DNN Is Not All You Need: Parallelizing Non-neural ML Algorithms on Ultra-low-power IoT Processors

Machine Learning (ML) functions are becoming ubiquitous in latency- and privacy-sensitive IoT applications, prompting a shift toward near-sensor processing at the extreme edge and the consequent increasing adoption of Parallel Ultra-low-power (PULP) IoT processors. These compute- and memory-constrai...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on embedded computing systems Vol. 22; no. 3; pp. 1 - 33
Main Authors Tabanelli, Enrico, Tagliavini, Giuseppe, Benini, Luca
Format Journal Article
LanguageEnglish
Published New York, NY ACM 19.04.2023
Subjects
Online AccessGet full text
ISSN1539-9087
1558-3465
1558-3465
DOI10.1145/3571133

Cover

Abstract Machine Learning (ML) functions are becoming ubiquitous in latency- and privacy-sensitive IoT applications, prompting a shift toward near-sensor processing at the extreme edge and the consequent increasing adoption of Parallel Ultra-low-power (PULP) IoT processors. These compute- and memory-constrained parallel architectures need to run efficiently a wide range of algorithms, including key Non-neural ML kernels that compete favorably with Deep Neural Networks in terms of accuracy under severe resource constraints. In this article, we focus on enabling efficient parallel execution of Non-neural ML algorithms on two RISCV-based PULP platforms, namely, GAP8, a commercial chip, and PULP-OPEN, a research platform running on an FPGA emulator. We optimized the parallel algorithms through a fine-grained analysis and intensive optimization to maximize the speedup, considering two alternative Floating-point (FP) emulation libraries on GAP8 and the native FPU support on PULP-OPEN. Experimental results show that a target-optimized emulation library can lead to an average 1.61× runtime improvement and 37% energy reduction compared to a standard emulation library, while the native FPU support reaches up to 32.09× and 99%, respectively. In terms of parallel speedup, our design improves the sequential execution by 7.04× on average on the targeted octa-core platforms leading to energy and latency decrease up to 87%. Last, we present a comparison with the ARM Cortex-M4 microcontroller, a widely adopted commercial solution for edge deployments, which is 12.87× slower than PULP-OPEN.
AbstractList Machine Learning (ML) functions are becoming ubiquitous in latency- and privacy-sensitive IoT applications, prompting a shift toward near-sensor processing at the extreme edge and the consequent increasing adoption of Parallel Ultra-low-power (PULP) IoT processors. These compute- and memory-constrained parallel architectures need to run efficiently a wide range of algorithms, including key Non-neural ML kernels that compete favorably with Deep Neural Networks in terms of accuracy under severe resource constraints. In this article, we focus on enabling efficient parallel execution of Non-neural ML algorithms on two RISCV-based PULP platforms, namely, GAP8, a commercial chip, and PULP-OPEN, a research platform running on an FPGA emulator. We optimized the parallel algorithms through a fine-grained analysis and intensive optimization to maximize the speedup, considering two alternative Floating-point (FP) emulation libraries on GAP8 and the native FPU support on PULP-OPEN. Experimental results show that a target-optimized emulation library can lead to an average 1.61× runtime improvement and 37% energy reduction compared to a standard emulation library, while the native FPU support reaches up to 32.09× and 99%, respectively. In terms of parallel speedup, our design improves the sequential execution by 7.04× on average on the targeted octa-core platforms leading to energy and latency decrease up to 87%. Last, we present a comparison with the ARM Cortex-M4 microcontroller, a widely adopted commercial solution for edge deployments, which is 12.87× slower than PULP-OPEN.
ArticleNumber 56
Author Tabanelli, Enrico
Tagliavini, Giuseppe
Benini, Luca
Author_xml – sequence: 1
  givenname: Enrico
  orcidid: 0000-0002-3155-8774
  surname: Tabanelli
  fullname: Tabanelli, Enrico
  email: enrico.tabanelli3@unibo.it
  organization: DEI, University of Bologna, Bologna, Italy
– sequence: 2
  givenname: Giuseppe
  orcidid: 0000-0002-9221-4633
  surname: Tagliavini
  fullname: Tagliavini, Giuseppe
  email: giuseppe.tagliavini@unibo.it
  organization: DISI, University of Bologna, Bologna, Italy
– sequence: 3
  givenname: Luca
  orcidid: 0000-0001-8068-3806
  surname: Benini
  fullname: Benini, Luca
  email: luca.benini@unibo.it
  organization: DEI, University of Bologna, Bologna, Italy
BookMark eNp1kM1PAjEQxRuDiYDGu6fe9FJtt1u6eCPgBwmuHODgaTO0XVxTWtIuIfjXuwT0YPQ0k3m_vMx7HdRy3hmELhm9ZSwVd1xIxjg_QW0mREZ42hOt_c77pE8zeYY6MX5QymSSijaCUZ7jccS5r_HAWvzmNzg3Rt_jKQSw1tjqs3LLRnfEmU1zwi-Thlz6UNXvq4i9w3NbByDWb8nab03AYz_D0-CVidGHeI5OS7DRXBxnF80fH2bDZzJ5fRoPBxMCiZQ10UmmhdG6ZAJMmVIAnmaJktBP5UIpliaUJoxRI7VWtGRaJ4teSblhHHiPC95FNwffjVvDbtv8XqxDtYKwKxgt9tUUx2oalBxQFXyMwZSFqmqoK--aIJX9g7_-xf_vfHUgQa1-oG_xC0RTerU
CitedBy_id crossref_primary_10_1109_JIOT_2023_3339254
crossref_primary_10_1109_TCAD_2022_3199903
crossref_primary_10_1007_s11042_023_16740_9
crossref_primary_10_1109_JIOT_2023_3286276
crossref_primary_10_1145_3704635
crossref_primary_10_1016_j_comnet_2023_110156
crossref_primary_10_1109_OJIES_2024_3451959
crossref_primary_10_1109_OJCOMS_2023_3323832
crossref_primary_10_1016_j_engappai_2024_109648
Cites_doi 10.1109/TII.2021.3078186
10.1155/2014/190903
10.1109/ROBIO.2011.6181557
10.1109/TSP.2008.924637
10.1109/INFCOM.2013.6566921
10.1109/EmergiTech.2016.7737367
10.1109/ISIE45063.2020.9152277
10.1007/978-3-031-04580-6_2
10.1109/JIOT.2017.2677578
10.1016/j.iot.2019.100059
10.1109/ACCESS.2017.2778504
10.1109/SLT48900.2021.9383571
10.1007/978-3-030-81682-7_11
10.1109/IPDPS.2019.00113
10.1109/TIT.1967.1053964
10.1007/s11280-018-0600-3
10.1109/MCAS.2020.3005467
10.1109/TC.2021.3066883
10.1155/ASP/2006/96421
10.1023/A:1010933404324
10.1023/A:1007465528199
10.1145/2821510
10.1109/5.726791
10.1109/TNN.2006.883013
10.3390/s20092638
10.1109/CVPR.2016.90
10.1145/3242102.3242145
10.1155/2008/242584
10.1109/ICDABI51230.2020.9325641
10.1109/TDEI.2013.6518945
10.1109/ASAP.2018.8445101
10.1109/JIOT.2020.3008896
10.1145/3314221.3314597
10.1109/HNICEM51456.2020.9400004
10.4018/IJGHPC.2019010102
10.1023/A:1022627411411
10.1109/99.660313
10.1109/HPCC-SmartCity-DSS50907.2020.00077
10.5555/355074
10.1109/JSEN.2020.2995749
10.3390/s20092533
10.1145/3126534
10.1109/PAAP54281.2021.9720310
10.1109/TVLSI.2020.3044752
10.1109/TII.2019.2952917
10.5555/3153474
10.1109/CVPR.2018.00474
10.1007/s11771-019-3978-x
10.1109/TPDS.2018.2814602
10.1109/IPDPS.2014.88
10.1109/ACCESS.2020.3039858
10.1109/JSEN.2021.3049273
10.1109/SAMOS.2013.6621121
10.1016/j.dcan.2017.10.002
10.23919/DATE48585.2020.9116230
10.1109/ISSCC42613.2021.9365939
10.1109/HPCA.2016.7446050
10.1109/ICS51289.2020.00028
10.1016/j.enbuild.2017.04.038
10.3390/bdcc2030026
10.1109/ICASSP43922.2022.9747197
10.1007/3-540-45417-9_1
10.1109/IPDPS.2009.5161107
10.1109/GHTCE.2012.6490139
ContentType Journal Article
Copyright Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Copyright_xml – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1145/3571133
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate DNN Is Not All You Need
EISSN 1558-3465
EndPage 33
ExternalDocumentID 10.1145/3571133
10_1145_3571133
3571133
GrantInformation_xml – fundername: H2020 “European PILOT”
  grantid: 101034126
GroupedDBID -DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACGFO
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AENEX
AENSD
AFWIH
AFWXC
AIAGR
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
D0L
EBS
EDO
FEDTE
GUFHI
HGAVV
H~9
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TUS
UPT
ZCA
AAYXX
AEJOY
CITATION
ADTOC
AETEA
AFFNX
EJD
NEJ
UNPAY
XOL
ID FETCH-LOGICAL-a277t-d28d5eddf15aef40aa3482c7a947bcc142002110e7ddc0f1dd2b6f03e13a36353
IEDL.DBID UNPAY
ISSN 1539-9087
1558-3465
IngestDate Sun Oct 26 04:08:02 EDT 2025
Thu Apr 24 22:56:11 EDT 2025
Wed Oct 01 06:04:45 EDT 2025
Mon May 19 16:31:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords MCUs
edge
parallel ultra-low-power platforms
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a277t-d28d5eddf15aef40aa3482c7a947bcc142002110e7ddc0f1dd2b6f03e13a36353
ORCID 0000-0002-9221-4633
0000-0001-8068-3806
0000-0002-3155-8774
OpenAccessLink https://proxy.k.utb.cz/login?url=https://dl.acm.org/doi/pdf/10.1145/3571133
PageCount 33
ParticipantIDs unpaywall_primary_10_1145_3571133
crossref_citationtrail_10_1145_3571133
crossref_primary_10_1145_3571133
acm_primary_3571133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-19
PublicationDateYYYYMMDD 2023-04-19
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-19
  day: 19
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle ACM transactions on embedded computing systems
PublicationTitleAbbrev ACM TECS
PublicationYear 2023
Publisher ACM
Publisher_xml – name: ACM
References (Bib0026) 2022
Bib0016
(Bib0074) 1995; 20
(Bib0029) 1998; 86
(Bib0020) 2017; 16
(Bib0077) 1997; 29
(Bib0059) 2021
(Bib0068) 2006
(Bib0071) 2002
(Bib0072) 2018
(Bib0005) 2016
(Bib0066) 2020
(Bib0022) 2006; 2006
(Bib0042) 2019
(Bib0082) 2019
(Bib0027) 2020; 8
(Bib0002) 2011
(Bib0012) 2016
(Bib0086) 2001; 45
(Bib0034) 2020; 20
(Bib0045) 2019
(Bib0078) 2020; 16
(Bib0061) 2018; 29
(Bib0001) 2011
(Bib0032) 2018; 2
(Bib0013) 2019
(Bib0085) 2013; 20
(Bib0044) 2017
(Bib0055) 2021
(Bib0039) 2019; 26
(Bib0064) 2013
(Bib0033) 2016
(Bib0079) 2021; 8
(Bib0023) 2006; 51
(Bib0087) 2020
Bib0031
(Bib0052) 2022
Bib0036
(Bib0008) 2020; 20
Bib0035
(Bib0073) 2019; 7
(Bib0054) 2020
(Bib0084) 2017; 4
(Bib0030) 2018
(Bib0024) 2008; 2008
(Bib0069) 2001
(Bib0011) 2017; 6
(Bib0040) 2014
(Bib0075) 2007; 18
(Bib0083) 1967
(Bib0004) 2017
(Bib0081) 2021; 21
(Bib0051) 2021
(Bib0038) 2022
(Bib0080) 1967; 13
(Bib0025) 2008; 56
(Bib0067) 2012
(Bib0058) 2020
(Bib0007) 2014; 10
(Bib0021) 2013; 9
(Bib0019) 2021; 64
(Bib0003) 2022; 18
(Bib0088) 2020
(Bib0057) 2021; 29
(Bib0065) 2015; 3
(Bib0076) 2020; 20
(Bib0053) 2019; 22
(Bib0018) 2018
(Bib0041) 2019; 11
(Bib0028) 2019; 8
(Bib0060) 2001
(Bib0050) 2021
(Bib0063) 2009
(Bib0056) 1998; 5
(Bib0070) 2021
(Bib0009) 2020
(Bib0047) 2018; 4
(Bib0014) 2018
(Bib0043) 2017
(Bib0017) 2015; 12
(Bib0048) 2020; 20
(Bib0062) 2020
Bib0010
(Bib0006) 2013
Bib0015
(Bib0037) 2020
(Bib0046) 2016
(Bib0049) 2017; 147
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_68_2
MacQueen J. (e_1_3_2_84_2) 1967
e_1_3_2_47_2
e_1_3_2_89_2
Chen Doris (e_1_3_2_22_2) 2013; 9
e_1_3_2_60_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
Ranjitha M. M. (e_1_3_2_83_2) 2019
Cramer J. S. (e_1_3_2_72_2) 2002
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_35_2
Durkota Karel (e_1_3_2_55_2) 2020
e_1_3_2_56_2
e_1_3_2_77_2
Patel Sumit (e_1_3_2_66_2) 2015; 3
e_1_3_2_50_2
e_1_3_2_71_2
Kumar Ashish (e_1_3_2_45_2) 2017
Gupta Chirag (e_1_3_2_44_2) 2017
e_1_3_2_27_2
e_1_3_2_48_2
(e_1_3_2_6_2) 2016
Greeshma K. V. (e_1_3_2_29_2) 2019; 8
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_86_2
Christensen Michael (e_1_3_2_24_2) 2006; 51
Nir Friedman (e_1_3_2_78_2) 1997; 29
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_88_2
Fürlinger Karl (e_1_3_2_69_2) 2006
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_80_2
Evans D. (e_1_3_2_2_2) 2011
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_19_2
Senagi Kennedy (e_1_3_2_39_2) 2022
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
Tan Mingxing (e_1_3_2_14_2) 2019
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_70_2
References_xml – year: 2001
  ident: Bib0060
  publication-title: Parallel Programming in OpenMP
– volume: 18
  start-page: 178
  issue: 1
  year: 2007
  end-page: 192
  ident: Bib0075
  article-title: Face recognition using total margin-based adaptive fuzzy support vector machines
  publication-title: IEEE Trans. Neural Netw.
– start-page: 180
  year: 2013
  end-page: 187
  ident: Bib0064
  article-title: Deploying OpenMP on an embedded multicore accelerator
  publication-title: Proceedings of the International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS’13)
– start-page: 1935
  year: 2017
  end-page: 1944
  ident: Bib0044
  article-title: Resource-efficient machine learning in 2 KB RAM for the internet of things
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 805
  year: 2020
  end-page: 810
  ident: Bib0087
  article-title: A feature reduction strategy for enabling lightweight non-intrusive load monitoring on edge devices
  publication-title: Proceedings of the IEEE 29th International Symposium on Industrial Electronics (ISIE’20)
– volume: 20
  start-page: 273
  issue: 1
  year: 1995
  end-page: 297
  ident: Bib0074
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– start-page: 281
  year: 1967
  end-page: 296
  ident: Bib0083
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability: Weather Modification
– start-page: 259
  year: 2018
  end-page: 263
  ident: Bib0072
  article-title: An intrusion detection system for constrained WSN and IoT nodes based on binary logistic regression
  publication-title: Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
– volume: 3
  start-page: 837
  issue: 4
  year: 2015
  end-page: 839
  ident: Bib0065
  article-title: A survey on image processing techniques with OpenMP
  publication-title: Int. J. Eng. Dev. Res.
– volume: 5
  start-page: 46
  issue: 1
  year: 1998
  end-page: 55
  ident: Bib0056
  article-title: OpenMP: An industry standard API for shared-memory programming
  publication-title: IEEE Comput. Sci. Engineer.
– volume: 11
  start-page: 17
  issue: 1
  year: 2019
  end-page: 28
  ident: Bib0041
  article-title: A high performance parallel ranking SVM with opencl on multi-core and many-core platforms
  publication-title: Int. J. Grid High Perform. Comput. IGI Global
– volume: 9
  issue: 4
  year: 2013
  ident: Bib0021
  article-title: Profile-guided floating- to fixed-point conversion for hybrid FPGA-processor applications
  publication-title: ACM Trans. Architect. Code Optim.
– start-page: 39
  year: 2006
  end-page: 51
  ident: Bib0068
  article-title: Analyzing overheads and scalability characteristics of OpenMP applications
  publication-title: Proceedings of the International Conference on High Performance Computing for Computational Science
– volume: 20
  start-page: 2638
  issue: 9
  year: 2020
  ident: Bib0034
  article-title: Machine learning on mainstream microcontrollers
  publication-title: Sensors MDPI
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 12
  ident: Bib0024
  article-title: Accuracy constraint determination in fixed-point system design
  publication-title: EURASIP J. Embed. Syst.
– start-page: 79
  year: 2019
  end-page: 95
  ident: Bib0045
  article-title: Compiling KB-Sized machine learning models to tiny IoT devices
  publication-title: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
– start-page: 1063
  year: 2019
  end-page: 1072
  ident: Bib0042
  article-title: Stochastic gradient descent on modern hardware: Multi-core CPU or GPU? Synchronous or asynchronous?
  publication-title: Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS’19)
– start-page: 162
  year: 2021
  end-page: 168
  ident: Bib0055
  article-title: Spatiotemporal anomaly detection for large-scale sensor data
  publication-title: Proceedings of the 12th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP’21)
– ident: Bib0016
  article-title: Spresense development board
– start-page: 903
  year: 2020
  end-page: 908
  ident: Bib0062
  article-title: Towards a qualifiable OpenMP framework for embedded systems
  publication-title: Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition (DATE’20)
– volume: 18
  start-page: 943
  issue: 2
  year: 2022
  end-page: 952
  ident: Bib0003
  article-title: Trimming feature extraction and inference for MCU-based edge NILM: A systematic approach
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2021.3078186
– start-page: 1
  year: 2018
  end-page: 4
  ident: Bib0018
  article-title: GAP-8: A RISC-V SoC for AI at the edge of the IoT
  publication-title: Proceedings of the International Conference on Application-specific Systems, Architectures and Processors (ASAP’18)
– volume: 10
  start-page: 190903
  issue: 7
  year: 2014
  ident: Bib0007
  article-title: Data security and privacy in cloud computing
  publication-title: Int. J. Distrib. Sensor Netw.
  doi: 10.1155/2014/190903
– volume: 4
  start-page: 979
  issue: 4
  year: 2017
  end-page: 986
  ident: Bib0084
  article-title: A data mining approach combining K-means clustering with bagging neural network for short-term wind power forecasting
  publication-title: IEEE Internet Things J.
– ident: Bib0031
  article-title: X-Cube-AI: AI Expansion Pack for STM32CubeMX
– start-page: 1
  year: 2001
  end-page: 1
  ident: Bib0069
  article-title: The SPMD model: Past, present and future
  publication-title: Proceedings of the European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting
– start-page: 167
  year: 2021
  end-page: 182
  ident: Bib0070
  article-title: Streamlining the OpenMP programming model on ultra-low-power multi-core MCUs
  publication-title: Proceedings of the International Conference on Architecture of Computing Systems
– volume: 12
  start-page: 1
  issue: 4
  year: 2015
  end-page: 26
  ident: Bib0017
  article-title: A survey of architectural techniques for near-threshold computing
  publication-title: ACM J. Emerg. Technol. Comput. Syst.
– start-page: 3169
  year: 2022
  end-page: 3173
  ident: Bib0052
  article-title: Universal paralinguistic speech representations using self-supervised conformers
  publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’22)
– volume: 51
  start-page: 111
  issue: 23
  year: 2006
  end-page: 122
  ident: Bib0023
  article-title: Fixed-point-IIR-filter challenges
  publication-title: EDN Netw.
– volume: 7
  start-page: 100059
  year: 2019
  ident: Bib0073
  article-title: Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches
  publication-title: Internet Things
– year: 2016
  ident: Bib0005
  publication-title: Global Cloud Index: Forecast and Methodology, 2016–2021
– start-page: 361
  year: 2016
  end-page: 366
  ident: Bib0033
  article-title: Power consumption of the raspberry pi: A comparative analysis
  publication-title: Proceedings of the IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech’16)
– year: 2020
  ident: Bib0009
  article-title: Benchmarking TinyML systems: Challenges and direction
– volume: 8
  start-page: 960
  issue: 5
  year: 2019
  end-page: 962
  ident: Bib0028
  article-title: Fashion-MNIST classification based on HOG feature descriptor using SVM
  publication-title: Int. J. Innov. Technol. Explor. Eng.
– ident: Bib0035
  article-title: MicroML
– year: 2020
  ident: Bib0054
  publication-title: Neuron-net: Siamese Network for Anomaly Detection
– start-page: 1
  year: 2020
  end-page: 6
  ident: Bib0037
  article-title: Parallel programming for classification algorithms using logistic regression and artificial neural networks: Framework and applications
  publication-title: Proceedings of the International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI’20)
– start-page: 1
  year: 2009
  end-page: 8
  ident: Bib0063
  article-title: Implementing OpenMP on a high performance embedded multicore MPSoC
  publication-title: Proceedings of the IEEE International Symposium on Parallel and Distributed Processing
– volume: 2
  start-page: 26
  issue: 3
  year: 2018
  ident: Bib0032
  article-title: Edge machine learning: Enabling smart internet of things applications
  publication-title: Big Data Cogn. Comput. MDPI
– start-page: 770
  year: 2016
  end-page: 778
  ident: Bib0012
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: Bib0013
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 20
  start-page: 11421
  issue: 19
  year: 2020
  end-page: 11428
  ident: Bib0076
  article-title: EEG-based detection of focal seizure area using FBSE-EWT rhythm and SAE-SVM network
  publication-title: IEEE Sensors J.
– year: 2017
  ident: Bib0004
  publication-title: Ubiquitous Machine Learning and Its Applications (1st ed.)
– start-page: 1837
  year: 2011
  end-page: 1843
  ident: Bib0002
  article-title: Autonomous driving: A comparison of machine learning techniques by means of the prediction of lane change behavior
  publication-title: Proceedings of the IEEE International Conference on Robotics and Biomimetics
  doi: 10.1109/ROBIO.2011.6181557
– year: 2002
  ident: Bib0071
  article-title: The origins of logistic regression
  publication-title: Tinbergen Institute Discussion
– start-page: 1
  year: 2022
  end-page: 21
  ident: Bib0038
  article-title: Parallel construction of random forest on GPU
  publication-title: J. Supercomput. Springer
– year: 2018
  ident: Bib0030
  article-title: CMSIS-NN: Efficient neural network kernels for arm cortex-M CPUs
– volume: 147
  start-page: 77
  year: 2017
  end-page: 89
  ident: Bib0049
  article-title: Trees vs. neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build.
– volume: 8
  start-page: 225134
  year: 2020
  end-page: 225180
  ident: Bib0027
  article-title: Hardware and software optimizations for accelerating deep neural networks: Survey of current trends, challenges, and the road ahead
  publication-title: IEEE Access
– start-page: 14
  year: 2016
  end-page: 26
  ident: Bib0046
  article-title: Tabla: A unified template-based framework for accelerating statistical machine learning
  publication-title: Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA’16)
– volume: 4
  start-page: 161
  issue: 3
  year: 2018
  end-page: 175
  ident: Bib0047
  article-title: Machine learning for internet of things data analysis: A survey
  publication-title: Digital Commun. Netw.
– volume: 20
  start-page: 754
  issue: 3
  year: 2013
  end-page: 761
  ident: Bib0085
  article-title: Application of k-means method to pattern recognition in on-line cable partial discharge monitoring
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 56
  start-page: 4673
  issue: 10
  year: 2008
  end-page: 4682
  ident: Bib0025
  article-title: On the fixed-point accuracy analysis of FFT algorithms
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.924637
– volume: 29
  start-page: 2150
  issue: 9
  year: 2018
  end-page: 2163
  ident: Bib0061
  article-title: Unleashing fine-grained parallelism on embedded many-core accelerators with lightweight OpenMP tasking
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– ident: Bib0010
  article-title: TinyML reasearch community
– volume: 6
  start-page: 6900
  year: 2017
  end-page: 6919
  ident: Bib0011
  article-title: A survey on the edge computing for the internet of things
  publication-title: IEEE Access
– volume: 20
  start-page: 4
  issue: 3
  year: 2020
  end-page: 18
  ident: Bib0008
  article-title: TinyML-Enabled frugal smart objects: Challenges and opportunities
  publication-title: IEEE Circ. Syst. Mag.
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: Bib0014
  article-title: Mobilenetv2: Inverted residuals and linear bottlenecks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1331
  year: 2017
  end-page: 1340
  ident: Bib0043
  article-title: ProtoNN: Compressed and accurate kNN for resource-scarce devices
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 21
  start-page: 8441
  issue: 6
  year: 2021
  end-page: 8450
  ident: Bib0081
  article-title: Multi-features capacitive hand gesture recognition sensor: A machine learning approach
  publication-title: IEEE Sensors J.
– volume: 8
  start-page: 869
  issue: 2
  year: 2021
  end-page: 880
  ident: Bib0079
  article-title: An IoT-based vehicle accident detection and classification system using sensor fusion
  publication-title: IEEE Internet Things J.
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: Bib0029
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– start-page: 133
  year: 2021
  end-page: 140
  ident: Bib0051
  article-title: Metric learning for keyword spotting
  publication-title: Proceedings of the IEEE Spoken Language Technology Workshop (SLT’21)
– volume: 22
  start-page: 423
  issue: 2
  year: 2019
  end-page: 436
  ident: Bib0053
  article-title: On fusing the latent deep CNN feature for image classification
  publication-title: World Wide Web
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  end-page: 27
  ident: Bib0080
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Info. Theory
– ident: Bib0036
  article-title: Emlearn: Machine Learning inference engine for Microcontrollers and Embedded Devices
– ident: Bib0015
  article-title: GAP Processors
– volume: 29
  start-page: 774
  issue: 4
  year: 2021
  end-page: 787
  ident: Bib0057
  article-title: FPnew: An open-source multiformat floating-point unit architecture for energy-proportional transprecision computing
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
– volume: 20
  start-page: 2533
  issue: 9
  year: 2020
  ident: Bib0048
  article-title: Edge machine learning for AI-enabled IoT devices: A review
  publication-title: Sensors
– volume: 2006
  start-page: 1
  year: 2006
  end-page: 19
  ident: Bib0022
  article-title: Floating-to-fixed-point conversion for digital signal processors
  publication-title: EURASIP J. Adv. Signal Process.
– start-page: 1
  year: 2020
  end-page: 6
  ident: Bib0066
  article-title: Detection of corn leaf diseases using convolutional neural network with OpenMP implementation
  publication-title: Proceedings of the IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM’20)
– volume: 16
  start-page: 5244
  issue: 8
  year: 2020
  end-page: 5253
  ident: Bib0078
  article-title: LSTM learning with Bayesian and gaussian processing for anomaly detection in industrial IoT
  publication-title: IEEE Trans. Industr. Inform.
– year: 2021
  ident: Bib0050
  article-title: MLPerf tiny benchmark
– volume: 64
  start-page: 60
  year: 2021
  end-page: 62
  ident: Bib0019
  article-title: 4.4 A 1.3TOPS/W @ 32GOPS fully integrated 10-core SoC for IoT end-nodes with 1.7 \(\mu\) W Cognitive Wake-Up From MRAM-Based State-Retentive Sleep Mode
  publication-title: Proceedings of the IEEE International Solid- State Circuits Conference (ISSCC’21)
– start-page: 809
  year: 2014
  end-page: 818
  ident: Bib0040
  article-title: Mic-svm: Designing a highly efficient support vector machine for advanced modern multi-core and many-core architectures
  publication-title: Proceedings of the IEEE 28th International Parallel and Distributed Processing Symposium
– start-page: 96
  year: 2020
  end-page: 99
  ident: Bib0088
  article-title: Anomaly detection with autoencoder and random forest
  publication-title: Proceedings of the International Computer Symposium (ICS’20)
– start-page: 607
  year: 2020
  end-page: 612
  ident: Bib0058
  article-title: A neural network-based optimal tile size selection model for embedded vision applications
  publication-title: Proceedings of the IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS’20)
– year: 2011
  ident: Bib0001
  publication-title: The Internet of Things: How the Next Evolution of the Internet Is Changing Everything
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: Bib0086
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 26
  start-page: 1
  issue: 1
  year: 2019
  end-page: 12
  ident: Bib0039
  article-title: Parallel naive Bayes algorithm for large-scale Chinese text classification based on spark
  publication-title: J. Central South Univ. Springer
– volume: 29
  start-page: 131
  issue: 7
  year: 1997
  end-page: 163
  ident: Bib0077
  article-title: Bayesian network classifiers
  publication-title: Mach. Learn.
– year: 2021
  ident: Bib0059
  article-title: DORY: Automatic end-to-end deployment of real-world DNNs on low-cost IoT MCUs
  publication-title: IEEE Trans. Comput.
– start-page: 1285
  year: 2013
  end-page: 1293
  ident: Bib0006
  article-title: To offload or not to offload? The bandwidth and energy costs of mobile cloud computing
  publication-title: Proceedings of the IEEE Infocom
  doi: 10.1109/INFCOM.2013.6566921
– volume: 16
  start-page: 1
  issue: 5s
  year: 2017
  end-page: 25
  ident: Bib0020
  article-title: Low-cost memory fault tolerance for IoT devices
  publication-title: ACM Trans. Embed. Comput. Syst.
– start-page: 16
  year: 2022
  end-page: 32
  ident: Bib0026
  article-title: RVfplib: A fast and compact open-source floating-point emulation library for tiny RISC-V processors
  publication-title: Proceedings of the International Conference on Embedded Computer Systems
– start-page: 131
  year: 2012
  end-page: 138
  ident: Bib0067
  article-title: Parallelizing ultrasound image processing using OpenMP on multicore embedded systems
  publication-title: Proceedings of the IEEE Global High Tech Congress on Electronics
– start-page: 76
  year: 2019
  end-page: 80
  ident: Bib0082
  article-title: Bone cancer detection using k-means segmentation and KNN classification
  publication-title: Proceedings of the 1st International Conference on Advances in Information Technology (ICAIT’19)
– ident: e_1_3_2_34_2
  doi: 10.1109/EmergiTech.2016.7737367
– ident: e_1_3_2_51_2
– ident: e_1_3_2_88_2
  doi: 10.1109/ISIE45063.2020.9152277
– start-page: 1
  year: 2022
  ident: e_1_3_2_39_2
  article-title: Parallel construction of random forest on GPU
  publication-title: J. Supercomput. Springer
– ident: e_1_3_2_27_2
  doi: 10.1007/978-3-031-04580-6_2
– start-page: 6105
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2019
  ident: e_1_3_2_14_2
– ident: e_1_3_2_85_2
  doi: 10.1109/JIOT.2017.2677578
– ident: e_1_3_2_74_2
  doi: 10.1016/j.iot.2019.100059
– ident: e_1_3_2_3_2
  doi: 10.1109/ROBIO.2011.6181557
– ident: e_1_3_2_12_2
  doi: 10.1109/ACCESS.2017.2778504
– ident: e_1_3_2_52_2
  doi: 10.1109/SLT48900.2021.9383571
– ident: e_1_3_2_71_2
  doi: 10.1007/978-3-030-81682-7_11
– ident: e_1_3_2_43_2
  doi: 10.1109/IPDPS.2019.00113
– ident: e_1_3_2_81_2
  doi: 10.1109/TIT.1967.1053964
– ident: e_1_3_2_54_2
  doi: 10.1007/s11280-018-0600-3
– start-page: 281
  volume-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability: Weather Modification
  year: 1967
  ident: e_1_3_2_84_2
– ident: e_1_3_2_9_2
  doi: 10.1109/MCAS.2020.3005467
– ident: e_1_3_2_60_2
  doi: 10.1109/TC.2021.3066883
– volume: 8
  start-page: 960
  issue: 5
  year: 2019
  ident: e_1_3_2_29_2
  article-title: Fashion-MNIST classification based on HOG feature descriptor using SVM
  publication-title: Int. J. Innov. Technol. Explor. Eng.
– ident: e_1_3_2_7_2
  doi: 10.1109/INFCOM.2013.6566921
– volume-title: Global Cloud Index: Forecast and Methodology, 2016–2021
  year: 2016
  ident: e_1_3_2_6_2
– ident: e_1_3_2_11_2
– volume: 9
  start-page: 43
  issue: 4
  year: 2013
  ident: e_1_3_2_22_2
  article-title: Profile-guided floating- to fixed-point conversion for hybrid FPGA-processor applications
  publication-title: ACM Trans. Architect. Code Optim.
– ident: e_1_3_2_23_2
  doi: 10.1155/ASP/2006/96421
– ident: e_1_3_2_87_2
  doi: 10.1023/A:1010933404324
– volume: 29
  start-page: 131
  issue: 7
  year: 1997
  ident: e_1_3_2_78_2
  article-title: Bayesian network classifiers
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007465528199
– ident: e_1_3_2_18_2
  doi: 10.1145/2821510
– ident: e_1_3_2_30_2
  doi: 10.1109/5.726791
– ident: e_1_3_2_76_2
  doi: 10.1109/TNN.2006.883013
– ident: e_1_3_2_36_2
– ident: e_1_3_2_35_2
  doi: 10.3390/s20092638
– ident: e_1_3_2_13_2
  doi: 10.1109/CVPR.2016.90
– volume: 51
  start-page: 111
  issue: 23
  year: 2006
  ident: e_1_3_2_24_2
  article-title: Fixed-point-IIR-filter challenges
  publication-title: EDN Netw.
– ident: e_1_3_2_73_2
  doi: 10.1145/3242102.3242145
– ident: e_1_3_2_17_2
– ident: e_1_3_2_25_2
  doi: 10.1155/2008/242584
– volume-title: The Internet of Things: How the Next Evolution of the Internet Is Changing Everything
  year: 2011
  ident: e_1_3_2_2_2
– volume-title: Neuron-net: Siamese Network for Anomaly Detection
  year: 2020
  ident: e_1_3_2_55_2
– ident: e_1_3_2_38_2
  doi: 10.1109/ICDABI51230.2020.9325641
– ident: e_1_3_2_86_2
  doi: 10.1109/TDEI.2013.6518945
– ident: e_1_3_2_19_2
  doi: 10.1109/ASAP.2018.8445101
– ident: e_1_3_2_80_2
  doi: 10.1109/JIOT.2020.3008896
– ident: e_1_3_2_46_2
  doi: 10.1145/3314221.3314597
– ident: e_1_3_2_67_2
  doi: 10.1109/HNICEM51456.2020.9400004
– ident: e_1_3_2_8_2
  doi: 10.1155/2014/190903
– ident: e_1_3_2_42_2
  doi: 10.4018/IJGHPC.2019010102
– ident: e_1_3_2_75_2
  doi: 10.1023/A:1022627411411
– ident: e_1_3_2_57_2
  doi: 10.1109/99.660313
– ident: e_1_3_2_59_2
  doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00077
– volume: 3
  start-page: 837
  issue: 4
  year: 2015
  ident: e_1_3_2_66_2
  article-title: A survey on image processing techniques with OpenMP
  publication-title: Int. J. Eng. Dev. Res.
– ident: e_1_3_2_61_2
  doi: 10.5555/355074
– ident: e_1_3_2_77_2
  doi: 10.1109/JSEN.2020.2995749
– ident: e_1_3_2_49_2
  doi: 10.3390/s20092533
– volume-title: Tinbergen Institute Discussion
  year: 2002
  ident: e_1_3_2_72_2
– ident: e_1_3_2_21_2
  doi: 10.1145/3126534
– ident: e_1_3_2_4_2
  doi: 10.1109/TII.2021.3078186
– ident: e_1_3_2_56_2
  doi: 10.1109/PAAP54281.2021.9720310
– start-page: 1331
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2017
  ident: e_1_3_2_44_2
– ident: e_1_3_2_31_2
– start-page: 1935
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2017
  ident: e_1_3_2_45_2
– ident: e_1_3_2_58_2
  doi: 10.1109/TVLSI.2020.3044752
– ident: e_1_3_2_79_2
  doi: 10.1109/TII.2019.2952917
– ident: e_1_3_2_5_2
  doi: 10.5555/3153474
– ident: e_1_3_2_15_2
  doi: 10.1109/CVPR.2018.00474
– ident: e_1_3_2_26_2
  doi: 10.1109/TSP.2008.924637
– ident: e_1_3_2_37_2
– ident: e_1_3_2_40_2
  doi: 10.1007/s11771-019-3978-x
– ident: e_1_3_2_62_2
  doi: 10.1109/TPDS.2018.2814602
– ident: e_1_3_2_41_2
  doi: 10.1109/IPDPS.2014.88
– ident: e_1_3_2_28_2
  doi: 10.1109/ACCESS.2020.3039858
– ident: e_1_3_2_82_2
  doi: 10.1109/JSEN.2021.3049273
– ident: e_1_3_2_65_2
  doi: 10.1109/SAMOS.2013.6621121
– start-page: 39
  volume-title: Proceedings of the International Conference on High Performance Computing for Computational Science
  year: 2006
  ident: e_1_3_2_69_2
– ident: e_1_3_2_48_2
  doi: 10.1016/j.dcan.2017.10.002
– ident: e_1_3_2_63_2
  doi: 10.23919/DATE48585.2020.9116230
– ident: e_1_3_2_20_2
  doi: 10.1109/ISSCC42613.2021.9365939
– start-page: 76
  volume-title: Proceedings of the 1st International Conference on Advances in Information Technology (ICAIT’19)
  year: 2019
  ident: e_1_3_2_83_2
– ident: e_1_3_2_47_2
  doi: 10.1109/HPCA.2016.7446050
– ident: e_1_3_2_89_2
  doi: 10.1109/ICS51289.2020.00028
– ident: e_1_3_2_50_2
  doi: 10.1016/j.enbuild.2017.04.038
– ident: e_1_3_2_10_2
– ident: e_1_3_2_32_2
– ident: e_1_3_2_33_2
  doi: 10.3390/bdcc2030026
– ident: e_1_3_2_53_2
  doi: 10.1109/ICASSP43922.2022.9747197
– ident: e_1_3_2_70_2
  doi: 10.1007/3-540-45417-9_1
– ident: e_1_3_2_64_2
  doi: 10.1109/IPDPS.2009.5161107
– ident: e_1_3_2_16_2
– ident: e_1_3_2_68_2
  doi: 10.1109/GHTCE.2012.6490139
SSID ssj0017245
Score 2.3479733
Snippet Machine Learning (ML) functions are becoming ubiquitous in latency- and privacy-sensitive IoT applications, prompting a shift toward near-sensor processing at...
SourceID unpaywall
crossref
acm
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Machine learning theory
Parallel computing models
Theory of computation
SubjectTermsDisplay Theory of computation -- Machine learning theory
Theory of computation -- Parallel computing models
Title DNN Is Not All You Need: Parallelizing Non-neural ML Algorithms on Ultra-low-power IoT Processors
URI https://dl.acm.org/doi/10.1145/3571133
https://dl.acm.org/doi/pdf/10.1145/3571133
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1558-3465
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017245
  issn: 1539-9087
  databaseCode: ADMLS
  dateStart: 20070701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA26PagP3sU7EcS3aNskzerb8IKKK4IO9GnkVh1m7eg6RH-9SVt1KoLPPf1obj1fSL5zANiPRBCFAVGItChBhFAPCckIwgJjFrVEIEubzk4cXnTJ1T29r2VyXC2MMjbOoDzCd2t6qJJa0JYeYcp8u6OaBs2Q2ry7AZrd-Kb9UAmiRijySjc8y48thElIqwrZyTcdAcnBNwKaGadD_vrCjZlglfOFyp5oVIoRusskz4fjQhzKtx9Sjf_74EUwXyeXsF3NhiUwpdNlMDchObgC-Gkcw8sRjLMCto2BdrXD2DLYMbzhufNVMf03C7TPU-S0Lm24zrVFPmZ5v3gajGCWwq4pco5M9oKGzmMNXmZ3sC44yPLRKuien92dXKDaZgHxgLECqaClqFYq8SnXCfE4d4I3kvGIMCGlT8p7HL6nmVLSS3ylAhEmHtY-5tjmK3gNNNIs1esA2j9AIjXTnuCSRGXdbsIDnIS2HTbTIxtg2XZWb1gJafTqDtoABx8j0pO1MrkzyDC9qmqafgHhJ_Ajxi_I3ueQ_oXZ_AdmC8w6Y3l3buRH26BR5GO9Y9OPQuyCZvu0c327W8-_d_R-0lk
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA06H9QHL1PxTgTxLdo2SbP6NrzgxBUfNtCnkVtVzNrRdYj-epO26lQEn3v60dx6vpB85wBwGIkgCgOiEGlRggihHhKSEYQFxixqiUCWNp3dOLzqk-s7elfL5LhaGGVsnGF5hO_W9EgltaAtPcGU-XZHNQvmQmrz7gaY68e37ftKEDVCkVe64Vl-bCFMQlpVyE6_6QhIDr8R0PwkHfHXF27MFKtcLlf2RONSjNBdJnk-nhTiWL79kGr83wevgKU6uYTtajasghmdNsHilOTgGuDncQw7YxhnBWwbA-1qh7FlsFN4y3Pnq2Ke3izQPk-R07q04bo3FvmQ5U_F43AMsxT2TZFzZLIXNHIea7CT9WBdcJDl43XQv7zonV2h2mYB8YCxAqmgpahWKvEp1wnxOHeCN5LxiDAhpU_Kexy-p5lS0kt8pQIRJh7WPubY5it4AzTSLNWbANo_QCI1057gkkRl3W7CA5yEth020yNboGk7azCqhDQGdQdtgaOPERnIWpncGWSYQVU1Tb-A8BP4EeMX5OBzSP_CbP8DswMWnLG8Ozfyo13QKPKJ3rPpRyH263n3Dmmn0MU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNN+Is+Not+All+You+Need%3A+Parallelizing+Non-neural+ML+Algorithms+on+Ultra-low-power+IoT+Processors&rft.jtitle=ACM+transactions+on+embedded+computing+systems&rft.au=Tabanelli%2C+Enrico&rft.au=Tagliavini%2C+Giuseppe&rft.au=Benini%2C+Luca&rft.date=2023-04-19&rft.issn=1539-9087&rft.eissn=1558-3465&rft.volume=22&rft.issue=3&rft.spage=1&rft.epage=33&rft_id=info:doi/10.1145%2F3571133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3571133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-9087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-9087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-9087&client=summon