A Normal Form Algorithm for Tensor Rank Decomposition

We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerica...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on mathematical software Vol. 48; no. 4; pp. 1 - 35
Main Authors Telen, Simon, Vannieuwenhoven, Nick
Format Journal Article
LanguageEnglish
Published New York, NY ACM 19.12.2022
Subjects
Online AccessGet full text
ISSN0098-3500
1557-7295
1557-7295
DOI10.1145/3555369

Cover

Abstract We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We characterize the complexity of our algorithm in terms of an algebraic property of this polynomial system—the multigraded regularity. We prove effective bounds for many tensor formats and ranks, which are of independent interest for overconstrained polynomial system solving. Moreover, we conjecture a general formula for the multigraded regularity, yielding a (parameterized) polynomial time complexity for the tensor rank decomposition problem in the considered setting. Our numerical experiments show that our algorithm can outperform state-of-the-art numerical algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption.
AbstractList We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We characterize the complexity of our algorithm in terms of an algebraic property of this polynomial system—the multigraded regularity. We prove effective bounds for many tensor formats and ranks, which are of independent interest for overconstrained polynomial system solving. Moreover, we conjecture a general formula for the multigraded regularity, yielding a (parameterized) polynomial time complexity for the tensor rank decomposition problem in the considered setting. Our numerical experiments show that our algorithm can outperform state-of-the-art numerical algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption.
ArticleNumber 38
Author Vannieuwenhoven, Nick
Telen, Simon
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0002-3459-5845
  surname: Telen
  fullname: Telen, Simon
  email: simon.telen@mis.mpg.de
  organization: Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
– sequence: 2
  givenname: Nick
  orcidid: 0000-0001-5692-4163
  surname: Vannieuwenhoven
  fullname: Vannieuwenhoven, Nick
  email: nick.vannieuwenhoven@kuleuven.be
  organization: KU Leuven, Heverlee, Belgium
BookMark eNp9j8FKxDAURYOMYGcU96660000r-lrmmUZHRUGBRnXJcZEq21TkorM3_gtfpkdOroQcXXg3sOFOyWT1rWGkENgpwApnnFE5JncIREgCioSiRMSMSZzypGxPTIN4YUxloCAiGRFfON8o-p4MSAu6ifnq_65-fywzscr04YBd6p9jc-Ndk3nQtVXrt0nu1bVwRxsOSP3i4vV_Iouby-v58WSqkSInuYySQ0YLixy-ZgyjUJoTBOwkuVoDWQ2N-lQPgjBMzVkAhJlUQsJEjLNZ-Rk3H1rO7V-V3Vddr5qlF-XwMrN33L7d1CPR1V7F4I39h-T_jJ11avNrd6rqv7DPxp9pZuf0e_yC4WDa7A
CitedBy_id crossref_primary_10_1016_j_jalgebra_2024_11_017
crossref_primary_10_1137_24M1653793
Cites_doi 10.1007/s10208-017-9372-x
10.1021/ac00289a052
10.1109/TSP.2017.2690524
10.1137/130916084
10.1016/j.jsc.2012.05.012
10.1137/040608830
10.1145/2512329
10.3792/chmm/1263317740
10.1007/978-1-4613-9425-9
10.1007/s10208-015-9291-7
10.1007/BF02289464
10.1137/18M1200531
10.1137/110829180
10.1137/16M1090132
10.1007/978-3-319-26765-4
10.1137/0614071
10.1145/1993886.1993898
10.1137/17M1162433
10.1137/S0895479896305696
10.1090/S0025-5718-1977-0428694-0
10.1016/j.laa.2018.07.004
10.1090/gsm/124
10.1002/cem.1180040105
10.1016/j.laa.2016.10.019
10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
10.1007/s10231-013-0352-8
10.1007/BFb0093426
10.1016/j.jpaa.2020.106367
10.1137/07070111x
10.1137/060655894
10.1002/sapm192761164
10.1137/110836067
10.1016/0024-3795(77)90069-6
10.1137/140961389
10.1007/978-3-662-03338-8
10.1137/120877258
10.1016/j.matpur.2020.07.003
10.1112/S0024610706022630
10.1016/j.jpaa.2010.11.010
10.1016/j.laa.2010.06.046
ContentType Journal Article
Copyright Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Copyright_xml – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1145/3555369
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
EISSN 1557-7295
EndPage 35
ExternalDocumentID 10.1145/3555369
10_1145_3555369
3555369
GrantInformation_xml – fundername: Postdoctoral Fellowship
  grantid: 12E8119N
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
6OB
85S
8US
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
ABFSI
ABPPZ
ACGFO
ACGOD
ACIWK
ACM
ACNCT
ADBCU
ADL
ADPZR
AEBYY
AENEX
AENSD
AETEA
AFWIH
AFWXC
AGHSJ
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ASPBG
AVWKF
BDXCO
CCLIF
CS3
D0L
FEDTE
GUFHI
HGAVV
H~9
I07
IAO
ICD
IOF
LHSKQ
MS~
P1C
P2P
PQQKQ
RNS
ROL
RXW
TAE
TWZ
U5U
UHB
UPT
X6Y
ZCA
AAYXX
AEFXT
AEJOY
CITATION
9M8
ADTOC
AFFNX
AI.
E.L
EBS
EJD
HF~
IEA
IGS
ITC
MVM
NHB
OHT
UNPAY
VH1
XJT
XOL
ZY4
ID FETCH-LOGICAL-a277t-8924e1e37f539d40c577c5421f9085fe16f8e4f53b7736a085712af5c791916c3
IEDL.DBID UNPAY
ISSN 0098-3500
1557-7295
IngestDate Sun Oct 26 03:05:25 EDT 2025
Wed Oct 01 06:03:34 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
Mon Apr 21 16:40:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords canonical polyadic decomposition
polynomial systems
Tensor rank decomposition
normal form algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a277t-8924e1e37f539d40c577c5421f9085fe16f8e4f53b7736a085712af5c791916c3
ORCID 0000-0001-5692-4163
0000-0002-3459-5845
OpenAccessLink https://proxy.k.utb.cz/login?url=https://dl.acm.org/doi/pdf/10.1145/3555369
PageCount 35
ParticipantIDs unpaywall_primary_10_1145_3555369
crossref_primary_10_1145_3555369
crossref_citationtrail_10_1145_3555369
acm_primary_3555369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-19
PublicationDateYYYYMMDD 2022-12-19
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-19
  day: 19
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle ACM transactions on mathematical software
PublicationTitleAbbrev ACM TOMS
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
References (Bib0014) 2017; 38
(Bib0038) 2018; 18
(Bib0028) 1999
(Bib0012) 2012; 33
(Bib0011) 2006; 73
(Bib0018) 2006; 28
(Bib0033) 1993; 14
(Bib0042) 1990; 4
(Bib0037) 2005; 227
(Bib0015) 2006; 185
(Bib0047) 2018; 39
(Bib0026) 2013; 60
(Bib0049) 2012; 34
(Bib0032) 2012; 128
(Bib0017) 2011; 124
(Bib0007) 2010; 433
(Bib0016) 2013
(Bib0022) 2017; 513
(Bib0036) 2004; 2004
(Bib0020) 2013; 34
(Bib0019) 2000; 21
(Bib0029) 2009; 51
(Bib0009) 1997; 315
(Bib0010) 2011; 215
(Bib0041) 2016
(Bib0040) 2008; 30
(Bib0045) 2020a; 224
(Bib0027) 1927; 6
(Bib0004) 2013; 52
(Bib0005) 2020; 143
(Bib0021) 2014; 35
(Bib0001) 2019; 40
(Bib0035) 1916; 19
(Bib0048) 1966; 31
(Bib0046) 2020b
(Bib0006) 2014; 193
(Bib0024) 1978
(Bib0013) 2014; 35
(Bib0030) 1977; 18
(Bib0034) 1985; 57
(Bib0044) 2017; 65
(Bib0025) 2022
(Bib0031) 2018; 556
(Bib0039) 2017; 17
(Bib0008) 1977; 31
(Bib0023) 2019
(Bib0003) 2011
(Bib0002) 2020
(Bib0043) 2000; 14
e_1_3_3_50_1
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_35_1
Maclagan D. (e_1_3_3_37_1) 2004; 2004
e_1_3_3_10_1
e_1_3_3_12_1
e_1_3_3_31_1
Miller E. (e_1_3_3_38_1) 2005
e_1_3_3_40_1
Cox D. A. (e_1_3_3_17_1) 2013
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
Cox D. A. (e_1_3_3_16_1) 2006
Telen S. (e_1_3_3_47_1) 2020
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_34_1
e_1_3_3_11_1
e_1_3_3_32_1
Landsberg J. M. (e_1_3_3_33_1) 2012
e_1_3_3_41_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – year: 2020
  ident: Bib0002
  article-title: Toric eigenvalue methods for solving sparse polynomial systems
– volume: 227
  year: 2005
  ident: Bib0037
  publication-title: Combinatorial Commutative Algebra
– volume: 31
  start-page: 279
  issue: 3
  year: 1966
  end-page: 311
  ident: Bib0048
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
– volume: 4
  start-page: 29
  issue: 1
  year: 1990
  end-page: 45
  ident: Bib0042
  article-title: Tensorial resolution: A direct trilinear decomposition
  publication-title: J. Chemom.
– volume: 34
  start-page: A1027–A1052
  issue: 2
  year: 2012
  ident: Bib0049
  article-title: A new truncation strategy for the higher-order singular value decomposition
  publication-title: SIAM J. Sci. Comput.
– volume: 38
  start-page: 656
  issue: 2
  year: 2017
  end-page: 681
  ident: Bib0014
  article-title: Effective criteria for specific identifiability of tensors and forms
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 35
  start-page: 1265
  issue: 4
  year: 2014
  end-page: 1287
  ident: Bib0013
  article-title: An algorithm for generic and low-rank specific identifiability of complex tensors
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 18
  start-page: 95
  year: 1977
  end-page: 138
  ident: Bib0030
  article-title: Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
  publication-title: Linear Alg. Appl.
– volume: 65
  start-page: 3551
  issue: 13
  year: 2017
  end-page: 3582
  ident: Bib0044
  article-title: Tensor decomposition for signal processing and machine learning
  publication-title: IEEE Trans. Signal. Process.
– volume: 513
  start-page: 342
  year: 2017
  end-page: 375
  ident: Bib0022
  article-title: Canonical polyadic decomposition of third-order tensors: Relaxed uniqueness conditions and algebraic algorithm
  publication-title: Linear Alg. Appl.
– volume: 18
  start-page: 1435
  issue: 6
  year: 2018
  end-page: 1492
  ident: Bib0038
  article-title: Polynomial–exponential decomposition from moments
  publication-title: Found. Comput. Math.
– volume: 14
  start-page: 229
  issue: 3
  year: 2000
  end-page: 239
  ident: Bib0043
  article-title: On the uniqueness of multilinear decomposition of N-way arrays
  publication-title: J. Chemom.
– volume: 193
  start-page: 1691
  issue: 6
  year: 2014
  end-page: 1702
  ident: Bib0006
  article-title: Refined methods for the identifiability of tensors
  publication-title: Ann. Mat. Pura Appl.
– volume: 224
  start-page: 106367
  issue: 9
  year: 2020a
  ident: Bib0045
  article-title: Numerical root finding via cox rings
  publication-title: J. Pure Appl. Alg.
– volume: 28
  start-page: 642
  issue: 3
  year: 2006
  end-page: 666
  ident: Bib0018
  article-title: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 40
  start-page: 739
  issue: 2
  year: 2019
  end-page: 773
  ident: Bib0001
  article-title: Pencil-based algorithms for tensor rank decomposition are not stable
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 30
  start-page: 939
  issue: 3
  year: 2008
  end-page: 956
  ident: Bib0040
  article-title: Tucker dimensionality reduction of three-dimensional arrays in linear time
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2016
  ident: Bib0041
  publication-title: On the Geometry of Some Special Projective Varieties
– volume: 52
  start-page: 51
  year: 2013
  end-page: 71
  ident: Bib0004
  article-title: General tensor decomposition, moment matrices and applications
  publication-title: J. Symbolic Comput.
– year: 1978
  ident: Bib0024
  publication-title: Multilinear Algebra (2nd ed.)
– volume: 556
  start-page: 238
  year: 2018
  end-page: 264
  ident: Bib0031
  article-title: Computing the unique CANDECOMP/PARAFAC decomposition of unbalanced tensors by homotopy method
  publication-title: Linear Alg. Appl.
– volume: 2004
  start-page: 179
  issue: 571
  year: 2004
  end-page: 212
  ident: Bib0036
  article-title: Multigraded castelnuovo-mumford regularity
  publication-title: J. für die Reine und Angew. Math.
– volume: 39
  start-page: 1421
  issue: 3
  year: 2018
  end-page: 1447
  ident: Bib0047
  article-title: Solving polynomial systems via truncated normal forms
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 1999
  ident: Bib0028
  publication-title: Power Sums, Gorenstein Algebras, and Determinantal Loci
– volume: 31
  start-page: 163
  year: 1977
  end-page: 179
  ident: Bib0008
  article-title: Some stable methods for calculating inertia and solving symmetric linear systems
  publication-title: Math. Comp.
– volume: 19
  year: 1916
  ident: Bib0035
  publication-title: The Algebraic Theory of Modular Systems
– volume: 14
  start-page: 1064
  issue: 4
  year: 1993
  end-page: 1083
  ident: Bib0033
  article-title: A decomposition for three-way arrays
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2020b
  ident: Bib0046
  publication-title: Solving Systems of Polynomial Equations
– volume: 124
  year: 2011
  ident: Bib0017
  publication-title: Toric Varieties
– volume: 35
  start-page: 636
  issue: 2
  year: 2014
  end-page: 660
  ident: Bib0021
  article-title: Canonical polyadic decomposition of third-order tensors: Reduction to generalized eigenvalue decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 128
  year: 2012
  ident: Bib0032
  publication-title: Tensors: Geometry and Applications
– volume: 315
  year: 1997
  ident: Bib0009
  publication-title: Algebraic Complexity Theory
– volume: 433
  start-page: 1851
  issue: 11–12
  year: 2010
  end-page: 1872
  ident: Bib0007
  article-title: Symmetric tensor decomposition
  publication-title: Linear Alg. Appl.
– volume: 215
  start-page: 1999
  issue: 8
  year: 2011
  end-page: 2004
  ident: Bib0010
  article-title: Ranks derived from multilinear maps
  publication-title: J. Pure Appl. Alg.
– volume: 73
  start-page: 436
  issue: 2
  year: 2006
  end-page: 454
  ident: Bib0011
  article-title: On the concept of \( k \) -secant order of a variety
  publication-title: J. London Math. Soc.
– volume: 17
  start-page: 423
  issue: 2
  year: 2017
  end-page: 465
  ident: Bib0039
  article-title: Generating polynomials and symmetric tensor decompositions
  publication-title: Found. Comput. Math.
– volume: 34
  start-page: 876
  issue: 3
  year: 2013
  end-page: 903
  ident: Bib0020
  article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors—part II: Uniqueness of the overall decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  end-page: 1278
  ident: Bib0019
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2022
  ident: Bib0025
  article-title: Tensorlab+
– volume: 33
  start-page: 1018
  issue: 3
  year: 2012
  end-page: 1037
  ident: Bib0012
  article-title: On generic identifiability of 3-tensors of small rank
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  end-page: 500
  ident: Bib0029
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– volume: 6
  start-page: 164
  issue: 1
  year: 1927
  end-page: 189
  ident: Bib0027
  article-title: The expression of a tensor or a polyadic as a sum of products
  publication-title: J. Math. Phys.
– volume: 60
  start-page: 45:1–45:39
  issue: 6
  year: 2013
  ident: Bib0026
  article-title: Most tensor problems are NP-Hard
  publication-title: J. ACM
– year: 2013
  ident: Bib0016
  publication-title: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
– volume: 143
  start-page: 1
  year: 2020
  end-page: 30
  ident: Bib0005
  article-title: Waring, tangential and cactus decompositions
  publication-title: J. Math. Pures Appl.
– start-page: 35
  year: 2011
  end-page: 42
  ident: Bib0003
  article-title: Multihomogeneous polynomial decomposition using moment matrices
  publication-title: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation
– volume: 185
  year: 2006
  ident: Bib0015
  publication-title: Using Algebraic Geometry
– volume: 57
  start-page: 2395
  year: 1985
  end-page: 2397
  ident: Bib0034
  article-title: Features of quantifying chemical composition from two-dimensional data array by the rank annihilation factor analysis method
  publication-title: Anal. Chem.
– year: 2019
  ident: Bib0023
  article-title: Macaulay2, a software system for research in algebraic geometry
– ident: e_1_3_3_39_1
  doi: 10.1007/s10208-017-9372-x
– ident: e_1_3_3_35_1
  doi: 10.1021/ac00289a052
– ident: e_1_3_3_45_1
  doi: 10.1109/TSP.2017.2690524
– ident: e_1_3_3_22_1
  doi: 10.1137/130916084
– ident: e_1_3_3_24_1
– ident: e_1_3_3_5_1
  doi: 10.1016/j.jsc.2012.05.012
– ident: e_1_3_3_19_1
  doi: 10.1137/040608830
– ident: e_1_3_3_27_1
  doi: 10.1145/2512329
– ident: e_1_3_3_36_1
  doi: 10.3792/chmm/1263317740
– volume-title: Combinatorial Commutative Algebra
  year: 2005
  ident: e_1_3_3_38_1
– volume-title: Using Algebraic Geometry
  year: 2006
  ident: e_1_3_3_16_1
– ident: e_1_3_3_25_1
  doi: 10.1007/978-1-4613-9425-9
– ident: e_1_3_3_40_1
  doi: 10.1007/s10208-015-9291-7
– ident: e_1_3_3_49_1
  doi: 10.1007/BF02289464
– ident: e_1_3_3_2_1
  doi: 10.1137/18M1200531
– ident: e_1_3_3_13_1
  doi: 10.1137/110829180
– ident: e_1_3_3_15_1
  doi: 10.1137/16M1090132
– ident: e_1_3_3_42_1
  doi: 10.1007/978-3-319-26765-4
– ident: e_1_3_3_34_1
  doi: 10.1137/0614071
– volume-title: Solving Systems of Polynomial Equations
  year: 2020
  ident: e_1_3_3_47_1
– ident: e_1_3_3_4_1
  doi: 10.1145/1993886.1993898
– volume-title: Tensors: Geometry and Applications
  year: 2012
  ident: e_1_3_3_33_1
– ident: e_1_3_3_48_1
  doi: 10.1137/17M1162433
– ident: e_1_3_3_20_1
  doi: 10.1137/S0895479896305696
– ident: e_1_3_3_9_1
  doi: 10.1090/S0025-5718-1977-0428694-0
– ident: e_1_3_3_32_1
  doi: 10.1016/j.laa.2018.07.004
– volume-title: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
  year: 2013
  ident: e_1_3_3_17_1
– ident: e_1_3_3_18_1
  doi: 10.1090/gsm/124
– ident: e_1_3_3_43_1
  doi: 10.1002/cem.1180040105
– ident: e_1_3_3_23_1
  doi: 10.1016/j.laa.2016.10.019
– ident: e_1_3_3_44_1
  doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
– ident: e_1_3_3_7_1
  doi: 10.1007/s10231-013-0352-8
– ident: e_1_3_3_29_1
  doi: 10.1007/BFb0093426
– ident: e_1_3_3_46_1
  doi: 10.1016/j.jpaa.2020.106367
– ident: e_1_3_3_30_1
  doi: 10.1137/07070111x
– ident: e_1_3_3_41_1
  doi: 10.1137/060655894
– ident: e_1_3_3_28_1
  doi: 10.1002/sapm192761164
– ident: e_1_3_3_50_1
  doi: 10.1137/110836067
– volume: 2004
  start-page: 179
  issue: 571
  year: 2004
  ident: e_1_3_3_37_1
  article-title: Multigraded castelnuovo-mumford regularity
  publication-title: J. für die Reine und Angew. Math.
– ident: e_1_3_3_26_1
– ident: e_1_3_3_31_1
  doi: 10.1016/0024-3795(77)90069-6
– ident: e_1_3_3_14_1
  doi: 10.1137/140961389
– ident: e_1_3_3_10_1
  doi: 10.1007/978-3-662-03338-8
– ident: e_1_3_3_21_1
  doi: 10.1137/120877258
– ident: e_1_3_3_6_1
  doi: 10.1016/j.matpur.2020.07.003
– ident: e_1_3_3_12_1
  doi: 10.1112/S0024610706022630
– ident: e_1_3_3_3_1
– ident: e_1_3_3_11_1
  doi: 10.1016/j.jpaa.2010.11.010
– ident: e_1_3_3_8_1
  doi: 10.1016/j.laa.2010.06.046
SSID ssj0002171
Score 2.387919
Snippet We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank...
SourceID unpaywall
crossref
acm
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Computations on matrices
Computations on polynomials
Mathematics of computing
Nonlinear equations
Solvers
SubjectTermsDisplay Mathematics of computing -- Computations on matrices
Mathematics of computing -- Computations on polynomials
Mathematics of computing -- Nonlinear equations
Mathematics of computing -- Solvers
Title A Normal Form Algorithm for Tensor Rank Decomposition
URI https://dl.acm.org/doi/10.1145/3555369
https://dl.acm.org/doi/pdf/10.1145/3555369
UnpaywallVersion publishedVersion
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1557-7295
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171
  issn: 1557-7295
  databaseCode: AMVHM
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3o9qAvTqfiNxFE9KG6Lk2yPBZ1DGFDxIk-jTRNVezqcB2iv8bf4i_zZs38RBAKKfQ2lNyEcy6991yAHUQd9HJkPPS98QJZM54ySewJzYJYR8rwcYVcu8Nb3eD0il05mRxbCxOnOE9__AvfnulBnDhBW3aIyMgol9NQ5gx5dwnK3c5ZeD0RxaRsXG-C-Chsf1ZWVMh-fdMCkO5_A6CZUTZQz08qTb-gSrNStCcajsUIbTLJ_cEojw70yw-pxv998DzMOXJJwmI3LMCUyapQmTRuIO4cV2HB3Q3JnpOd3l8EHpKOJbApaeJAwvTm4fEuv-2_vSKvJRcY7uJwrrJ7cmxsIrrL9lqCbvPk4qjlua4KnqoLkXsNjLiMb6hIGJVxUNNMWMfU_UQi_UqMz5OGCfBhJATlyirg-3WVMC0kxnZc02UoZQ-ZWQESI9uIgwgxUMQBZ0pSrn0jA19qKhu0tgpVXJveoNDN6Ln1WIXdiQN62gmR234Yaa8okmafhuTDcDLHL5PtDw_-ZbP2D5t1mK3bugYfL7kBpfxxZDaRbeTRFpTD9mWrveW22zsQ8cxW
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26PeiLc1NxfhFBRB8616ZJlsehjiE4RDaYTyNNU5V13dg6RH-Nv8Vf5s2azakIQiGF3oaSm3DOpfeei9AJoA54OdAO-F47vqhqR-oodLiifqgCqdmsQu62xZod_6ZLu1Ymx9TChDHMM5j9wjdnehRGVtCWXgAyUsLEKsozCrw7h_Kd1l39YS6KSeis3gTwkZv-rDSrkF1-0wCQGnwDoLVpMpKvLzKOl1ClUcjaE01mYoQmmaRfmaZBRb39kGr83wdvog1LLnE92w1FtKKTEirMGzdge45LqGjvJvjMyk6fbyFWxy1DYGPcgAHX48fh-Dl9Gny8A6_FbQh3YbiXSR9faZOIbrO9tlGncd2-bDq2q4IjPc5TpwYRl3Y14RElIvSrinLjGM-NBNCvSLssqmkfHgacEyaNAr7ryYgqLiC2Y4rsoFwyTPQuwiGwjdAPAAN56DMqBWHK1cJ3hSKiRqplVIK16Y0y3YyeXY8yOp07oKesELnphxH3siJp-mWIF4bzOX6ZHC88-JfN3j9s9tG6Z-oaXLjEAcql46k-BLaRBkd2m30CtfLKug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Normal+Form+Algorithm%C2%A0for+Tensor+Rank+Decomposition&rft.jtitle=ACM+transactions+on+mathematical+software&rft.au=Telen%2C+Simon&rft.au=Vannieuwenhoven%2C+Nick&rft.date=2022-12-19&rft.issn=0098-3500&rft.eissn=1557-7295&rft.volume=48&rft.issue=4&rft.spage=1&rft.epage=35&rft_id=info:doi/10.1145%2F3555369&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3555369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3500&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3500&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3500&client=summon