A Normal Form Algorithm for Tensor Rank Decomposition
We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerica...
        Saved in:
      
    
          | Published in | ACM transactions on mathematical software Vol. 48; no. 4; pp. 1 - 35 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          ACM
    
        19.12.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0098-3500 1557-7295 1557-7295  | 
| DOI | 10.1145/3555369 | 
Cover
| Abstract | We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We characterize the complexity of our algorithm in terms of an algebraic property of this polynomial system—the multigraded regularity. We prove effective bounds for many tensor formats and ranks, which are of independent interest for overconstrained polynomial system solving. Moreover, we conjecture a general formula for the multigraded regularity, yielding a (parameterized) polynomial time complexity for the tensor rank decomposition problem in the considered setting. Our numerical experiments show that our algorithm can outperform state-of-the-art numerical algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption. | 
    
|---|---|
| AbstractList | We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We characterize the complexity of our algorithm in terms of an algebraic property of this polynomial system—the multigraded regularity. We prove effective bounds for many tensor formats and ranks, which are of independent interest for overconstrained polynomial system solving. Moreover, we conjecture a general formula for the multigraded regularity, yielding a (parameterized) polynomial time complexity for the tensor rank decomposition problem in the considered setting. Our numerical experiments show that our algorithm can outperform state-of-the-art numerical algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption. | 
    
| ArticleNumber | 38 | 
    
| Author | Vannieuwenhoven, Nick Telen, Simon  | 
    
| Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0002-3459-5845 surname: Telen fullname: Telen, Simon email: simon.telen@mis.mpg.de organization: Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany – sequence: 2 givenname: Nick orcidid: 0000-0001-5692-4163 surname: Vannieuwenhoven fullname: Vannieuwenhoven, Nick email: nick.vannieuwenhoven@kuleuven.be organization: KU Leuven, Heverlee, Belgium  | 
    
| BookMark | eNp9j8FKxDAURYOMYGcU96660000r-lrmmUZHRUGBRnXJcZEq21TkorM3_gtfpkdOroQcXXg3sOFOyWT1rWGkENgpwApnnFE5JncIREgCioSiRMSMSZzypGxPTIN4YUxloCAiGRFfON8o-p4MSAu6ifnq_65-fywzscr04YBd6p9jc-Ndk3nQtVXrt0nu1bVwRxsOSP3i4vV_Iouby-v58WSqkSInuYySQ0YLixy-ZgyjUJoTBOwkuVoDWQ2N-lQPgjBMzVkAhJlUQsJEjLNZ-Rk3H1rO7V-V3Vddr5qlF-XwMrN33L7d1CPR1V7F4I39h-T_jJ11avNrd6rqv7DPxp9pZuf0e_yC4WDa7A | 
    
| CitedBy_id | crossref_primary_10_1016_j_jalgebra_2024_11_017 crossref_primary_10_1137_24M1653793  | 
    
| Cites_doi | 10.1007/s10208-017-9372-x 10.1021/ac00289a052 10.1109/TSP.2017.2690524 10.1137/130916084 10.1016/j.jsc.2012.05.012 10.1137/040608830 10.1145/2512329 10.3792/chmm/1263317740 10.1007/978-1-4613-9425-9 10.1007/s10208-015-9291-7 10.1007/BF02289464 10.1137/18M1200531 10.1137/110829180 10.1137/16M1090132 10.1007/978-3-319-26765-4 10.1137/0614071 10.1145/1993886.1993898 10.1137/17M1162433 10.1137/S0895479896305696 10.1090/S0025-5718-1977-0428694-0 10.1016/j.laa.2018.07.004 10.1090/gsm/124 10.1002/cem.1180040105 10.1016/j.laa.2016.10.019 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N 10.1007/s10231-013-0352-8 10.1007/BFb0093426 10.1016/j.jpaa.2020.106367 10.1137/07070111x 10.1137/060655894 10.1002/sapm192761164 10.1137/110836067 10.1016/0024-3795(77)90069-6 10.1137/140961389 10.1007/978-3-662-03338-8 10.1137/120877258 10.1016/j.matpur.2020.07.003 10.1112/S0024610706022630 10.1016/j.jpaa.2010.11.010 10.1016/j.laa.2010.06.046  | 
    
| ContentType | Journal Article | 
    
| Copyright | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from | 
    
| Copyright_xml | – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1145/3555369 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Computer Science  | 
    
| EISSN | 1557-7295 | 
    
| EndPage | 35 | 
    
| ExternalDocumentID | 10.1145/3555369 10_1145_3555369 3555369  | 
    
| GrantInformation_xml | – fundername: Postdoctoral Fellowship grantid: 12E8119N  | 
    
| GroupedDBID | --Z -DZ -~X .DC 23M 2FS 4.4 5GY 5VS 6J9 6OB 85S 8US AAIKC AAKMM AALFJ AAMNW AAYFX ABFSI ABPPZ ACGFO ACGOD ACIWK ACM ACNCT ADBCU ADL ADPZR AEBYY AENEX AENSD AETEA AFWIH AFWXC AGHSJ AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS AMVHM ASPBG AVWKF BDXCO CCLIF CS3 D0L FEDTE GUFHI HGAVV H~9 I07 IAO ICD IOF LHSKQ MS~ P1C P2P PQQKQ RNS ROL RXW TAE TWZ U5U UHB UPT X6Y ZCA AAYXX AEFXT AEJOY CITATION 9M8 ADTOC AFFNX AI. E.L EBS EJD HF~ IEA IGS ITC MVM NHB OHT UNPAY VH1 XJT XOL ZY4  | 
    
| ID | FETCH-LOGICAL-a277t-8924e1e37f539d40c577c5421f9085fe16f8e4f53b7736a085712af5c791916c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0098-3500 1557-7295  | 
    
| IngestDate | Sun Oct 26 03:05:25 EDT 2025 Wed Oct 01 06:03:34 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Mon Apr 21 16:40:31 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | canonical polyadic decomposition polynomial systems Tensor rank decomposition normal form algorithms  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a277t-8924e1e37f539d40c577c5421f9085fe16f8e4f53b7736a085712af5c791916c3 | 
    
| ORCID | 0000-0001-5692-4163 0000-0002-3459-5845  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://dl.acm.org/doi/pdf/10.1145/3555369 | 
    
| PageCount | 35 | 
    
| ParticipantIDs | unpaywall_primary_10_1145_3555369 crossref_primary_10_1145_3555369 crossref_citationtrail_10_1145_3555369 acm_primary_3555369  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-12-19 | 
    
| PublicationDateYYYYMMDD | 2022-12-19 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-19 day: 19  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York, NY | 
    
| PublicationPlace_xml | – name: New York, NY | 
    
| PublicationTitle | ACM transactions on mathematical software | 
    
| PublicationTitleAbbrev | ACM TOMS | 
    
| PublicationYear | 2022 | 
    
| Publisher | ACM | 
    
| Publisher_xml | – name: ACM | 
    
| References | (Bib0014) 2017; 38 (Bib0038) 2018; 18 (Bib0028) 1999 (Bib0012) 2012; 33 (Bib0011) 2006; 73 (Bib0018) 2006; 28 (Bib0033) 1993; 14 (Bib0042) 1990; 4 (Bib0037) 2005; 227 (Bib0015) 2006; 185 (Bib0047) 2018; 39 (Bib0026) 2013; 60 (Bib0049) 2012; 34 (Bib0032) 2012; 128 (Bib0017) 2011; 124 (Bib0007) 2010; 433 (Bib0016) 2013 (Bib0022) 2017; 513 (Bib0036) 2004; 2004 (Bib0020) 2013; 34 (Bib0019) 2000; 21 (Bib0029) 2009; 51 (Bib0009) 1997; 315 (Bib0010) 2011; 215 (Bib0041) 2016 (Bib0040) 2008; 30 (Bib0045) 2020a; 224 (Bib0027) 1927; 6 (Bib0004) 2013; 52 (Bib0005) 2020; 143 (Bib0021) 2014; 35 (Bib0001) 2019; 40 (Bib0035) 1916; 19 (Bib0048) 1966; 31 (Bib0046) 2020b (Bib0006) 2014; 193 (Bib0024) 1978 (Bib0013) 2014; 35 (Bib0030) 1977; 18 (Bib0034) 1985; 57 (Bib0044) 2017; 65 (Bib0025) 2022 (Bib0031) 2018; 556 (Bib0039) 2017; 17 (Bib0008) 1977; 31 (Bib0023) 2019 (Bib0003) 2011 (Bib0002) 2020 (Bib0043) 2000; 14 e_1_3_3_50_1 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_35_1 Maclagan D. (e_1_3_3_37_1) 2004; 2004 e_1_3_3_10_1 e_1_3_3_12_1 e_1_3_3_31_1 Miller E. (e_1_3_3_38_1) 2005 e_1_3_3_40_1 Cox D. A. (e_1_3_3_17_1) 2013 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_29_1 Cox D. A. (e_1_3_3_16_1) 2006 Telen S. (e_1_3_3_47_1) 2020 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_30_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_34_1 e_1_3_3_11_1 e_1_3_3_32_1 Landsberg J. M. (e_1_3_3_33_1) 2012 e_1_3_3_41_1 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_26_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1  | 
    
| References_xml | – year: 2020 ident: Bib0002 article-title: Toric eigenvalue methods for solving sparse polynomial systems – volume: 227 year: 2005 ident: Bib0037 publication-title: Combinatorial Commutative Algebra – volume: 31 start-page: 279 issue: 3 year: 1966 end-page: 311 ident: Bib0048 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika – volume: 4 start-page: 29 issue: 1 year: 1990 end-page: 45 ident: Bib0042 article-title: Tensorial resolution: A direct trilinear decomposition publication-title: J. Chemom. – volume: 34 start-page: A1027–A1052 issue: 2 year: 2012 ident: Bib0049 article-title: A new truncation strategy for the higher-order singular value decomposition publication-title: SIAM J. Sci. Comput. – volume: 38 start-page: 656 issue: 2 year: 2017 end-page: 681 ident: Bib0014 article-title: Effective criteria for specific identifiability of tensors and forms publication-title: SIAM J. Matrix Anal. Appl. – volume: 35 start-page: 1265 issue: 4 year: 2014 end-page: 1287 ident: Bib0013 article-title: An algorithm for generic and low-rank specific identifiability of complex tensors publication-title: SIAM J. Matrix Anal. Appl. – volume: 18 start-page: 95 year: 1977 end-page: 138 ident: Bib0030 article-title: Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics publication-title: Linear Alg. Appl. – volume: 65 start-page: 3551 issue: 13 year: 2017 end-page: 3582 ident: Bib0044 article-title: Tensor decomposition for signal processing and machine learning publication-title: IEEE Trans. Signal. Process. – volume: 513 start-page: 342 year: 2017 end-page: 375 ident: Bib0022 article-title: Canonical polyadic decomposition of third-order tensors: Relaxed uniqueness conditions and algebraic algorithm publication-title: Linear Alg. Appl. – volume: 18 start-page: 1435 issue: 6 year: 2018 end-page: 1492 ident: Bib0038 article-title: Polynomial–exponential decomposition from moments publication-title: Found. Comput. Math. – volume: 14 start-page: 229 issue: 3 year: 2000 end-page: 239 ident: Bib0043 article-title: On the uniqueness of multilinear decomposition of N-way arrays publication-title: J. Chemom. – volume: 193 start-page: 1691 issue: 6 year: 2014 end-page: 1702 ident: Bib0006 article-title: Refined methods for the identifiability of tensors publication-title: Ann. Mat. Pura Appl. – volume: 224 start-page: 106367 issue: 9 year: 2020a ident: Bib0045 article-title: Numerical root finding via cox rings publication-title: J. Pure Appl. Alg. – volume: 28 start-page: 642 issue: 3 year: 2006 end-page: 666 ident: Bib0018 article-title: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization publication-title: SIAM J. Matrix Anal. Appl. – volume: 40 start-page: 739 issue: 2 year: 2019 end-page: 773 ident: Bib0001 article-title: Pencil-based algorithms for tensor rank decomposition are not stable publication-title: SIAM J. Matrix Anal. Appl. – volume: 30 start-page: 939 issue: 3 year: 2008 end-page: 956 ident: Bib0040 article-title: Tucker dimensionality reduction of three-dimensional arrays in linear time publication-title: SIAM J. Matrix Anal. Appl. – year: 2016 ident: Bib0041 publication-title: On the Geometry of Some Special Projective Varieties – volume: 52 start-page: 51 year: 2013 end-page: 71 ident: Bib0004 article-title: General tensor decomposition, moment matrices and applications publication-title: J. Symbolic Comput. – year: 1978 ident: Bib0024 publication-title: Multilinear Algebra (2nd ed.) – volume: 556 start-page: 238 year: 2018 end-page: 264 ident: Bib0031 article-title: Computing the unique CANDECOMP/PARAFAC decomposition of unbalanced tensors by homotopy method publication-title: Linear Alg. Appl. – volume: 2004 start-page: 179 issue: 571 year: 2004 end-page: 212 ident: Bib0036 article-title: Multigraded castelnuovo-mumford regularity publication-title: J. für die Reine und Angew. Math. – volume: 39 start-page: 1421 issue: 3 year: 2018 end-page: 1447 ident: Bib0047 article-title: Solving polynomial systems via truncated normal forms publication-title: SIAM J. Matrix Anal. Appl. – year: 1999 ident: Bib0028 publication-title: Power Sums, Gorenstein Algebras, and Determinantal Loci – volume: 31 start-page: 163 year: 1977 end-page: 179 ident: Bib0008 article-title: Some stable methods for calculating inertia and solving symmetric linear systems publication-title: Math. Comp. – volume: 19 year: 1916 ident: Bib0035 publication-title: The Algebraic Theory of Modular Systems – volume: 14 start-page: 1064 issue: 4 year: 1993 end-page: 1083 ident: Bib0033 article-title: A decomposition for three-way arrays publication-title: SIAM J. Matrix Anal. Appl. – year: 2020b ident: Bib0046 publication-title: Solving Systems of Polynomial Equations – volume: 124 year: 2011 ident: Bib0017 publication-title: Toric Varieties – volume: 35 start-page: 636 issue: 2 year: 2014 end-page: 660 ident: Bib0021 article-title: Canonical polyadic decomposition of third-order tensors: Reduction to generalized eigenvalue decomposition publication-title: SIAM J. Matrix Anal. Appl. – volume: 128 year: 2012 ident: Bib0032 publication-title: Tensors: Geometry and Applications – volume: 315 year: 1997 ident: Bib0009 publication-title: Algebraic Complexity Theory – volume: 433 start-page: 1851 issue: 11–12 year: 2010 end-page: 1872 ident: Bib0007 article-title: Symmetric tensor decomposition publication-title: Linear Alg. Appl. – volume: 215 start-page: 1999 issue: 8 year: 2011 end-page: 2004 ident: Bib0010 article-title: Ranks derived from multilinear maps publication-title: J. Pure Appl. Alg. – volume: 73 start-page: 436 issue: 2 year: 2006 end-page: 454 ident: Bib0011 article-title: On the concept of \( k \) -secant order of a variety publication-title: J. London Math. Soc. – volume: 17 start-page: 423 issue: 2 year: 2017 end-page: 465 ident: Bib0039 article-title: Generating polynomials and symmetric tensor decompositions publication-title: Found. Comput. Math. – volume: 34 start-page: 876 issue: 3 year: 2013 end-page: 903 ident: Bib0020 article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors—part II: Uniqueness of the overall decomposition publication-title: SIAM J. Matrix Anal. Appl. – volume: 21 start-page: 1253 issue: 4 year: 2000 end-page: 1278 ident: Bib0019 article-title: A multilinear singular value decomposition publication-title: SIAM J. Matrix Anal. Appl. – year: 2022 ident: Bib0025 article-title: Tensorlab+ – volume: 33 start-page: 1018 issue: 3 year: 2012 end-page: 1037 ident: Bib0012 article-title: On generic identifiability of 3-tensors of small rank publication-title: SIAM J. Matrix Anal. Appl. – volume: 51 start-page: 455 issue: 3 year: 2009 end-page: 500 ident: Bib0029 article-title: Tensor decompositions and applications publication-title: SIAM Rev. – volume: 6 start-page: 164 issue: 1 year: 1927 end-page: 189 ident: Bib0027 article-title: The expression of a tensor or a polyadic as a sum of products publication-title: J. Math. Phys. – volume: 60 start-page: 45:1–45:39 issue: 6 year: 2013 ident: Bib0026 article-title: Most tensor problems are NP-Hard publication-title: J. ACM – year: 2013 ident: Bib0016 publication-title: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra – volume: 143 start-page: 1 year: 2020 end-page: 30 ident: Bib0005 article-title: Waring, tangential and cactus decompositions publication-title: J. Math. Pures Appl. – start-page: 35 year: 2011 end-page: 42 ident: Bib0003 article-title: Multihomogeneous polynomial decomposition using moment matrices publication-title: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation – volume: 185 year: 2006 ident: Bib0015 publication-title: Using Algebraic Geometry – volume: 57 start-page: 2395 year: 1985 end-page: 2397 ident: Bib0034 article-title: Features of quantifying chemical composition from two-dimensional data array by the rank annihilation factor analysis method publication-title: Anal. Chem. – year: 2019 ident: Bib0023 article-title: Macaulay2, a software system for research in algebraic geometry – ident: e_1_3_3_39_1 doi: 10.1007/s10208-017-9372-x – ident: e_1_3_3_35_1 doi: 10.1021/ac00289a052 – ident: e_1_3_3_45_1 doi: 10.1109/TSP.2017.2690524 – ident: e_1_3_3_22_1 doi: 10.1137/130916084 – ident: e_1_3_3_24_1 – ident: e_1_3_3_5_1 doi: 10.1016/j.jsc.2012.05.012 – ident: e_1_3_3_19_1 doi: 10.1137/040608830 – ident: e_1_3_3_27_1 doi: 10.1145/2512329 – ident: e_1_3_3_36_1 doi: 10.3792/chmm/1263317740 – volume-title: Combinatorial Commutative Algebra year: 2005 ident: e_1_3_3_38_1 – volume-title: Using Algebraic Geometry year: 2006 ident: e_1_3_3_16_1 – ident: e_1_3_3_25_1 doi: 10.1007/978-1-4613-9425-9 – ident: e_1_3_3_40_1 doi: 10.1007/s10208-015-9291-7 – ident: e_1_3_3_49_1 doi: 10.1007/BF02289464 – ident: e_1_3_3_2_1 doi: 10.1137/18M1200531 – ident: e_1_3_3_13_1 doi: 10.1137/110829180 – ident: e_1_3_3_15_1 doi: 10.1137/16M1090132 – ident: e_1_3_3_42_1 doi: 10.1007/978-3-319-26765-4 – ident: e_1_3_3_34_1 doi: 10.1137/0614071 – volume-title: Solving Systems of Polynomial Equations year: 2020 ident: e_1_3_3_47_1 – ident: e_1_3_3_4_1 doi: 10.1145/1993886.1993898 – volume-title: Tensors: Geometry and Applications year: 2012 ident: e_1_3_3_33_1 – ident: e_1_3_3_48_1 doi: 10.1137/17M1162433 – ident: e_1_3_3_20_1 doi: 10.1137/S0895479896305696 – ident: e_1_3_3_9_1 doi: 10.1090/S0025-5718-1977-0428694-0 – ident: e_1_3_3_32_1 doi: 10.1016/j.laa.2018.07.004 – volume-title: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra year: 2013 ident: e_1_3_3_17_1 – ident: e_1_3_3_18_1 doi: 10.1090/gsm/124 – ident: e_1_3_3_43_1 doi: 10.1002/cem.1180040105 – ident: e_1_3_3_23_1 doi: 10.1016/j.laa.2016.10.019 – ident: e_1_3_3_44_1 doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N – ident: e_1_3_3_7_1 doi: 10.1007/s10231-013-0352-8 – ident: e_1_3_3_29_1 doi: 10.1007/BFb0093426 – ident: e_1_3_3_46_1 doi: 10.1016/j.jpaa.2020.106367 – ident: e_1_3_3_30_1 doi: 10.1137/07070111x – ident: e_1_3_3_41_1 doi: 10.1137/060655894 – ident: e_1_3_3_28_1 doi: 10.1002/sapm192761164 – ident: e_1_3_3_50_1 doi: 10.1137/110836067 – volume: 2004 start-page: 179 issue: 571 year: 2004 ident: e_1_3_3_37_1 article-title: Multigraded castelnuovo-mumford regularity publication-title: J. für die Reine und Angew. Math. – ident: e_1_3_3_26_1 – ident: e_1_3_3_31_1 doi: 10.1016/0024-3795(77)90069-6 – ident: e_1_3_3_14_1 doi: 10.1137/140961389 – ident: e_1_3_3_10_1 doi: 10.1007/978-3-662-03338-8 – ident: e_1_3_3_21_1 doi: 10.1137/120877258 – ident: e_1_3_3_6_1 doi: 10.1016/j.matpur.2020.07.003 – ident: e_1_3_3_12_1 doi: 10.1112/S0024610706022630 – ident: e_1_3_3_3_1 – ident: e_1_3_3_11_1 doi: 10.1016/j.jpaa.2010.11.010 – ident: e_1_3_3_8_1 doi: 10.1016/j.laa.2010.06.046  | 
    
| SSID | ssj0002171 | 
    
| Score | 2.387919 | 
    
| Snippet | We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank... | 
    
| SourceID | unpaywall crossref acm  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Computations on matrices Computations on polynomials Mathematics of computing Nonlinear equations Solvers  | 
    
| SubjectTermsDisplay | Mathematics of computing -- Computations on matrices Mathematics of computing -- Computations on polynomials Mathematics of computing -- Nonlinear equations Mathematics of computing -- Solvers  | 
    
| Title | A Normal Form Algorithm for Tensor Rank Decomposition | 
    
| URI | https://dl.acm.org/doi/10.1145/3555369 https://dl.acm.org/doi/pdf/10.1145/3555369  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 48 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1557-7295 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171 issn: 1557-7295 databaseCode: AMVHM dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3o9qAvTqfiNxFE9KG6Lk2yPBZ1DGFDxIk-jTRNVezqcB2iv8bf4i_zZs38RBAKKfQ2lNyEcy6991yAHUQd9HJkPPS98QJZM54ySewJzYJYR8rwcYVcu8Nb3eD0il05mRxbCxOnOE9__AvfnulBnDhBW3aIyMgol9NQ5gx5dwnK3c5ZeD0RxaRsXG-C-Chsf1ZWVMh-fdMCkO5_A6CZUTZQz08qTb-gSrNStCcajsUIbTLJ_cEojw70yw-pxv998DzMOXJJwmI3LMCUyapQmTRuIO4cV2HB3Q3JnpOd3l8EHpKOJbApaeJAwvTm4fEuv-2_vSKvJRcY7uJwrrJ7cmxsIrrL9lqCbvPk4qjlua4KnqoLkXsNjLiMb6hIGJVxUNNMWMfU_UQi_UqMz5OGCfBhJATlyirg-3WVMC0kxnZc02UoZQ-ZWQESI9uIgwgxUMQBZ0pSrn0jA19qKhu0tgpVXJveoNDN6Ln1WIXdiQN62gmR234Yaa8okmafhuTDcDLHL5PtDw_-ZbP2D5t1mK3bugYfL7kBpfxxZDaRbeTRFpTD9mWrveW22zsQ8cxW | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26PeiLc1NxfhFBRB8616ZJlsehjiE4RDaYTyNNU5V13dg6RH-Nv8Vf5s2azakIQiGF3oaSm3DOpfeei9AJoA54OdAO-F47vqhqR-oodLiifqgCqdmsQu62xZod_6ZLu1Ymx9TChDHMM5j9wjdnehRGVtCWXgAyUsLEKsozCrw7h_Kd1l39YS6KSeis3gTwkZv-rDSrkF1-0wCQGnwDoLVpMpKvLzKOl1ClUcjaE01mYoQmmaRfmaZBRb39kGr83wdvog1LLnE92w1FtKKTEirMGzdge45LqGjvJvjMyk6fbyFWxy1DYGPcgAHX48fh-Dl9Gny8A6_FbQh3YbiXSR9faZOIbrO9tlGncd2-bDq2q4IjPc5TpwYRl3Y14RElIvSrinLjGM-NBNCvSLssqmkfHgacEyaNAr7ryYgqLiC2Y4rsoFwyTPQuwiGwjdAPAAN56DMqBWHK1cJ3hSKiRqplVIK16Y0y3YyeXY8yOp07oKesELnphxH3siJp-mWIF4bzOX6ZHC88-JfN3j9s9tG6Z-oaXLjEAcql46k-BLaRBkd2m30CtfLKug | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Normal+Form+Algorithm%C2%A0for+Tensor+Rank+Decomposition&rft.jtitle=ACM+transactions+on+mathematical+software&rft.au=Telen%2C+Simon&rft.au=Vannieuwenhoven%2C+Nick&rft.date=2022-12-19&rft.issn=0098-3500&rft.eissn=1557-7295&rft.volume=48&rft.issue=4&rft.spage=1&rft.epage=35&rft_id=info:doi/10.1145%2F3555369&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3555369 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3500&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3500&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3500&client=summon |