Robust Multimodal Cognitive Load Measurement
This book explores robust multimodal cognitive load measurement with physiological and behavioural modalities, which involve the eye, Galvanic Skin Response, speech, language, pen input, mouse movement and multimodality fusions. Factors including stress, trust, and environmental factors such as illu...
Saved in:
Main Author | |
---|---|
Format | eBook Book |
Language | English |
Published |
Cham
Springer Nature
2016
Springer International Publishing AG Springer International Publishing Springer |
Edition | 1 |
Series | Human–Computer Interaction Series |
Subjects | |
Online Access | Get full text |
ISBN | 3319317008 9783319317007 3319316982 9783319316987 |
ISSN | 1571-5035 |
DOI | 10.1007/978-3-319-31700-7 |
Cover
Abstract | This book explores robust multimodal cognitive
load measurement with physiological and behavioural modalities, which involve the
eye, Galvanic Skin Response, speech, language, pen input, mouse movement and
multimodality fusions. Factors including stress, trust, and environmental
factors such as illumination are discussed regarding their implications for
cognitive load measurement. Furthermore, dynamic workload adjustment and
real-time cognitive load measurement with data streaming are presented in order
to make cognitive load measurement accessible by more widespread applications
and users. Finally, application examples are reviewed demonstrating the
feasibility of multimodal cognitive load measurement in practical applications.
This is the
first book of its kind to systematically introduce various computational
methods for automatic and real-time cognitive load measurement and by doing so
moves the practical application of cognitive load measurement from the domain
of the computer scientist and psychologist to more general end-users, ready for
widespread implementation.
Robust Multimodal Cognitive
Load Measurement is intended for researchers and practitioners involved with cognitive
load studies and communities within the computer, cognitive, and social
sciences. The book will especially benefit researchers in areas like behaviour
analysis, social analytics, human-computer interaction (HCI), intelligent
information processing, and decision support systems. |
---|---|
AbstractList | This book explores robust multimodal cognitive
load measurement with physiological and behavioural modalities, which involve the
eye, Galvanic Skin Response, speech, language, pen input, mouse movement and
multimodality fusions. Factors including stress, trust, and environmental
factors such as illumination are discussed regarding their implications for
cognitive load measurement. Furthermore, dynamic workload adjustment and
real-time cognitive load measurement with data streaming are presented in order
to make cognitive load measurement accessible by more widespread applications
and users. Finally, application examples are reviewed demonstrating the
feasibility of multimodal cognitive load measurement in practical applications.
This is the
first book of its kind to systematically introduce various computational
methods for automatic and real-time cognitive load measurement and by doing so
moves the practical application of cognitive load measurement from the domain
of the computer scientist and psychologist to more general end-users, ready for
widespread implementation.
Robust Multimodal Cognitive
Load Measurement is intended for researchers and practitioners involved with cognitive
load studies and communities within the computer, cognitive, and social
sciences. The book will especially benefit researchers in areas like behaviour
analysis, social analytics, human-computer interaction (HCI), intelligent
information processing, and decision support systems. |
Author | Wang, Yang Khawaji, Ahmad Chen, Fang Conway, Dan Zhou, Jianlong Yu, Kun Arshad, Syed Z. |
Author_xml | – sequence: 1 fullname: Chen, Fang |
BackLink | https://cir.nii.ac.jp/crid/1130282270859849600$$DView record in CiNii |
BookMark | eNpNkG9r1EAQxles4rX2A_juEKEIpp39M9nsSz1aK1wpiPh2mexNrrG57JnN1a_v5iLSFzPDA79neGZOxUkfexbinYRLCWCvnK0KXWjpclmAwr4QpzrLo6pePhcnYiHRygJB42uxcKiUsUbBG3Ge0i8AyFSprF6IT99jfUjj8u7Qje0ubqhbruK2b8f2iZfrSJvlHVM6DLzjfnwrXjXUJT7_N8_Ez5vrH6vbYn3_9dvq87ogZR2WRagayUiB0QUgieRKdE0FSBvUsjF1zTUQ1WQ3rELFJjRlQMmlaWzJOfSZ-DgvpvTIf9JD7MbknzquY3xMPj_i_6k2s1czm_ZD22958DMlwU9vm2ivfeb90eAnx8Xs2A_x94HT6I-LQ75woM5ff1kZRKtQZfLDTPZt60M7dSk1qEopCxW6yrgSprjvZyxQoi5jfhf7uB1o_5A8GmeMBf0Xwfd-rw |
ContentType | eBook Book |
Copyright | Springer International Publishing Switzerland 2016 |
Copyright_xml | – notice: Springer International Publishing Switzerland 2016 |
DBID | I4C RYH |
DEWEY | 005 |
DOI | 10.1007/978-3-319-31700-7 |
DatabaseName | Casalini Torrossa eBooks Institutional Catalogue CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 3319317008 9783319317007 |
Edition | 1 1st ed. 2016 edition. |
Editor | Wang, Yang Arshad, Syed Z Yu, Kun Zhou, Jianlong |
Editor_xml | – sequence: 1 fullname: Arshad, Syed Z – sequence: 2 fullname: Wang, Yang – sequence: 3 fullname: Yu, Kun – sequence: 4 fullname: Zhou, Jianlong |
ExternalDocumentID | 9783319317007 338111 EBC4557252 BB29105125 5494470 |
GroupedDBID | 0D6 0DA 38. AABBV AAMCO AAQZU ABMNI ABOWU ACBPT ACLMJ ADCXD ADPGQ AEIBC AEJGN AEJLV AEKFX AETDV AEZAY ALMA_UNASSIGNED_HOLDINGS AORVH AZZ BBABE CZZ I4C IEZ MYL SBO SWNTM TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z87 Z88 RYH SAO Z85 |
ID | FETCH-LOGICAL-a27956-c8f1e5ace59c0a15a9659f805ad531f4bbeb0aaba7de2c8e4cf6c51e64f76e503 |
ISBN | 3319317008 9783319317007 3319316982 9783319316987 |
ISSN | 1571-5035 |
IngestDate | Fri Nov 08 04:45:56 EST 2024 Wed Sep 17 03:48:24 EDT 2025 Fri May 30 21:59:54 EDT 2025 Fri Jun 27 00:32:14 EDT 2025 Sun May 11 05:58:59 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCallNum_Ident | Q |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a27956-c8f1e5ace59c0a15a9659f805ad531f4bbeb0aaba7de2c8e4cf6c51e64f76e503 |
Notes | Includes bibliographical references Other authors: Jianlong Zhou, Yang Wang, Kun Yu, Syed Z. Arshad, Ahmad Khawaji, Dan Conway |
OCLC | 952247420 |
PQID | EBC4557252 |
PageCount | 253 |
ParticipantIDs | askewsholts_vlebooks_9783319317007 springer_books_10_1007_978_3_319_31700_7 proquest_ebookcentral_EBC4557252 nii_cinii_1130282270859849600 casalini_monographs_5494470 |
PublicationCentury | 2000 |
PublicationDate | 2016 c2016 2016-06-24 |
PublicationDateYYYYMMDD | 2016-01-01 2016-06-24 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Netherlands – name: Switzerland – name: Cham |
PublicationSeriesTitle | Human–Computer Interaction Series |
PublicationSeriesTitleAlternate | Human–Computer Interaction Series |
PublicationYear | 2016 |
Publisher | Springer Nature Springer International Publishing AG Springer International Publishing Springer |
Publisher_xml | – name: Springer Nature – name: Springer International Publishing AG – name: Springer International Publishing – name: Springer |
RelatedPersons | Tan, Desney Vanderdonckt, Jean |
RelatedPersons_xml | – sequence: 1 givenname: Desney surname: Tan fullname: Tan, Desney – sequence: 2 givenname: Jean surname: Vanderdonckt fullname: Vanderdonckt, Jean |
SSID | ssj0001706273 |
Score | 2.4017563 |
Snippet | This book explores robust multimodal cognitive
load measurement with physiological and behavioural modalities, which involve the
eye, Galvanic Skin Response,... |
SourceID | askewsholts springer proquest nii casalini |
SourceType | Aggregation Database Publisher |
SubjectTerms | Biological Psychology Biometrics Computer programming, programs, data Computer Science User Interfaces and Human Computer Interaction |
TableOfContents | 6.4 Cognitive Load Measurement Based on Personal Pronouns -- 6.5 Language Complexity as Indices of Cognitive Load -- 6.5.1 Lexical Density -- 6.5.2 Complex Word Ratio -- 6.5.3 Gunning Fog Index -- 6.5.4 Flesch-Kincaid Grade -- 6.5.5 SMOG Grade -- 6.5.6 Summary of Language Measurements -- 6.6 Summary -- References -- Chapter 7: Speech Signal Based Measures -- 7.1 Basics of Speech -- 7.2 Cognitive Load Experiments -- 7.2.1 Reading Comprehension Experiment -- 7.2.2 Stroop Test -- 7.2.3 Reading Span Experiment -- 7.2.4 Time Constraint -- 7.2.5 Experiment Validation -- 7.3 Speech Features and Cognitive Load -- 7.3.1 Source-Based Features -- 7.3.2 Filter-Based Features -- 7.4 A Comparison of Features for Cognitive Load Classification -- 7.4.1 Pitch and Intensity Features -- 7.4.2 EGG Features -- 7.4.3 Glottal Flow Features -- 7.5 Cognitive Load Classification System via Speech -- 7.6 Summary -- References -- Chapter 8: Pen Input Based Measures -- 8.1 Writing Based Measures -- 8.2 Datasets for Writing-Based Cognitive Load Examination -- 8.2.1 CLTex Dataset -- 8.2.2 CLSkt Dataset -- 8.2.3 CLDgt Dataset -- 8.3 Stroke-, Substroke- and Point-Level Features -- 8.4 Cognitive Load Implications on Writing Shapes -- 8.5 Cognitive Load Classification System -- 8.6 Summary -- References -- Chapter 9: Mouse Based Measures -- 9.1 User Mouse Activity -- 9.2 Mouse Features for Cognitive Load Change Detection -- 9.2.1 Temporal Features -- 9.2.2 Spatial Features -- 9.2.2.1 Spatial Features with Straight Lines -- 9.2.2.2 Straight Line Results -- 9.3 Limitations of Mouse Feature Measurements -- 9.4 Mouse Interactivity in Multimodal Measures -- 9.5 Summary -- References -- Part IV: Multimodal Measures and Affecting Factors -- Chapter 10: Multimodal Measures and Data Fusion -- 10.1 Multimodal Measurement of Cognitive Load -- 10.2 An Abstract Model for Multimodal Assessment Intro -- Preface -- Acknowledgements -- Contents -- Part I: Preliminaries -- Chapter 1: Introduction -- 1.1 What Is Cognitive Load -- 1.2 Background -- 1.3 Multimodal Cognitive Load Measurement -- 1.4 Structure of the Book -- References -- Chapter 2: The State-of-The-Art -- 2.1 Working Memory and Cognitive Load -- 2.2 Subjective Measures -- 2.3 Performance Measures -- 2.4 Physiological Measures -- 2.5 Behavioral Measures -- 2.6 Estimating Load from Interactive Behavior -- 2.7 Measuring Different Types of Cognitive Load -- 2.8 Differences in Cognitive Load -- 2.8.1 Gender Differences in Cognitive Load -- 2.8.2 Age Differences in Cognitive Load -- 2.8.3 Static Graphics Versus Animated Graphics in Cognitive Load -- 2.9 Summary -- References -- Chapter 3: Theoretical Aspects of Multimodal Cognitive Load Measures -- 3.1 Load? What Load? Mental? Or Cognitive? Why Not Effort? -- 3.2 Mental Load in Human Performance -- 3.2.1 Mental Workload: The Early Years -- 3.2.2 Subjective Mental Workload Scales and Curve -- 3.2.3 Cognitive Workload and Physical Workload Redlines -- 3.3 Cognitive Load in Human Learning -- 3.3.1 Three Stages of CLT: The Additivity Hypothesis -- 3.3.2 Schema Acquisition and First-in Method -- 3.3.3 Modality Principle in CTML -- 3.3.4 Has Measuring Cognitive Load Been a Means to Advancing Theory? -- 3.3.5 Bridging Mental Workload and Cognitive Load Constructs -- 3.3.6 CLT Continues to Evolve -- 3.4 Multimodal Interaction and Cognitive Load -- 3.4.1 Multimodal Interaction and Robustness -- 3.4.2 Cognitive Load in Human Centred Design -- 3.4.3 Dual Task Methodology for Inducing Load -- 3.4.4 Workload Measurement in a Test and Evaluation Environment -- 3.4.5 Working Memory´s Workload Capacity: Limited But Not Fixed -- 3.4.6 Load Effort Homeostasis (LEH) and Interpreting Cognitive Load -- 3.5 Multimodal Cognitive Load Measures (MCLM) 3.5.1 Framework for MCLM -- 3.5.2 MCLM and Cognitive Modelling -- 3.5.3 MCLM and Decision Making -- 3.5.4 MCLM and Trust Studies -- 3.6 Summary -- References -- Part II: Physiological Measurement -- Chapter 4: Eye-Based Measures -- 4.1 Pupillary Response for Cognitive Load Measurement -- 4.2 Cognitive Load Measurement Under Luminance Changes -- 4.2.1 Task Design -- 4.2.2 Participants and Apparatus -- 4.2.3 Subjective Ratings -- 4.3 Pupillary Response Features -- 4.4 Workload Classification -- 4.4.1 Feature Generation for Workload Classification -- 4.4.2 Feature Selection and Workload Classification -- 4.4.3 Results on Pupillary Response -- 4.5 Summary -- References -- Chapter 5: Galvanic Skin Response-Based Measures -- 5.1 Galvanic Skin Response for Cognitive Load Measurement -- 5.2 Cognitive Load Measurement in Arithmetic Tasks -- 5.2.1 Task Design -- 5.2.2 GSR Feature Extraction -- 5.2.2.1 Time Domain Features -- 5.2.2.2 Frequency Domain Features -- 5.2.3 Feature Analyses -- 5.3 Cognitive Load Measurement in Reading Tasks -- 5.3.1 Task Design -- 5.3.2 GSR Feature Extraction -- 5.3.3 Feature Analyses -- 5.4 Cognitive Load Classification in Arithmetic Tasks -- 5.4.1 Features for Workload Classification -- 5.4.2 Classification Results -- 5.5 Summary -- References -- Part III: Behavioural Measurement -- Chapter 6: Linguistic Feature-Based Measures -- 6.1 Linguistics -- 6.2 Cognitive Load Measurement With Non-Word Linguistics -- 6.3 Cognitive Load Measurement with Words -- 6.3.1 Word Count and Words per Sentence -- 6.3.2 Long Words -- 6.3.3 Positive and Negative Emotion Words -- 6.3.4 Swear Words -- 6.3.5 Cognitive Words -- 6.3.6 Perceptual Words -- 6.3.7 Inclusive Words -- 6.3.8 Achievement Words -- 6.3.9 Agreement and Disagreement Words -- 6.3.10 Certainty and Uncertainty Words -- 6.3.11 Summary of Measurements 10.3 Basketball Skills Training -- 10.4 Subjective Ratings and Performance Results -- 10.5 Individual Modalities -- 10.6 Multimodal Fusion -- 10.7 Summary -- References -- Chapter 11: Emotion and Cognitive Load -- 11.1 Emotional Arousal and Physiological Response -- 11.2 Cognitive Load Measurement with Emotional Arousal -- 11.2.1 Task Design -- 11.2.2 Pupillary Response Based Measurement -- 11.2.3 Skin Response Based Measurement -- 11.3 Cognitive Load Classification with Emotional Arousal -- 11.3.1 Cognitive Load Classification Based on Pupillary Response -- 11.3.2 Cognitive Load Classification Based on GSR -- 11.3.3 Cognitive Load Classification Based on the Fusion -- 11.4 Summary -- References -- Chapter 12: Stress and Cognitive Load -- 12.1 Stress and Galvanic Skin Response -- 12.2 Cognitive Load Measurement Under Stress Conditions -- 12.2.1 Task Design -- 12.2.2 Procedures -- 12.2.3 Subjective Ratings -- 12.3 GSR Features Under Stress Conditions -- 12.3.1 Mean GSR Under Stress Conditions -- 12.3.2 Peak Features Under Stress Conditions -- 12.4 Summary -- References -- Chapter 13: Trust and Cognitive Load -- 13.1 Definition of Trust -- 13.2 Related Work -- 13.2.1 Trust -- 13.2.2 Trust and Cognitive Load -- 13.3 Trust of Information and Cognitive Load -- 13.3.1 Task Design -- 13.3.2 Data Collection -- 13.3.2.1 Survey Responses -- 13.3.2.2 Behavioral Measures -- 13.3.2.3 Performance Measures -- 13.4 Data Analyses -- 13.5 Analysis Results -- 13.5.1 Subjective Ratings of Mental Effort -- 13.5.2 Linguistic Analysis of Think-Aloud Speech -- 13.5.2.1 Pause Analysis -- 13.5.2.2 Linguistic Category Analysis -- 13.5.2.3 Other Behavioral Features -- 13.6 Interpersonal Trust and Cognitive Load -- 13.6.1 Task Design -- 13.6.2 Results -- 13.7 Summary -- References -- Part V: Making Cognitive Load Measurement Accessible Chapter 14: Dynamic Cognitive Load Adjustments in a Feedback Loop -- 14.1 Dynamic Cognitive Load Adjustments -- 14.2 Dynamic Workload Adaptation Feedback Loop -- 14.2.1 Task Design -- 14.2.2 Procedures -- 14.3 GSR Features -- 14.3.1 Signal Processing -- 14.3.2 Feature Extraction -- 14.4 Cognitive Load Classification -- 14.4.1 Offline Cognitive Load Classifications -- 14.4.2 Online Cognitive Load Classifications -- 14.5 Dynamic Workload Adjustment -- 14.5.1 Adaptation Models -- 14.5.2 Performance Evaluation of Adaptation Models -- 14.6 Summary -- References -- Chapter 15: Real-Time Cognitive Load Measurement: Data Streaming Approach -- 15.1 Sliding Window Implementation -- 15.2 Streaming Mouse Activity Features -- 15.3 Lessons Learnt -- 15.4 Summary -- References -- Chapter 16: Applications of Cognitive Load Measurement -- 16.1 User Interface Design -- 16.2 Emergency Management -- 16.3 Driving and Piloting -- 16.4 Education and Training -- 16.5 Other Applications -- 16.6 Future Applications -- References -- Part VI: Conclusions -- Chapter 17: Cognitive Load Measurement in Perspective -- References |
Title | Robust Multimodal Cognitive Load Measurement |
URI | http://digital.casalini.it/9783319317007 https://cir.nii.ac.jp/crid/1130282270859849600 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4557252 http://link.springer.com/10.1007/978-3-319-31700-7 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319317007 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLbocKEXdjGUoghxQIKgJN6SY6eaUpXlVEp7srxKo04TiWQ49Nf32VlnQEJwsRIniq33OfbzWz4j9BbjrKDWwibHWRcTh2VcEJXFhBlH84KrTPsE56_f2Ol3cnZJL0cim5Bd0qiP-vaPeSX_gyrUAa4-S_YfkB0-ChVwDfhCCQhDuaP8Drc9lbba1E0bDXhTmcDx0YcBrStp3t-Mpr_Rgd_OMCeyW6yCubjaBBxhkKyrsf5HZ0W-mrx7Fd78vCmnhoJ011DQGwp3TI0Ta9fRp63NJYa_E6esaBfE36baaXSFz4TCnukv5uO6MkT7LRYZKCWgWdA9tMd5MkP3j5ZnXy5GWxj3ZMn-yI2hzawlRxr70HukO1LgrTb30b6sr2FRgAWjqb2GIWvpE0tBYShXq63Nw46_O6gR54_QzKeWPEb3bPkEPewP1Ii6-fUp-tDiGo24RgOukcc1muD6DF2cLM-PT-PuOItYZtzTPercpZZKn_imE5lS6ckcXZ5QaWAmdEQpqxIpleTGZjq3RDumaWoZcZxZmuDnaFZWpX2BIpCZYZjkRktJMEskKMLcSWa0cqpQZo7eTCQifq2D670Wg0hBbnyODnpBCfgzWor0WlBSEMKTOToE2Qm98mXq_dugS3LPh5cT2PbC86iXqghf76KJxXJxTCjlGc3m6F0vbdG235NkQz8EFtATEboi-Mu_tHaAHoxj-hWaNT839hDUwUa97kbTHX0QVMU |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Robust+multimodal+cognitive+load+measurement&rft.au=Chen%2C+Fang&rft.au=Zhou%2C+Jianlong&rft.au=Wang%2C+Yang&rft.au=Yu%2C+Kun&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319316987&rft_id=info:doi/10.1007%2F978-3-319-31700-7&rft.externalDocID=BB29105125 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833193%2F9783319317007.jpg |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-319-31700-7 |