification is the assignment of one label from a fixed set of categories to an input image. In this paper Convolutional neural networks (CNNs) are used primarily for image processing, classification, segmentation, and other auto-correlated data. This paper will explain the techniques and explanation for classifying minerals images using a deep learning algorithm called a convolutional neural network. Identifying minerals on a field is a tedious activity and requires a lot of information and conformation here with the help of deep learning algorithms we made a deep learning model which has all its feature already embedded in it that can be used to classify minerals with a reasonable accuracy furthermore in future it can be made more accurate and fit accordingly to the conditions. |
|---|---|
| AbstractList | A mineral is an inorganic substance that occurs in nature with specific chemical content and an ordered atomic positioning. Minerals are identified by their physical properties. Minerals’ physical properties are related to their chemical composition and bonding. Quartz is extremely valuable economically. Valuable minerals and some examples of gemstones are citrine, amethyst, quartz with smoky texture and quartz of rose color can be said as rose quartz are some examples of gemstones. Sandstone, primarily composing quartz, is the most used building stone. Biotite has limited number of applications for commercial use. Deep learning is the subset of machine learning. It is based on self-learning and improvement through the examination of computer algorithms. TensorFlow library of machine learning combines a number of different algorithms and models which allows users to build deep neural networks for projects/model such as image recognition/classification and many more. Image Classification is the assignment of one label from a fixed set of categories to an input image. In this paper Convolutional neural networks (CNNs) are used primarily for image processing, classification, segmentation, and other auto-correlated data. This paper will explain the techniques and explanation for classifying minerals images using a deep learning algorithm called a convolutional neural network. Identifying minerals on a field is a tedious activity and requires a lot of information and conformation here with the help of deep learning algorithms we made a deep learning model which has all its feature already embedded in it that can be used to classify minerals with a reasonable accuracy furthermore in future it can be made more accurate and fit accordingly to the conditions. |
| Author | Jhariya, D.C. Dhekne, P.Y. Singh, Tajendra Sahu, Mridu Dewangan, Pankaj |
| Author_xml | – sequence: 1 givenname: Tajendra surname: Singh fullname: Singh, Tajendra organization: B. Tech Mining Engineering Pre-Final Year, National Institute of Technology Raipur , India – sequence: 2 givenname: D.C. surname: Jhariya fullname: Jhariya, D.C. organization: Assistant Professor, Department of Applied Geology, National Institute of Technology Raipur , India – sequence: 3 givenname: Mridu surname: Sahu fullname: Sahu, Mridu organization: Assistant Professor, Department of Information Technology, National Institute of Technology Raipur , India – sequence: 4 givenname: Pankaj surname: Dewangan fullname: Dewangan, Pankaj organization: Associate Professor, Department of Mining Engineering, National Institute of Technology Raipur , India – sequence: 5 givenname: P.Y. surname: Dhekne fullname: Dhekne, P.Y. organization: Associate Professor, Department of Mining Engineering, National Institute of Technology Raipur , India |
| BookMark | eNqNj09LwzAYh4NMcJt-BgeePNTmTdokPXgYc_6BiQf1HLI2nRldWpMW6be3pTJRBHdKXvL88v6eCRrZ0mqEzgFfARYiBB7HAVCIQ8CUhBBiIDhiR2i8fxnt75ifoIn3W4wZj2gyRnRRKO9N3hq7mT0aq50q_Kzx_XijdTVbaeVsP82LTelM_bbzp-g47yh99nVO0evt8mVxH6ye7h4W81WgiMAsSATPgAvGKOg8UWumSIwTBlREKs84KB6lsGZaEwppipMoJSTroHUaa0JA0CkSw7-NrVT7oYpCVs7slGslYNnLy15L9oqyl5cgB_kuejFEK1e-N9rXcls2znZtJWGCAhMJIx11PVCpK713OpepqVVtSls7ZYoDtvBf-cP7XQ5JU1bf1ZbL55-crLK8Y-kf7H8bPgHg35iH |
| CitedBy_id | crossref_primary_10_1016_j_rsase_2023_100988 crossref_primary_10_1007_s13369_024_09162_8 crossref_primary_10_1108_WJE_01_2025_0004 |
| Cites_doi | 10.3102/1076998619872761 10.1109/82.222815 10.1007/s13563-019-00189-0 10.1080/14041049009409106 10.1038/nature14539 10.1109/ACCESS.2018.2874767 10.1007/s11063-021-10652-1 10.1093/poq/nfr046 10.17977/um018v2i12019p41-46 10.1109/TMI.2016.2528162 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY ADTOC UNPAY |
| DOI | 10.1088/1755-1315/1032/1/012046 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central (subscription) Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journals url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1755-1315 |
| ExternalDocumentID | 10.1088/1755-1315/1032/1/012046 10_1088_1755_1315_1032_1_012046 EES_1032_1_012046 |
| GroupedDBID | 1JI 2WC 4.4 5B3 5GY 5VS AAFWJ AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATCPS ATQHT AVWKF AZFZN BENPR BHPHI CCPQU CEBXE CJUJL CRLBU CS3 DU5 EDWGO EQZZN HCIFZ IJHAN IOP IZVLO KNG KQ8 N5L O3W OK1 PATMY PIMPY PJBAE PYCSY RIN SY9 T37 TR2 TSCCA W28 AAYXX AEINN AEUYN CITATION PHGZM PHGZT PUEGO ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 02O 1WK 5PX AALHV ACARI ADTOC AERVB AGQPQ ARNYC BBWZM C1A EJD FEDTE HVGLF JCGBZ M48 Q02 UNPAY |
| ID | FETCH-LOGICAL-a2806-987d1786631ef9ab6a250961384afd71a74c1b6ee231cc094c22d6a2bc5e22183 |
| IEDL.DBID | UNPAY |
| ISSN | 1755-1307 1755-1315 |
| IngestDate | Tue Aug 19 23:19:59 EDT 2025 Mon Jun 30 03:45:30 EDT 2025 Wed Oct 01 02:14:30 EDT 2025 Thu Apr 24 23:01:32 EDT 2025 Wed Aug 21 03:42:24 EDT 2024 Wed Jul 06 01:22:08 EDT 2022 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a2806-987d1786631ef9ab6a250961384afd71a74c1b6ee231cc094c22d6a2bc5e22183 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1755-1315/1032/1/012046/pdf |
| PQID | 2683168962 |
| PQPubID | 4998669 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1088_1755_1315_1032_1_012046 unpaywall_primary_10_1088_1755_1315_1032_1_012046 proquest_journals_2683168962 crossref_primary_10_1088_1755_1315_1032_1_012046 iop_journals_10_1088_1755_1315_1032_1_012046 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 20220601 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | IOP conference series. Earth and environmental science |
| PublicationTitleAlternate | IOP Conf. Ser.: Earth Environ. Sci |
| PublicationYear | 2022 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Lou (EES_1032_1_012046bib14); 122 Couper (EES_1032_1_012046bib16) 2011; 75.5 Kalra (EES_1032_1_012046bib3) 1990; 7.2 Sang (EES_1032_1_012046bib13) 2022; 54.1 LeCun (EES_1032_1_012046bib7) 2015; 521.7553 Mines (EES_1032_1_012046bib4); 13 Randive (EES_1032_1_012046bib5) 2019; 32.3 Weller (EES_1032_1_012046bib15) 1988; 10 Ketkar (EES_1032_1_012046bib23) 2017 Wang (EES_1032_1_012046bib12) 2016 Liu (EES_1032_1_012046bib26) 2018 Gulli (EES_1032_1_012046bib20) 2017 Shin (EES_1032_1_012046bib10) 2016; 35.5 Kluyver (EES_1032_1_012046bib18) 2016; 2016 Bengio (EES_1032_1_012046bib9) 2017; 1 Carneiro (EES_1032_1_012046bib17); 6 Coggin (EES_1032_1_012046bib2) 1936 Pang (EES_1032_1_012046bib22) 2020; 45.2 Goodfellow (EES_1032_1_012046bib8) 2016 Magnus (EES_1032_1_012046bib1) 1967 Wei (EES_1032_1_012046bib24) 2013; 8.7 Bowie (EES_1032_1_012046bib6) 1959 Dumoulin (EES_1032_1_012046bib27) 2016 Sharma (EES_1032_1_012046bib28) 2017; 6.12 Jung (EES_1032_1_012046bib25); 1 Roska (EES_1032_1_012046bib11) 1993; 40.3 Raschka (EES_1032_1_012046bib19) 2015 Dillon (EES_1032_1_012046bib21) 2017 Shlezinger (EES_1032_1_012046bib30) 2020 Jais (EES_1032_1_012046bib29) 2019; 2.1 |
| References_xml | – volume: 1 year: 2017 ident: EES_1032_1_012046bib9 – volume: 45.2 start-page: 227 year: 2020 ident: EES_1032_1_012046bib22 article-title: Deep learning with tensorflow: A review publication-title: Journal of Educational and Behavioral Statistics doi: 10.3102/1076998619872761 – volume: 40.3 start-page: 163 year: 1993 ident: EES_1032_1_012046bib11 article-title: The CNN universal machine: an analogic array computer publication-title: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing doi: 10.1109/82.222815 – volume: 32.3 start-page: 337 year: 2019 ident: EES_1032_1_012046bib5 article-title: Strategic minerals in India: present status and future challenges publication-title: Mineral Economics doi: 10.1007/s13563-019-00189-0 – volume: 7.2 start-page: 35 year: 1990 ident: EES_1032_1_012046bib3 article-title: The Indian minerals industry—an overview publication-title: Minerals and Energy doi: 10.1080/14041049009409106 – year: 1959 ident: EES_1032_1_012046bib6 – volume: 521.7553 start-page: 436 year: 2015 ident: EES_1032_1_012046bib7 article-title: Deep learning publication-title: nature doi: 10.1038/nature14539 – volume: 1 start-page: 14 ident: EES_1032_1_012046bib25 article-title: Restructuring batch normalization to accelerate CNN training publication-title: Proceedings of Machine Learning and Systems – volume: 10 year: 1988 ident: EES_1032_1_012046bib15 – year: 2015 ident: EES_1032_1_012046bib19 – year: 1967 ident: EES_1032_1_012046bib1 – volume: 6 start-page: 61677 ident: EES_1032_1_012046bib17 article-title: Performance analysis of google colaboratory as a tool for accelerating deep learning applications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2874767 – start-page: 97 year: 2017 ident: EES_1032_1_012046bib23 – volume: 13 start-page: 1 ident: EES_1032_1_012046bib4 article-title: INDIAN BUREAU OF. “Indian Minerals Yearbook 2016.” publication-title: Gov. India Minist. Mines Nagpur – volume: 54.1 start-page: 677 year: 2022 ident: EES_1032_1_012046bib13 article-title: One-Dimensional Deep Convolutional Neural Network for Mineral Classification from Raman Spectroscopy publication-title: Neural Processing Letters doi: 10.1007/s11063-021-10652-1 – year: 1936 ident: EES_1032_1_012046bib2 – year: 2017 ident: EES_1032_1_012046bib21 publication-title: Tensorflow distributions – year: 2016 ident: EES_1032_1_012046bib8 – year: 2020 ident: EES_1032_1_012046bib30 publication-title: Model-based deep learning – year: 2016 ident: EES_1032_1_012046bib12 – volume: 8.7 year: 2013 ident: EES_1032_1_012046bib24 article-title: The role of balanced training and testing data sets for binary classifiers in bioinformatics publication-title: PloS one – year: 2016 ident: EES_1032_1_012046bib27 publication-title: A guide to convolution arithmetic for deep learning – volume: 75.5 start-page: 889 year: 2011 ident: EES_1032_1_012046bib16 article-title: The future of modes of data collection publication-title: Public Opinion Quarterly doi: 10.1093/poq/nfr046 – year: 2018 ident: EES_1032_1_012046bib26 publication-title: Partial convolution based padding – volume: 6.12 start-page: 310 year: 2017 ident: EES_1032_1_012046bib28 article-title: Activation functions in neural networks publication-title: towards data science – volume: 2.1 start-page: 41 year: 2019 ident: EES_1032_1_012046bib29 article-title: Adam optimization algorithm for wide and deep neural network publication-title: Knowledge Engineering and Data Science doi: 10.17977/um018v2i12019p41-46 – volume: 35.5 start-page: 1285 year: 2016 ident: EES_1032_1_012046bib10 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2016.2528162 – year: 2017 ident: EES_1032_1_012046bib20 – volume: 122 ident: EES_1032_1_012046bib14 article-title: Review of mineral recognition and its future publication-title: Applied Geochemistry – volume: 2016 year: 2016 ident: EES_1032_1_012046bib18 publication-title: Jupyter Notebooks-a publishing format for reproducible computational workflows |
| SSID | ssj0067439 |
| Score | 2.2057154 |
| Snippet | A mineral is an inorganic substance that occurs in nature with specific chemical content and an ordered atomic positioning. Minerals are identified by their... |
| SourceID | unpaywall proquest crossref iop |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12046 |
| SubjectTerms | Algorithms Artificial neural networks Biotite Chemical bonds Chemical composition Classification Conformation Convolutional neural network Deep learning Gems Image classification Image processing Image segmentation Keras Learning algorithms Machine learning Minerals Neural networks Object recognition Physical properties Quartz Sandstone TensorFlow |
| SummonAdditionalLinks | – databaseName: Institute of Physics (IOP) Publishing Journals dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD64ieiLd7E6pYiPdmt6SdvHoZtDmAo62FtI03QO51Z2QeavN0nbuQoyxbc-nFOSr7l8ac75DsAljgWNp1ycVO3INBxmcoMKYmJEdsBCDzMr_eHWvsetjnPXdbvLuTCjJFv6q-IxFQpOIcwC4vya2PBcA9nIrUkxuBqqyfxPB5dg3fYFP5ZJfA-P-WosY-wDlRSpnEwvj_H6-UWFHaokWlEgn5uzYULn73QwWNqHmjvA8h6k4Sev1dk0rLKPb-KO_-viLmxnNFWvpx57sMaH-7Bxq8oAzw_AVrU0-ypHSm_3lXL1RJcx9D39hvNEz2Rbe3p90BuN-9OXt8khdJqN5-uWkZVfMKi8bjUC34uQ5wtKgngc0BBTS2rFINt3aBx5iHoOQyHmXFBExsQxkVlWJIxC5nJLMq8jKA9HQ34MuulQQUuZ-DwsUAzQCcUYYYjFiDvcDTTAOeSEZdrkskTGgKg7ct8nEhEiESESEYJIiogG5sIxSeU5VrtcCdhJNlUnq80vCuaNxlPRgCRRrEElHyFflhb2ZVWwAFsaoMWo-W0zT_7WzFPYsmRihvo_VIHydDzjZ4IuTcNzNR8-AYQQ_FY priority: 102 providerName: IOP Publishing – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ7wiNGL8RlRNI3xaAO7fR-MQS0SE4hRSbhtttstkiBUgRj-vTtLK3ARr820aWe2s9_uznwfwJWbKBjPpVqpWnHdtEVdmlwBEzO2AhF5rqCLDbd2x2117aee0ytAJ--FwbLKPCfqRB2PBe6R16jro8ZS4NLb9NNE1Sg8Xc0lNHgmrRDfaIqxIpQpMmOVoHwXdp5f8tyMFfeBbpF0HFNlby-v-FLLwOwacWrIMVcjNWwrRVy8Ml8VB-N0DYpuz0Ypn3_z4XBlVmruwW4GJ43GIv77UJCjA9h61HK980OwtOblQPcyGe2BZpieGFjr3jcepEyNjF61bzSGffW10_ePyRF0m-HbfcvMZBJMjseiZuB7MfF8BR2ITAIeuZwipwuxfJsnsUe4ZwsSuVIqKCeEWs4JSmNlFAlHUkRIx1AajUfyBIy6zRV8FL7jiEAjNTtSsRREJETa0gkq4ObOYCLjEEcpiyHTZ9m-z9CLDL3I0IuMsIUXK1D_vTFd0GhsvuVaeZtlv9Rks_nlmnkYvq4bsDROKlDNY7e0XI6sCpDfeP73NU__fuQZ7FBsmND7NlUoTb9m8lzBmGl0kY3NHzME4uI priority: 102 providerName: ProQuest |
| Title | Classifying Minerals using Deep Learning Algorithms |
| URI | https://iopscience.iop.org/article/10.1088/1755-1315/1032/1/012046 https://www.proquest.com/docview/2683168962 https://iopscience.iop.org/article/10.1088/1755-1315/1032/1/012046/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 1032 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1755-1315 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067439 issn: 1755-1307 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVIOP databaseName: Institute of Physics (IOP) Publishing Journals customDbUrl: eissn: 1755-1315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067439 issn: 1755-1307 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journals customDbUrl: eissn: 1755-1315 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067439 issn: 1755-1307 databaseCode: O3W dateStart: 20080501 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1755-1315 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067439 issn: 1755-1307 databaseCode: BENPR dateStart: 20080501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD6irRB7YRsXrQyqCO1xaepcnOSxsHYFibYaVJQny3GcUlHaqBdN7Nfv2EnLijQVwUuUh3Mi54sdf7bP-Q7AN5ogjecSV6pOXDNdUZMmR2Jixk4oIp8KO9twu2rTVs-97Hv9LWiucmEmaf7rr-JtJhScQZgHxAUWTnieSRziWUoMziKWyv90qZXGSQFK1ENOXoRSr92t3-lsSG2t86ZXnstAr_8_bW2aKmBT1hjozmKc8qfffDT6ZzJqfoTB8jWyGJSH6mIeVcWfFwqP73_PT7Cb81Wjnnl9hi053oPtn7oe8NM-OLqo5lAnSxlXQy1hPTNUMP3A-CFlauT6rQOjPhpMpsP5_ePsAHrNxs15y8zrMJhcnbuaYeDHxA-QmxCZhDyi3FaiMcQJXJ7EPuG-K0hEpUSuKASuF4Vtx2gUCU_aioIdQnE8GcsvYNRcjvxUBJ4nQk0F3Qg7iyAiIdKVXlgGuoSdiVykXNXKGDF9WB4ETKHCFCpMocIIy1ApQ23lmGY6HZtdviP0LB-zs83mp2vmjcb1ugHDD1OG42Uveba0aaDKg4XULgNZ9ZzXNvPoDT5f4YOt0jT0btExFOfThTxB8jSPKlA6a7S7vypQuOh08dpxbiv5aPkL1G0FYg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5BUEUvVR8gQmm7quDGKrHX-zqgijahoZAI8ZC4Ga_Xm0YKybYJQvlz_W2dcbyEXEovXFdja_V57PnGngfAblQgjVcGPdUgb_pCN42vkJj4eZDqLI40n1-4dXtR50r8uA6vV-BPlQtDYZXVmWgP6nys6Y68waOEeiylEf9S_vKpaxS9rlYtNJRrrZAf2BJjLrHjxMzu0YWbHBy3cL33OD9qX37r-K7LgK_oVdFHpztncYKWl5kiVVmkOJVEYUEiVJHHTMVCsywyBpmQ1ugNac5zFMp0aDgRDJx3FdZEIFJ0_ta-tntn55UtoAj_1KZkhqGP1iKuIszQ7XTfWNigmnYN1qA0VuLhj-zj6mBcLlHf9btRqWb3ajh8ZAWPXsMrR1-9w7m-vYEVM3oLL77b9sCzdxDYHpsDmzvldQe2ovXEo9j6vtcypvRcOde-dzjsI7rTn7eTDbh6FsA2oTYaj8wWeE2hkK7qJAx1apmhyFB3NNMFM8KEaR2iCgypXc1yap0xlPbtPEkkoSgJRUkoSibnKNah-TCwnJfteHrIPqIt3RaePC3-eUm83b5YFpBlXtRhp1q7heRCk-vAHtbzf39z-99TfoL1zmX3VJ4e907ew0tOyRr2zmgHatPfd-YDUqhp9tHpqQc3z701_gL9lh5d |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2VIpYLO6JQIEIcSRNncZJjRVv2RYJK3CzHcUJFaSPaCsHXYztJoUioIG45zET2i5fneOYNwCGOBY2nXJxU7cjUHWZynQpiokd2wEIPMyv74XZ1jU_bzvmD-1CC1jgXpp_mS39NPGZCwRmEeUCcb4gNz9WRjVxDisEZyJD5nw420iiegVklVyIT-W5uixVZxtkHKjFSOZpeEef188smdqkZ0ZIJArow6qX07ZV2u1_2otYyJEUvshCUp9poGNbY-zeBx_93cwWWcrqq1TOvVSjx3hrMnahywG_rYKuamh2VK6VddZSC9UCTsfSJ1uA81XL51kSrd5P-S2f4-DzYgHareX98qudlGHQqr131wPci5PmCmiAeBzTE1JKaMcj2HRpHHqKew1CIORdUkTFxXGSWFQmjkLnckgxsE8q9fo9vgWY6VNBT5rsuCxQTdEIxVhhiMeIOd4MK4AJ2wnKNclkqo0vUXbnvE4kKkagQiQpBJEOlAubYMc1kOqa7HAnoST5lB9PNDybMm827SQMiPkwFqsUo-bS0sC-rgwXYqgAaj5zfNnP7b83ch_nbRotcnl1f7MCiJXM11C-jKpSHLyO-KxjUMNxT0-MDEfoBxg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7sguiLd3E6pYiPdl16SdvHoZtD2BB0MJ9CmqZ1WLeyCzJ_vUnaTSfIRN_6cE5JvibNl-Sc7wBc4kjQeMrFTtUK67rN6lyngpjooeWzwMXMzA7cOl3c7tl3fadfgNYyF2aU5r_-mnjMhIIzCPOAOM8QC56jIws5hhSDM5Ah8z9tbKRhVIQydgQnL0G5171vPKlsSGWt8qaXnotAr5_ftrJMFUVTVhjo5myY0vkbTZIvi1FrB-JFN7IYlJfabBrU2Ps3hcf_93MXtnO-qjUyrz0o8OE-bNyqesDzA7BUUc2BSpbSOgMlYT3RZDB9rN1wnmq5fmusNZJ4NB5Mn18nh9BrNR-v23peh0Gn8t5V9z03RK4nuAnikU8DTE0pGoMsz6ZR6CLq2gwFmHPBFRkT-0VmmqEwCpjDTUnBjqA0HA35MWh1mwp-yjzHYb6ignYgBgtDLELc5o5fAbyAnbBcpFzWykiIuiz3PCJRIRIVIlEhiGSoVKC-dEwznY71LlcCepLP2cl684sV82bzYdWAiA9TgepilHxamtiT5cF8bFYALUfOb5t58gefU9gyZZqGOi2qQmk6nvEzQZ6mwXk-Mz4AkjgBxQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+Minerals+using+Deep+Learning+Algorithms&rft.jtitle=IOP+conference+series.+Earth+and+environmental+science&rft.au=Singh%2C+Tajendra&rft.au=Jhariya%2C+D.C.&rft.au=Sahu%2C+Mridu&rft.au=Dewangan%2C+Pankaj&rft.date=2022-06-01&rft.issn=1755-1307&rft.eissn=1755-1315&rft.volume=1032&rft.issue=1&rft.spage=12046&rft_id=info:doi/10.1088%2F1755-1315%2F1032%2F1%2F012046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1755_1315_1032_1_012046 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-1307&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-1307&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-1307&client=summon |