Classifying Minerals using Deep Learning Algorithms

A mineral is an inorganic substance that occurs in nature with specific chemical content and an ordered atomic positioning. Minerals are identified by their physical properties. Minerals’ physical properties are related to their chemical composition and bonding. Quartz is extremely valuable economic...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Earth and environmental science Vol. 1032; no. 1; pp. 12046 - 12060
Main Authors Singh, Tajendra, Jhariya, D.C., Sahu, Mridu, Dewangan, Pankaj, Dhekne, P.Y.
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.06.2022
Subjects
Online AccessGet full text
ISSN1755-1307
1755-1315
1755-1315
DOI10.1088/1755-1315/1032/1/012046

Cover

Abstract A mineral is an inorganic substance that occurs in nature with specific chemical content and an ordered atomic positioning. Minerals are identified by their physical properties. Minerals’ physical properties are related to their chemical composition and bonding. Quartz is extremely valuable economically. Valuable minerals and some examples of gemstones are citrine, amethyst, quartz with smoky texture and quartz of rose color can be said as rose quartz are some examples of gemstones. Sandstone, primarily composing quartz, is the most used building stone. Biotite has limited number of applications for commercial use. Deep learning is the subset of machine learning. It is based on self-learning and improvement through the examination of computer algorithms. TensorFlow library of machine learning combines a number of different algorithms and models which allows users to build deep neural networks for projects/model such as image recognition/classification and many more. Image Classification is the assignment of one label from a fixed set of categories to an input image. In this paper Convolutional neural networks (CNNs) are used primarily for image processing, classification, segmentation, and other auto-correlated data. This paper will explain the techniques and explanation for classifying minerals images using a deep learning algorithm called a convolutional neural network. Identifying minerals on a field is a tedious activity and requires a lot of information and conformation here with the help of deep learning algorithms we made a deep learning model which has all its feature already embedded in it that can be used to classify minerals with a reasonable accuracy furthermore in future it can be made more accurate and fit accordingly to the conditions.
AbstractList A mineral is an inorganic substance that occurs in nature with specific chemical content and an ordered atomic positioning. Minerals are identified by their physical properties. Minerals’ physical properties are related to their chemical composition and bonding. Quartz is extremely valuable economically. Valuable minerals and some examples of gemstones are citrine, amethyst, quartz with smoky texture and quartz of rose color can be said as rose quartz are some examples of gemstones. Sandstone, primarily composing quartz, is the most used building stone. Biotite has limited number of applications for commercial use. Deep learning is the subset of machine learning. It is based on self-learning and improvement through the examination of computer algorithms. TensorFlow library of machine learning combines a number of different algorithms and models which allows users to build deep neural networks for projects/model such as image recognition/classification and many more. Image Classification is the assignment of one label from a fixed set of categories to an input image. In this paper Convolutional neural networks (CNNs) are used primarily for image processing, classification, segmentation, and other auto-correlated data. This paper will explain the techniques and explanation for classifying minerals images using a deep learning algorithm called a convolutional neural network. Identifying minerals on a field is a tedious activity and requires a lot of information and conformation here with the help of deep learning algorithms we made a deep learning model which has all its feature already embedded in it that can be used to classify minerals with a reasonable accuracy furthermore in future it can be made more accurate and fit accordingly to the conditions.
Author Jhariya, D.C.
Dhekne, P.Y.
Singh, Tajendra
Sahu, Mridu
Dewangan, Pankaj
Author_xml – sequence: 1
  givenname: Tajendra
  surname: Singh
  fullname: Singh, Tajendra
  organization: B. Tech Mining Engineering Pre-Final Year, National Institute of Technology Raipur , India
– sequence: 2
  givenname: D.C.
  surname: Jhariya
  fullname: Jhariya, D.C.
  organization: Assistant Professor, Department of Applied Geology, National Institute of Technology Raipur , India
– sequence: 3
  givenname: Mridu
  surname: Sahu
  fullname: Sahu, Mridu
  organization: Assistant Professor, Department of Information Technology, National Institute of Technology Raipur , India
– sequence: 4
  givenname: Pankaj
  surname: Dewangan
  fullname: Dewangan, Pankaj
  organization: Associate Professor, Department of Mining Engineering, National Institute of Technology Raipur , India
– sequence: 5
  givenname: P.Y.
  surname: Dhekne
  fullname: Dhekne, P.Y.
  organization: Associate Professor, Department of Mining Engineering, National Institute of Technology Raipur , India
BookMark eNqNj09LwzAYh4NMcJt-BgeePNTmTdokPXgYc_6BiQf1HLI2nRldWpMW6be3pTJRBHdKXvL88v6eCRrZ0mqEzgFfARYiBB7HAVCIQ8CUhBBiIDhiR2i8fxnt75ifoIn3W4wZj2gyRnRRKO9N3hq7mT0aq50q_Kzx_XijdTVbaeVsP82LTelM_bbzp-g47yh99nVO0evt8mVxH6ye7h4W81WgiMAsSATPgAvGKOg8UWumSIwTBlREKs84KB6lsGZaEwppipMoJSTroHUaa0JA0CkSw7-NrVT7oYpCVs7slGslYNnLy15L9oqyl5cgB_kuejFEK1e-N9rXcls2znZtJWGCAhMJIx11PVCpK713OpepqVVtSls7ZYoDtvBf-cP7XQ5JU1bf1ZbL55-crLK8Y-kf7H8bPgHg35iH
CitedBy_id crossref_primary_10_1016_j_rsase_2023_100988
crossref_primary_10_1007_s13369_024_09162_8
crossref_primary_10_1108_WJE_01_2025_0004
Cites_doi 10.3102/1076998619872761
10.1109/82.222815
10.1007/s13563-019-00189-0
10.1080/14041049009409106
10.1038/nature14539
10.1109/ACCESS.2018.2874767
10.1007/s11063-021-10652-1
10.1093/poq/nfr046
10.17977/um018v2i12019p41-46
10.1109/TMI.2016.2528162
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
ADTOC
UNPAY
DOI 10.1088/1755-1315/1032/1/012046
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journals
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1755-1315
ExternalDocumentID 10.1088/1755-1315/1032/1/012046
10_1088_1755_1315_1032_1_012046
EES_1032_1_012046
GroupedDBID 1JI
2WC
4.4
5B3
5GY
5VS
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATCPS
ATQHT
AVWKF
AZFZN
BENPR
BHPHI
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
EDWGO
EQZZN
HCIFZ
IJHAN
IOP
IZVLO
KNG
KQ8
N5L
O3W
OK1
PATMY
PIMPY
PJBAE
PYCSY
RIN
SY9
T37
TR2
TSCCA
W28
AAYXX
AEINN
AEUYN
CITATION
PHGZM
PHGZT
PUEGO
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1WK
5PX
AALHV
ACARI
ADTOC
AERVB
AGQPQ
ARNYC
BBWZM
C1A
EJD
FEDTE
HVGLF
JCGBZ
M48
Q02
UNPAY
ID FETCH-LOGICAL-a2806-987d1786631ef9ab6a250961384afd71a74c1b6ee231cc094c22d6a2bc5e22183
IEDL.DBID UNPAY
ISSN 1755-1307
1755-1315
IngestDate Tue Aug 19 23:19:59 EDT 2025
Mon Jun 30 03:45:30 EDT 2025
Wed Oct 01 02:14:30 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
Wed Aug 21 03:42:24 EDT 2024
Wed Jul 06 01:22:08 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2806-987d1786631ef9ab6a250961384afd71a74c1b6ee231cc094c22d6a2bc5e22183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1755-1315/1032/1/012046/pdf
PQID 2683168962
PQPubID 4998669
PageCount 15
ParticipantIDs crossref_citationtrail_10_1088_1755_1315_1032_1_012046
unpaywall_primary_10_1088_1755_1315_1032_1_012046
proquest_journals_2683168962
crossref_primary_10_1088_1755_1315_1032_1_012046
iop_journals_10_1088_1755_1315_1032_1_012046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 20220601
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle IOP conference series. Earth and environmental science
PublicationTitleAlternate IOP Conf. Ser.: Earth Environ. Sci
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Lou (EES_1032_1_012046bib14); 122
Couper (EES_1032_1_012046bib16) 2011; 75.5
Kalra (EES_1032_1_012046bib3) 1990; 7.2
Sang (EES_1032_1_012046bib13) 2022; 54.1
LeCun (EES_1032_1_012046bib7) 2015; 521.7553
Mines (EES_1032_1_012046bib4); 13
Randive (EES_1032_1_012046bib5) 2019; 32.3
Weller (EES_1032_1_012046bib15) 1988; 10
Ketkar (EES_1032_1_012046bib23) 2017
Wang (EES_1032_1_012046bib12) 2016
Liu (EES_1032_1_012046bib26) 2018
Gulli (EES_1032_1_012046bib20) 2017
Shin (EES_1032_1_012046bib10) 2016; 35.5
Kluyver (EES_1032_1_012046bib18) 2016; 2016
Bengio (EES_1032_1_012046bib9) 2017; 1
Carneiro (EES_1032_1_012046bib17); 6
Coggin (EES_1032_1_012046bib2) 1936
Pang (EES_1032_1_012046bib22) 2020; 45.2
Goodfellow (EES_1032_1_012046bib8) 2016
Magnus (EES_1032_1_012046bib1) 1967
Wei (EES_1032_1_012046bib24) 2013; 8.7
Bowie (EES_1032_1_012046bib6) 1959
Dumoulin (EES_1032_1_012046bib27) 2016
Sharma (EES_1032_1_012046bib28) 2017; 6.12
Jung (EES_1032_1_012046bib25); 1
Roska (EES_1032_1_012046bib11) 1993; 40.3
Raschka (EES_1032_1_012046bib19) 2015
Dillon (EES_1032_1_012046bib21) 2017
Shlezinger (EES_1032_1_012046bib30) 2020
Jais (EES_1032_1_012046bib29) 2019; 2.1
References_xml – volume: 1
  year: 2017
  ident: EES_1032_1_012046bib9
– volume: 45.2
  start-page: 227
  year: 2020
  ident: EES_1032_1_012046bib22
  article-title: Deep learning with tensorflow: A review
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.3102/1076998619872761
– volume: 40.3
  start-page: 163
  year: 1993
  ident: EES_1032_1_012046bib11
  article-title: The CNN universal machine: an analogic array computer
  publication-title: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing
  doi: 10.1109/82.222815
– volume: 32.3
  start-page: 337
  year: 2019
  ident: EES_1032_1_012046bib5
  article-title: Strategic minerals in India: present status and future challenges
  publication-title: Mineral Economics
  doi: 10.1007/s13563-019-00189-0
– volume: 7.2
  start-page: 35
  year: 1990
  ident: EES_1032_1_012046bib3
  article-title: The Indian minerals industry—an overview
  publication-title: Minerals and Energy
  doi: 10.1080/14041049009409106
– year: 1959
  ident: EES_1032_1_012046bib6
– volume: 521.7553
  start-page: 436
  year: 2015
  ident: EES_1032_1_012046bib7
  article-title: Deep learning
  publication-title: nature
  doi: 10.1038/nature14539
– volume: 1
  start-page: 14
  ident: EES_1032_1_012046bib25
  article-title: Restructuring batch normalization to accelerate CNN training
  publication-title: Proceedings of Machine Learning and Systems
– volume: 10
  year: 1988
  ident: EES_1032_1_012046bib15
– year: 2015
  ident: EES_1032_1_012046bib19
– year: 1967
  ident: EES_1032_1_012046bib1
– volume: 6
  start-page: 61677
  ident: EES_1032_1_012046bib17
  article-title: Performance analysis of google colaboratory as a tool for accelerating deep learning applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2874767
– start-page: 97
  year: 2017
  ident: EES_1032_1_012046bib23
– volume: 13
  start-page: 1
  ident: EES_1032_1_012046bib4
  article-title: INDIAN BUREAU OF. “Indian Minerals Yearbook 2016.”
  publication-title: Gov. India Minist. Mines Nagpur
– volume: 54.1
  start-page: 677
  year: 2022
  ident: EES_1032_1_012046bib13
  article-title: One-Dimensional Deep Convolutional Neural Network for Mineral Classification from Raman Spectroscopy
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-021-10652-1
– year: 1936
  ident: EES_1032_1_012046bib2
– year: 2017
  ident: EES_1032_1_012046bib21
  publication-title: Tensorflow distributions
– year: 2016
  ident: EES_1032_1_012046bib8
– year: 2020
  ident: EES_1032_1_012046bib30
  publication-title: Model-based deep learning
– year: 2016
  ident: EES_1032_1_012046bib12
– volume: 8.7
  year: 2013
  ident: EES_1032_1_012046bib24
  article-title: The role of balanced training and testing data sets for binary classifiers in bioinformatics
  publication-title: PloS one
– year: 2016
  ident: EES_1032_1_012046bib27
  publication-title: A guide to convolution arithmetic for deep learning
– volume: 75.5
  start-page: 889
  year: 2011
  ident: EES_1032_1_012046bib16
  article-title: The future of modes of data collection
  publication-title: Public Opinion Quarterly
  doi: 10.1093/poq/nfr046
– year: 2018
  ident: EES_1032_1_012046bib26
  publication-title: Partial convolution based padding
– volume: 6.12
  start-page: 310
  year: 2017
  ident: EES_1032_1_012046bib28
  article-title: Activation functions in neural networks
  publication-title: towards data science
– volume: 2.1
  start-page: 41
  year: 2019
  ident: EES_1032_1_012046bib29
  article-title: Adam optimization algorithm for wide and deep neural network
  publication-title: Knowledge Engineering and Data Science
  doi: 10.17977/um018v2i12019p41-46
– volume: 35.5
  start-page: 1285
  year: 2016
  ident: EES_1032_1_012046bib10
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2016.2528162
– year: 2017
  ident: EES_1032_1_012046bib20
– volume: 122
  ident: EES_1032_1_012046bib14
  article-title: Review of mineral recognition and its future
  publication-title: Applied Geochemistry
– volume: 2016
  year: 2016
  ident: EES_1032_1_012046bib18
  publication-title: Jupyter Notebooks-a publishing format for reproducible computational workflows
SSID ssj0067439
Score 2.2057154
Snippet A mineral is an inorganic substance that occurs in nature with specific chemical content and an ordered atomic positioning. Minerals are identified by their...
SourceID unpaywall
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12046
SubjectTerms Algorithms
Artificial neural networks
Biotite
Chemical bonds
Chemical composition
Classification
Conformation
Convolutional neural network
Deep learning
Gems
Image classification
Image processing
Image segmentation
Keras
Learning algorithms
Machine learning
Minerals
Neural networks
Object recognition
Physical properties
Quartz
Sandstone
TensorFlow
SummonAdditionalLinks – databaseName: Institute of Physics (IOP) Publishing Journals
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD64ieiLd7E6pYiPdmt6SdvHoZtDmAo62FtI03QO51Z2QeavN0nbuQoyxbc-nFOSr7l8ac75DsAljgWNp1ycVO3INBxmcoMKYmJEdsBCDzMr_eHWvsetjnPXdbvLuTCjJFv6q-IxFQpOIcwC4vya2PBcA9nIrUkxuBqqyfxPB5dg3fYFP5ZJfA-P-WosY-wDlRSpnEwvj_H6-UWFHaokWlEgn5uzYULn73QwWNqHmjvA8h6k4Sev1dk0rLKPb-KO_-viLmxnNFWvpx57sMaH-7Bxq8oAzw_AVrU0-ypHSm_3lXL1RJcx9D39hvNEz2Rbe3p90BuN-9OXt8khdJqN5-uWkZVfMKi8bjUC34uQ5wtKgngc0BBTS2rFINt3aBx5iHoOQyHmXFBExsQxkVlWJIxC5nJLMq8jKA9HQ34MuulQQUuZ-DwsUAzQCcUYYYjFiDvcDTTAOeSEZdrkskTGgKg7ct8nEhEiESESEYJIiogG5sIxSeU5VrtcCdhJNlUnq80vCuaNxlPRgCRRrEElHyFflhb2ZVWwAFsaoMWo-W0zT_7WzFPYsmRihvo_VIHydDzjZ4IuTcNzNR8-AYQQ_FY
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central (subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ7wiNGL8RlRNI3xaAO7fR-MQS0SE4hRSbhtttstkiBUgRj-vTtLK3ARr820aWe2s9_uznwfwJWbKBjPpVqpWnHdtEVdmlwBEzO2AhF5rqCLDbd2x2117aee0ytAJ--FwbLKPCfqRB2PBe6R16jro8ZS4NLb9NNE1Sg8Xc0lNHgmrRDfaIqxIpQpMmOVoHwXdp5f8tyMFfeBbpF0HFNlby-v-FLLwOwacWrIMVcjNWwrRVy8Ml8VB-N0DYpuz0Ypn3_z4XBlVmruwW4GJ43GIv77UJCjA9h61HK980OwtOblQPcyGe2BZpieGFjr3jcepEyNjF61bzSGffW10_ePyRF0m-HbfcvMZBJMjseiZuB7MfF8BR2ITAIeuZwipwuxfJsnsUe4ZwsSuVIqKCeEWs4JSmNlFAlHUkRIx1AajUfyBIy6zRV8FL7jiEAjNTtSsRREJETa0gkq4ObOYCLjEEcpiyHTZ9m-z9CLDL3I0IuMsIUXK1D_vTFd0GhsvuVaeZtlv9Rks_nlmnkYvq4bsDROKlDNY7e0XI6sCpDfeP73NU__fuQZ7FBsmND7NlUoTb9m8lzBmGl0kY3NHzME4uI
  priority: 102
  providerName: ProQuest
Title Classifying Minerals using Deep Learning Algorithms
URI https://iopscience.iop.org/article/10.1088/1755-1315/1032/1/012046
https://www.proquest.com/docview/2683168962
https://iopscience.iop.org/article/10.1088/1755-1315/1032/1/012046/pdf
UnpaywallVersion publishedVersion
Volume 1032
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVIOP
  databaseName: Institute of Physics (IOP) Publishing Journals
  customDbUrl:
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journals
  customDbUrl:
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: O3W
  dateStart: 20080501
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1755-1315
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067439
  issn: 1755-1307
  databaseCode: BENPR
  dateStart: 20080501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD6irRB7YRsXrQyqCO1xaepcnOSxsHYFibYaVJQny3GcUlHaqBdN7Nfv2EnLijQVwUuUh3Mi54sdf7bP-Q7AN5ogjecSV6pOXDNdUZMmR2Jixk4oIp8KO9twu2rTVs-97Hv9LWiucmEmaf7rr-JtJhScQZgHxAUWTnieSRziWUoMziKWyv90qZXGSQFK1ENOXoRSr92t3-lsSG2t86ZXnstAr_8_bW2aKmBT1hjozmKc8qfffDT6ZzJqfoTB8jWyGJSH6mIeVcWfFwqP73_PT7Cb81Wjnnl9hi053oPtn7oe8NM-OLqo5lAnSxlXQy1hPTNUMP3A-CFlauT6rQOjPhpMpsP5_ePsAHrNxs15y8zrMJhcnbuaYeDHxA-QmxCZhDyi3FaiMcQJXJ7EPuG-K0hEpUSuKASuF4Vtx2gUCU_aioIdQnE8GcsvYNRcjvxUBJ4nQk0F3Qg7iyAiIdKVXlgGuoSdiVykXNXKGDF9WB4ETKHCFCpMocIIy1ApQ23lmGY6HZtdviP0LB-zs83mp2vmjcb1ugHDD1OG42Uveba0aaDKg4XULgNZ9ZzXNvPoDT5f4YOt0jT0btExFOfThTxB8jSPKlA6a7S7vypQuOh08dpxbiv5aPkL1G0FYg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5BUEUvVR8gQmm7quDGKrHX-zqgijahoZAI8ZC4Ga_Xm0YKybYJQvlz_W2dcbyEXEovXFdja_V57PnGngfAblQgjVcGPdUgb_pCN42vkJj4eZDqLI40n1-4dXtR50r8uA6vV-BPlQtDYZXVmWgP6nys6Y68waOEeiylEf9S_vKpaxS9rlYtNJRrrZAf2BJjLrHjxMzu0YWbHBy3cL33OD9qX37r-K7LgK_oVdFHpztncYKWl5kiVVmkOJVEYUEiVJHHTMVCsywyBpmQ1ugNac5zFMp0aDgRDJx3FdZEIFJ0_ta-tntn55UtoAj_1KZkhqGP1iKuIszQ7XTfWNigmnYN1qA0VuLhj-zj6mBcLlHf9btRqWb3ajh8ZAWPXsMrR1-9w7m-vYEVM3oLL77b9sCzdxDYHpsDmzvldQe2ovXEo9j6vtcypvRcOde-dzjsI7rTn7eTDbh6FsA2oTYaj8wWeE2hkK7qJAx1apmhyFB3NNMFM8KEaR2iCgypXc1yap0xlPbtPEkkoSgJRUkoSibnKNah-TCwnJfteHrIPqIt3RaePC3-eUm83b5YFpBlXtRhp1q7heRCk-vAHtbzf39z-99TfoL1zmX3VJ4e907ew0tOyRr2zmgHatPfd-YDUqhp9tHpqQc3z701_gL9lh5d
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2VIpYLO6JQIEIcSRNncZJjRVv2RYJK3CzHcUJFaSPaCsHXYztJoUioIG45zET2i5fneOYNwCGOBY2nXJxU7cjUHWZynQpiokd2wEIPMyv74XZ1jU_bzvmD-1CC1jgXpp_mS39NPGZCwRmEeUCcb4gNz9WRjVxDisEZyJD5nw420iiegVklVyIT-W5uixVZxtkHKjFSOZpeEef188smdqkZ0ZIJArow6qX07ZV2u1_2otYyJEUvshCUp9poGNbY-zeBx_93cwWWcrqq1TOvVSjx3hrMnahywG_rYKuamh2VK6VddZSC9UCTsfSJ1uA81XL51kSrd5P-S2f4-DzYgHareX98qudlGHQqr131wPci5PmCmiAeBzTE1JKaMcj2HRpHHqKew1CIORdUkTFxXGSWFQmjkLnckgxsE8q9fo9vgWY6VNBT5rsuCxQTdEIxVhhiMeIOd4MK4AJ2wnKNclkqo0vUXbnvE4kKkagQiQpBJEOlAubYMc1kOqa7HAnoST5lB9PNDybMm827SQMiPkwFqsUo-bS0sC-rgwXYqgAaj5zfNnP7b83ch_nbRotcnl1f7MCiJXM11C-jKpSHLyO-KxjUMNxT0-MDEfoBxg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7sguiLd3E6pYiPdl16SdvHoZtD2BB0MJ9CmqZ1WLeyCzJ_vUnaTSfIRN_6cE5JvibNl-Sc7wBc4kjQeMrFTtUK67rN6lyngpjooeWzwMXMzA7cOl3c7tl3fadfgNYyF2aU5r_-mnjMhIIzCPOAOM8QC56jIws5hhSDM5Ah8z9tbKRhVIQydgQnL0G5171vPKlsSGWt8qaXnotAr5_ftrJMFUVTVhjo5myY0vkbTZIvi1FrB-JFN7IYlJfabBrU2Ps3hcf_93MXtnO-qjUyrz0o8OE-bNyqesDzA7BUUc2BSpbSOgMlYT3RZDB9rN1wnmq5fmusNZJ4NB5Mn18nh9BrNR-v23peh0Gn8t5V9z03RK4nuAnikU8DTE0pGoMsz6ZR6CLq2gwFmHPBFRkT-0VmmqEwCpjDTUnBjqA0HA35MWh1mwp-yjzHYb6ignYgBgtDLELc5o5fAbyAnbBcpFzWykiIuiz3PCJRIRIVIlEhiGSoVKC-dEwznY71LlcCepLP2cl684sV82bzYdWAiA9TgepilHxamtiT5cF8bFYALUfOb5t58gefU9gyZZqGOi2qQmk6nvEzQZ6mwXk-Mz4AkjgBxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+Minerals+using+Deep+Learning+Algorithms&rft.jtitle=IOP+conference+series.+Earth+and+environmental+science&rft.au=Singh%2C+Tajendra&rft.au=Jhariya%2C+D.C.&rft.au=Sahu%2C+Mridu&rft.au=Dewangan%2C+Pankaj&rft.date=2022-06-01&rft.issn=1755-1307&rft.eissn=1755-1315&rft.volume=1032&rft.issue=1&rft.spage=12046&rft_id=info:doi/10.1088%2F1755-1315%2F1032%2F1%2F012046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1755_1315_1032_1_012046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-1307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-1307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-1307&client=summon