Left Ventricle Segmentation in Cardiac MR: A Systematic Mapping of the Past Decade

Left ventricle segmentation in short-axis cardiac magnetic resonance images is important to diagnose heart disease. However, repetitive manual segmentation of these images requires considerable human effort and can decrease diagnostic accuracy. In recent years, several fully and semi-automatic appro...

Full description

Saved in:
Bibliographic Details
Published inACM computing surveys Vol. 54; no. 11s; pp. 1 - 38
Main Authors Ribeiro, Matheus A. O., Nunes, Fátima L. S.
Format Journal Article
LanguageEnglish
Published New York, NY ACM 31.01.2022
Subjects
Online AccessGet full text
ISSN0360-0300
1557-7341
1557-7341
DOI10.1145/3517190

Cover

Abstract Left ventricle segmentation in short-axis cardiac magnetic resonance images is important to diagnose heart disease. However, repetitive manual segmentation of these images requires considerable human effort and can decrease diagnostic accuracy. In recent years, several fully and semi-automatic approaches have been proposed, mainly using image-based, atlas, graph, deformable model, and artificial intelligence methods. This article presents a systematic mapping on left ventricle segmentation, considering 74 studies published in the past decade. The main contributions of this review are definition of the main segmentation challenges in these images; proposal of a new schematization, dividing the segmentation process into stages; categorization and analysis of the segmentation methods, including hybrid combinations; and analysis of the evaluation process, metrics, and databases. The performance of the methods in the most used public database is assessed, and the main limitations, weaknesses, and strengths of each method category are presented. Finally, trends, challenges, and research opportunities are discussed. The analysis indicates that methods from all categories can achieve good performance, and hybrid methods combining deep learning and deformable models obtain the best results. Methods still fail in specific slices, segment wrong regions, and produce anatomically impossible segmentations.
AbstractList Left ventricle segmentation in short-axis cardiac magnetic resonance images is important to diagnose heart disease. However, repetitive manual segmentation of these images requires considerable human effort and can decrease diagnostic accuracy. In recent years, several fully and semi-automatic approaches have been proposed, mainly using image-based, atlas, graph, deformable model, and artificial intelligence methods. This article presents a systematic mapping on left ventricle segmentation, considering 74 studies published in the past decade. The main contributions of this review are definition of the main segmentation challenges in these images; proposal of a new schematization, dividing the segmentation process into stages; categorization and analysis of the segmentation methods, including hybrid combinations; and analysis of the evaluation process, metrics, and databases. The performance of the methods in the most used public database is assessed, and the main limitations, weaknesses, and strengths of each method category are presented. Finally, trends, challenges, and research opportunities are discussed. The analysis indicates that methods from all categories can achieve good performance, and hybrid methods combining deep learning and deformable models obtain the best results. Methods still fail in specific slices, segment wrong regions, and produce anatomically impossible segmentations.
ArticleNumber 241
Author Ribeiro, Matheus A. O.
Nunes, Fátima L. S.
Author_xml – sequence: 1
  givenname: Matheus A. O.
  orcidid: 0000-0002-9133-0683
  surname: Ribeiro
  fullname: Ribeiro, Matheus A. O.
  email: matheus.alberto.ribeiro@usp.br
  organization: Universidade de São Paulo, São Paulo, Brazil
– sequence: 2
  givenname: Fátima L. S.
  orcidid: 0000-0003-0040-0752
  surname: Nunes
  fullname: Nunes, Fátima L. S.
  email: fatima.nunes@usp.br
  organization: Universidade de São Paulo, São Paulo, Brazil
BookMark eNp1kM1LxDAQxYOs4LqKd0-56aWaNF-tt2X9hBVlV72W2TRdI21akojsf2-lqwfRwzC8eT8ezNtHI9c6g9ARJWeUcnHOBFU0JztoTIVQiWKcjtCYMEkSwgjZQ_shvBFCUk7lGC3mpor4xbjora4NXpp10wuItnXYOjwDX1rQ-H5xgad4uQnRNL3ZH6DrrFvjtsLx1eBHCBFfGg2lOUC7FdTBHG73BD1fXz3NbpP5w83dbDpPIFUqJhIESM6FhqoUZZbxtJe5WOmcZVpqs9JpCrnMFRHS8EwyZhTkK8ZBi36ATdDpkPvuOth8QF0XnbcN-E1BSfHVRbHtokeTAdW-DcGbqtB2-DF6sPUf_Mkv_v_k44EE3fxA3-YnF3d1Iw
CitedBy_id crossref_primary_10_1016_j_cmpb_2022_106889
crossref_primary_10_1016_j_neucom_2024_129326
crossref_primary_10_5753_jbcs_2025_4443
crossref_primary_10_3390_math11143245
crossref_primary_10_1016_j_jbi_2023_104366
crossref_primary_10_3233_THC_240062
crossref_primary_10_31083_j_rcm2512447
Cites_doi 10.3389/fphys.2021.709230
10.1260/2040-2295.4.3.371
10.1016/j.media.2007.12.003
10.1007/s11517-019-01952-9
10.1049/iet-cvi.2016.0482
10.1109/TIP.2010.2103950
10.1109/TMI.2010.2086465
10.1016/j.media.2017.04.004
10.1016/j.media.2014.09.005
10.1109/TIP.2010.2069690
10.1016/j.media.2011.01.002
10.1016/j.mri.2019.08.004
10.1109/ISACV.2018.8354039
10.1109/TMI.2010.2047112
10.1109/TBME.2010.2048752
10.1002/mp.13245
10.1007/s11548-016-1429-9
10.1109/TMI.2015.2497906
10.1109/ISBI.2016.7493206
10.1038/nrcardio.2014.165
10.1148/radiol.2018180513
10.1016/j.compbiomed.2014.12.009
10.1109/JBHI.2018.2865450
10.1109/ACCESS.2017.2789179
10.1007/s10334-015-0521-4
10.1109/ICPR.2018.8545390
10.1016/j.media.2010.12.004
10.1109/ICCKE.2013.6682837
10.1109/TBME.2009.2014545
10.1002/(SICI)1522-2586(199911)10:5<667::AID-JMRI9>3.0.CO;2-8
10.1148/rg.311105049
10.1007/BF00133570
10.1109/83.661186
10.1016/j.media.2011.05.009
10.1016/j.media.2017.07.005
10.1049/joe.2018.8302
10.1161/01.CIR.76.1.44
10.1145/3167132.3167168
10.1016/j.media.2021.102037
10.1109/TMI.2013.2256922
10.1007/s10278-012-9548-5
10.1016/j.media.2018.10.004
10.1017/9781107706958
10.54294/c3nv9t
10.1016/j.media.2016.05.009
10.1016/j.mri.2018.04.011
10.1109/ICIP.2013.6738143
10.1109/JSEN.2017.2736641
10.1109/RAECS.2015.7453332
10.1016/j.cviu.2012.11.012
10.1155/2015/573956
10.1016/j.media.2012.10.005
10.1155/2015/970357
10.1049/iet-ipr.2013.0088
10.1016/j.media.2016.01.005
10.1016/j.compbiomed.2020.103728
10.1109/ISBI.2018.8363620
10.1109/TMI.2005.843740
10.1016/j.cmpb.2018.12.002
10.1109/SNAMS.2018.8554962
10.1109/TMI.2016.2553153
10.1016/j.cmpb.2017.10.028
10.1007/s10558-009-9091-2
10.1016/j.bspc.2018.04.008
10.1016/j.jchf.2012.10.002
10.1093/oxfordjournals.eurheartj.a060113
10.1109/83.902291
10.1016/j.hfc.2018.12.008
10.1016/j.cviu.2012.12.008
10.1371/journal.pone.0114760
10.1109/TBME.2011.2174235
10.1016/j.mri.2012.10.004
10.1007/978-3-642-22092-0_15
10.1109/BIBM.2018.8621552
10.1016/j.mri.2021.02.003
10.1007/s11517-017-1614-1
10.3390/diagnostics11020346
10.1016/j.jcmg.2019.06.009
10.1016/j.jvcir.2015.10.016
10.1016/j.neucom.2019.02.008
10.1016/j.jacr.2016.10.009
10.1016/j.media.2013.09.001
10.1016/j.media.2018.07.009
10.1109/EMBC.2018.8513140
10.1007/s10278-013-9573-z
10.1016/j.ijleo.2015.10.162
10.1016/j.compbiomed.2019.04.042
10.1109/CVPR.2014.399
10.1016/0002-9149(92)91386-I
10.1016/j.mri.2017.01.011
10.1109/JTEHM.2019.2900628
10.1049/iet-ipr.2012.0512
10.1109/CLEI.2017.8226420
10.1016/j.bspc.2016.11.002
10.1109/ACCESS.2020.3017168
10.1155/2017/8350680
10.1007/978-3-030-78710-3_6
10.1016/j.media.2018.05.008
10.1161/CIR.0000000000000659
10.1109/tip.2008.2002304
10.1186/1532-429X-11-50
10.1016/j.acra.2012.02.011
10.1109/TMI.2018.2820742
10.1007/978-3-319-24574-4_28
10.1109/TCYB.2017.2778799
10.1117/1.JEI.21.1.010901
10.1109/ICIP.2017.8296581
10.1016/j.future.2020.02.005
10.1016/j.mri.2015.12.027
10.1002/jmri.20230
10.1109/ICIP.2017.8296855
10.1109/TPAMI.2017.2711020
10.1016/S0140-6736(86)90837-8
10.1109/JBHI.2018.2879188
10.1007/s10462-011-9289-8
10.1016/j.media.2010.05.009
10.1049/iet-ipr.2016.0410
10.1016/j.media.2017.04.002
10.1049/iet-cvi.2014.0450
10.1016/j.cmpb.2015.10.015
10.1016/j.neucom.2014.07.044
10.1155/2020/8899957
10.1049/iet-ipr.2015.0408
10.1109/TMI.2018.2837502
10.1109/ISBI.2014.6867896
ContentType Journal Article
Copyright Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Copyright_xml – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1145/3517190
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1557-7341
EndPage 38
ExternalDocumentID 10.1145/3517190
10_1145_3517190
3517190
GrantInformation_xml – fundername: São Paulo Research Foundation (FAPESP)
  grantid: 2019/22116-7
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)—Finance Code 001
GroupedDBID --Z
-DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
85S
8US
8VB
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ACNCT
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AEGXH
AEMOZ
AENEX
AENSD
AFWIH
AFWXC
AGHSJ
AHQJS
AIAGR
AIKLT
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
EBE
EBR
EBU
EDO
EMK
FEDTE
GUFHI
HGAVV
H~9
IAO
ICD
IEA
IGS
IOF
K1G
LHSKQ
N95
P1C
P2P
PQQKQ
QWB
RNS
ROL
RXW
TAE
TH9
U5U
UKR
UPT
VQA
W7O
WH7
X6Y
XH6
XSW
XZL
YXB
Z5M
ZCA
ZL0
77I
AAYXX
AEFXT
AEJOY
AETEA
AKRVB
CITATION
41~
4R4
9M8
AAFWJ
ACBNA
ADMHC
ADTOC
ADXHL
AFFNX
AI.
BAAKF
EBS
EJD
HF~
ITC
MVM
OHT
TAF
UNPAY
VH1
XJT
XOL
YR5
ZCG
ID FETCH-LOGICAL-a277t-6a5a6445cafd5d8842a6495bc938c6cebc22a9697056e48633e7a9b34ac54aca3
IEDL.DBID UNPAY
ISSN 0360-0300
1557-7341
IngestDate Tue Aug 19 18:59:36 EDT 2025
Thu Apr 24 22:54:13 EDT 2025
Wed Oct 01 06:05:26 EDT 2025
Fri Feb 21 01:12:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11s
Keywords cardiac magnetic resonance imaging
Left ventricle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a277t-6a5a6445cafd5d8842a6495bc938c6cebc22a9697056e48633e7a9b34ac54aca3
ORCID 0000-0002-9133-0683
0000-0003-0040-0752
OpenAccessLink https://proxy.k.utb.cz/login?url=https://dl.acm.org/doi/pdf/10.1145/3517190
PageCount 38
ParticipantIDs unpaywall_primary_10_1145_3517190
crossref_citationtrail_10_1145_3517190
crossref_primary_10_1145_3517190
acm_primary_3517190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-31
PublicationDateYYYYMMDD 2022-01-31
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-31
  day: 31
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle ACM computing surveys
PublicationTitleAbbrev ACM CSUR
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
References (Bib0016) 2011; 31
(Bib0045) 2019; 51
(Bib0084) 2009
(Bib0009) 2019
(Bib0103) 2018; 48
(Bib0038) 2013; 31
(Bib0127) 2018
(Bib0114) 2021; 12
(Bib0019) 2021
(Bib0104) 2017; 14
(Bib0013) 2013; 1
(Bib0124) 2017; 55
(Bib0073) 2017; 35
(Bib0111) 2013; 117
(Bib0008) 2013; 32
(Bib0024) 2011; 40
(Bib0092) 1999; 10
(Bib0087) 2019; 15
(Bib0085) 2018; 44
(Bib0062) 2020; 8
(Bib0034) 2014; 12
(Bib0003) 2008; 12
(Bib0102) 2015; 2015
(Bib0112) 2019
(Bib0044) 2018; 51
(Bib0063) 2016; 11
(Bib0070) 2011
(Bib0125) 2016; 10
(Bib0048) 2021
(Bib0067) 2017
(Bib0035) 2019; 57
(Bib0046) 2018; 40
(Bib0004) 2017; 33
(Bib0094) 2021; 78
(Bib0101) 2017
(Bib0126) 2017; 11
(Bib0098) 2017; 39
(Bib0002) 2016; 35
(Bib0050) 2010; 57
(Bib0107) 2019; 46
(Bib0014) 2015; 57
(Bib0015) 2016; 35
(Bib0026) 2017; 17
(Bib0030) 2019; 7
(Bib0037) 2014; 9
(Bib0054) 2010; 19
(Bib0057) 2020; 66
(Bib0071) 2013
(Bib0106) 2015; 2015
(Bib0017) 2001; 10
(Bib0005) 2016; 30
(Bib0079) 2016; 127
(Bib0113) 2021; 11
(Bib0123) 2020; 2020
(Bib0031) 2018; 6
(Bib0033) 2009; 11
(Bib0043) 2013
(Bib0089) 2018; 154
(Bib0076) 2016; 29
(Bib0066) 2012
(Bib0119) 2018
(Bib0115) 2013; 117
(Bib0023) 2019; 169
(Bib0131) 2019; 23
(Bib0060) 2012; 19
(Bib0064) 2013; 26
(Bib0088) 2017
(Bib0128) 2018; 37
(Bib0122) 2018; 49
(Bib0118) 2017; 38
(Bib0006) 2012; 16
(Bib0078) 2011; 15
(Bib0055) 2020; 120
(Bib0093) 2017; 39
(Bib0022) 2017
(Bib0096) 2014; 18
(Bib0072) 2014
(Bib0091) 2010; 14
(Bib0049) 2005; 21
(Bib0110) 1987; 76
(Bib0077) 1992; 70
(Bib0116) 2021; 71
(Bib0032) 2013; 17
(Bib0068) 2018
(Bib0041) 1988; 1
(Bib0056) 2019; 49
(Bib0129) 2013; 4
(Bib0061) 2016; 34
(Bib0029) 2019; 23
(Bib0108) 2017; 11
(Bib0020) 2018; 2018
(Bib0120) 2020; 107
(Bib0080) 2005; 24
(Bib0117) 1998; 7
(Bib0001) 2014; 8
(Bib0047) 2018
(Bib0010) 2018
(Bib0058) 2019; 12
(Bib0028) 2010; 10
(Bib0042) 2012; 59
(Bib0095) 2017; 2017
(Bib0039) 2019; 347
(Bib0065) 2013; 26
(Bib0069) 2007
(Bib0027) 2016; 34
(Bib0132) 2016
(Bib0090) 2018
(Bib0105) 2015
(Bib0075) 2011; 30
(Bib0040) 2012; 21
(Bib0011) 2018; 37
(Bib0082) 2010; 57
(Bib0081) 2016; 124
(Bib0018) 2018
(Bib0052) 2011; 20
(Bib0059) 2017; 42
(Bib0036) 2016; 10
(Bib0053) 2008; 17
(Bib0099) 2019; 290
(Bib0083) 2015; 149
(Bib0074) 1992; 13
(Bib0109) 1987; 76
(Bib0025) 2014; 8
(Bib0051) 2018
(Bib0012) 1986; 327
(Bib0097) 2014; 18
(Bib0021) 2011; 15
(Bib0100) 2019; 109
(Bib0007) 2015; 19
(Bib0130) 2010; 29
(Bib0086) 2015
(Bib0121) 2014
e_1_3_2_28_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_123_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_127_2
Nambakhsh Mohammad Saleh (e_1_3_2_71_2) 2011
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
Chen Jun (e_1_3_2_20_2) 2021
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_112_2
e_1_3_2_92_2
e_1_3_2_131_2
e_1_3_2_50_2
Kuang Mengmeng (e_1_3_2_49_2) 2021
e_1_3_2_116_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_126_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_122_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_115_2
e_1_3_2_130_2
e_1_3_2_70_2
e_1_3_2_111_2
Radau Perry (e_1_3_2_85_2) 2009
e_1_3_2_119_2
e_1_3_2_26_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
Marieb Elaine Nicpon (e_1_3_2_67_2) 2012
e_1_3_2_125_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_121_2
e_1_3_2_106_2
e_1_3_2_129_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_114_2
e_1_3_2_94_2
e_1_3_2_110_2
e_1_3_2_133_2
Ronneberger Olaf (e_1_3_2_87_2) 2015
e_1_3_2_90_2
e_1_3_2_118_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_124_2
e_1_3_2_61_2
e_1_3_2_120_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_109_2
e_1_3_2_105_2
Organization World Health (e_1_3_2_113_2) 2019
e_1_3_2_128_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
e_1_3_2_132_2
e_1_3_2_117_2
Mo Yuanhan (e_1_3_2_69_2) 2018
References_xml – volume: 154
  start-page: 9
  year: 2018
  end-page: 23
  ident: Bib0089
  article-title: Fast segmentation of the left ventricle in cardiac MRI using dynamic programming
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 49
  start-page: 60
  year: 2018
  end-page: 75
  ident: Bib0122
  article-title: Neural multi-atlas label fusion: Application to cardiac MR images
  publication-title: Medical Image Analysis
– volume: 15
  start-page: 321
  issue: 2
  year: 2019
  end-page: 331
  ident: Bib0087
  article-title: Biomarkers and imaging: Complementary or subtractive?
  publication-title: Heart Failure Clinics
– volume: 59
  start-page: 445
  issue: 2
  year: 2012
  end-page: 455
  ident: Bib0042
  article-title: Accurate automatic analysis of cardiac cine images
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 1
  start-page: 1
  issue: 1
  year: 2013
  end-page: 20
  ident: Bib0013
  article-title: Heart failure
  publication-title: JACC: Heart Failure
– volume: 6
  start-page: 3828
  year: 2018
  end-page: 3838
  ident: Bib0031
  article-title: Deep regression segmentation for cardiac bi-ventricle MR images
  publication-title: IEEE Access
– volume: 51
  start-page: 21
  year: 2019
  end-page: 45
  ident: Bib0045
  article-title: Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers
  publication-title: Medical Image Analysis
– volume: 29
  start-page: 1612
  issue: 9
  year: 2010
  end-page: 1625
  ident: Bib0130
  article-title: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI
  publication-title: IEEE Transactions on Medical Imaging
– volume: 17
  start-page: 5971
  issue: 18
  year: 2017
  end-page: 5981
  ident: Bib0026
  article-title: Towards left ventricle segmentation from magnetic resonance images
  publication-title: IEEE Sensors Journal
– volume: 10
  start-page: 710
  issue: 10
  year: 2016
  end-page: 716
  ident: Bib0036
  article-title: Multilabel statistical shape prior for image segmentation
  publication-title: IET Image Processing
– volume: 17
  start-page: 1940
  issue: 10
  year: 2008
  end-page: 1949
  ident: Bib0053
  article-title: Minimization of region-scalable fitting energy for image segmentation
  publication-title: IEEE Transactions on Image Processing
– volume: 14
  start-page: 191
  issue: 2
  year: 2017
  end-page: 197
  ident: Bib0104
  article-title: Tired in the reading room: The influence of fatigue in radiology
  publication-title: Journal of the American College of Radiology
– start-page: 223
  year: 2013
  end-page: 228
  ident: Bib0043
  article-title: A new patch-based active contour for segmentation of the myocardium of the left ventricle in cardiac magnetic resonance images
  publication-title: Proceedings of the International eConference on Computer and Knowledge Engineering (ICCKE’13)
– volume: 169
  start-page: 37
  year: 2019
  end-page: 50
  ident: Bib0023
  article-title: Automatic quantification of the LV function and mass: A deep learning approach for cardiovascular MRI
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 34
  start-page: 699
  issue: 5
  year: 2016
  end-page: 706
  ident: Bib0061
  article-title: Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI
  publication-title: Magnetic Resonance Imaging
– volume: 34
  start-page: 89
  year: 2016
  end-page: 102
  ident: Bib0027
  article-title: Pathological liver segmentation using stochastic resonance and cellular automata
  publication-title: Journal of Visual Communication and Image Representation
– volume: 12
  year: 2021
  ident: Bib0114
  article-title: Recent advances in fibrosis and scar segmentation from cardiac MRI: A state-of-the-art review and future perspectives
  publication-title: Frontiers in Physiology
  doi: 10.3389/fphys.2021.709230
– volume: 14
  start-page: 738
  issue: 6
  year: 2010
  end-page: 749
  ident: Bib0091
  article-title: A dynamic elastic model for segmentation and tracking of the heart in MR image sequences
  publication-title: Medical Image Analysis
– volume: 39
  start-page: 78
  year: 2017
  end-page: 86
  ident: Bib0098
  article-title: Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences
  publication-title: Medical Image Analysis
– volume: 38
  start-page: 202
  year: 2017
  end-page: 213
  ident: Bib0118
  article-title: Left ventricle segmentation via two-layer level sets with circular shape constraint
  publication-title: Magnetic Resonance Imaging
– year: 2019
  ident: Bib0009
  article-title: Heart disease and stroke statistics—2019 update: A report from the American Heart Association
  publication-title: Circulation
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  end-page: 277
  ident: Bib0017
  article-title: Active contours without edges
  publication-title: IEEE Transactions on Image Processing
– volume: 44
  start-page: 48
  year: 2018
  end-page: 57
  ident: Bib0085
  article-title: Myocardial segmentation in cardiac magnetic resonance images using fully convolutional neural networks
  publication-title: Biomedical Signal Processing and Control
– volume: 12
  start-page: 91
  issue: 2
  year: 2014
  end-page: 102
  ident: Bib0034
  article-title: Pathophysiology and treatment of cardiac amyloidosis
  publication-title: Nature Reviews Cardiology
– year: 2019
  ident: Bib0112
  publication-title: The Top 10 Causes of Death
– volume: 66
  start-page: 152
  year: 2020
  end-page: 164
  ident: Bib0057
  article-title: A data augmentation approach to train fully convolutional networks for left ventricle segmentation
  publication-title: Magnetic Resonance Imaging
– volume: 51
  start-page: 51
  year: 2018
  end-page: 60
  ident: Bib0044
  article-title: FoCA: A new framework of coupled geometric active contours for segmentation of 3D cardiac magnetic resonance images
  publication-title: Magnetic Resonance Imaging
– volume: 327
  start-page: 307
  issue: 8476
  year: 1986
  end-page: 310
  ident: Bib0012
  publication-title: Lancet
– volume: 8
  start-page: 207
  issue: 4
  year: 2014
  end-page: 212
  ident: Bib0001
  article-title: Greedy framework for optical flow tracking of myocardium contours
  publication-title: IET Image Processing
– volume: 26
  start-page: 898
  issue: 5
  year: 2013
  end-page: 908
  ident: Bib0065
  article-title: Cardiac MRI segmentation using mutual context information from left and right ventricle
  publication-title: Journal of Digital Imaging
– volume: 46
  start-page: 180
  issue: 1
  year: 2019
  end-page: 189
  ident: Bib0107
  article-title: Fully automatic segmentation of 4D MRI for cardiac functional measurements
  publication-title: Medical Physics
– start-page: 234
  year: 2015
  end-page: 241
  ident: Bib0086
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 6
  ident: Bib0123
  article-title: Deep RetinaNet for dynamic left ventricle detection in multiview echocardiography classification
  publication-title: Scientific Programming
– volume: 12
  start-page: 335
  issue: 3
  year: 2008
  end-page: 357
  ident: Bib0003
  article-title: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI
  publication-title: Medical Image Analysis
– volume: 7
  start-page: 1
  year: 2019
  end-page: 10
  ident: Bib0030
  article-title: Cardiac-DeepIED: Automatic pixel-level deep segmentation for cardiac bi-ventricle using improved end-to-end encoder-decoder network
  publication-title: IEEE Journal of Translational Engineering in Health and Medicine
– volume: 76
  start-page: 44
  year: 1987
  end-page: 51
  ident: Bib0110
  article-title: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction
  publication-title: Circulation
– start-page: 479
  year: 2018
  end-page: 483
  ident: Bib0119
  article-title: Multi-component deformable models coupled with 2D-3D U-Net for automated probabilistic segmentation of cardiac walls and blood
  publication-title: Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI’18)
– year: 2016
  ident: Bib0132
  article-title: Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks
  publication-title: Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI’16)
– volume: 120
  start-page: 103728
  year: 2020
  ident: Bib0055
  article-title: MV-RAN: Multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis
  publication-title: Computers in Biology and Medicine
– volume: 107
  start-page: 215
  year: 2020
  end-page: 228
  ident: Bib0120
  article-title: Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention
  publication-title: Future Generation Computer Systems
– year: 2012
  ident: Bib0066
  publication-title: Human Anatomy (6th ed., media update ed.)
– volume: 78
  start-page: 109
  year: 2021
  end-page: 118
  ident: Bib0094
  article-title: Convexity preserving level set for left ventricle segmentation
  publication-title: Magnetic Resonance Imaging
– volume: 18
  start-page: 50
  issue: 1
  year: 2014
  end-page: 62
  ident: Bib0097
  article-title: A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images
  publication-title: Medical Image Analysis
– volume: 30
  start-page: 108
  year: 2016
  end-page: 119
  ident: Bib0005
  article-title: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
  publication-title: Medical Image Analysis
– volume: 15
  start-page: 283
  issue: 3
  year: 2011
  end-page: 301
  ident: Bib0021
  article-title: Unsupervised 4D myocardium segmentation with a Markov random field based deformable model
  publication-title: Medical Image Analysis
– volume: 57
  start-page: 1213
  issue: 6
  year: 2019
  end-page: 1228
  ident: Bib0035
  article-title: Image-based clustering and connected component labeling for rapid automated left and right ventricular endocardial volume extraction and segmentation in full cardiac cycle multi-frame MRI images of cardiac patients
  publication-title: Medical & Biological Engineering & Computing
– start-page: 22
  year: 2018
  end-page: 29
  ident: Bib0010
  article-title: 3D medical objects processing and retrieval using spherical harmonics: A case study with congestive heart failure MRI exams
  publication-title: Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC’18)
– volume: 117
  start-page: 1084
  issue: 9
  year: 2013
  end-page: 1094
  ident: Bib0111
  article-title: Multiphase segmentation using an implicit dual shape prior: Application to detection of left ventricle in cardiac MRI
  publication-title: Computer Vision and Image Understanding
– volume: 35
  start-page: 159
  year: 2017
  end-page: 171
  ident: Bib0073
  article-title: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance
  publication-title: Medical Image Analysis
– start-page: 153
  year: 2018
  end-page: 158
  ident: Bib0090
  article-title: Automated segmentation on the entire cardiac cycle using a deep learning work-flow
  publication-title: Proceedings of the 2018 5th International Conference on Social Networks Analysis, Management, and Security (SNAMS’18).
– volume: 30
  start-page: 461
  issue: 2
  year: 2011
  end-page: 474
  ident: Bib0075
  article-title: A novel model-based 3D \( {+} \) time left ventricular segmentation technique
  publication-title: IEEE Transactions on Medical Imaging
– volume: 11
  start-page: 643
  issue: 8
  year: 2017
  end-page: 649
  ident: Bib0126
  article-title: Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
  publication-title: IET Computer Vision
– volume: 19
  start-page: 3243
  issue: 12
  year: 2010
  end-page: 3254
  ident: Bib0054
  article-title: Distance regularized level set evolution and its application to image segmentation
  publication-title: IEEE Transactions on Image Processing
– start-page: 327
  year: 2018
  end-page: 332
  ident: Bib0018
  article-title: Optimizing U-Net to segment left ventricle from magnetic resonance imaging
  publication-title: Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM’18).
– year: 2018
  ident: Bib0051
  article-title: Computational platform based on deep learning for segmenting ventricular endocardium in long-axis cardiac MR imaging
  publication-title: Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’18)
– volume: 4
  start-page: 371
  issue: 3
  year: 2013
  end-page: 408
  ident: Bib0129
  article-title: Challenges and methodologies of fully automatic whole heart segmentation: A review
  publication-title: Journal of Healthcare Engineering
  doi: 10.1260/2040-2295.4.3.371
– volume: 149
  start-page: 904
  year: 2015
  end-page: 913
  ident: Bib0083
  article-title: Feature competition and partial sparse shape modeling for cardiac image sequences segmentation
  publication-title: Neurocomputing
– volume: 16
  start-page: 87
  issue: 1
  year: 2012
  end-page: 100
  ident: Bib0006
  article-title: Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure
  publication-title: Medical Image Analysis
– volume: 20
  start-page: 2007
  issue: 7
  year: 2011
  end-page: 2016
  ident: Bib0052
  article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
  publication-title: IEEE Transactions on Image Processing
– volume: 49
  start-page: 495
  issue: 2
  year: 2019
  end-page: 504
  ident: Bib0056
  article-title: Estimation of the volume of the left ventricle from MRI images using deep neural networks
  publication-title: IEEE Transactions on Cybernetics
– volume: 57
  start-page: 2001
  issue: 8
  year: 2010
  end-page: 2010
  ident: Bib0082
  article-title: Tracking endocardial motion via multiple model filtering
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 23
  start-page: 1119
  issue: 3
  year: 2019
  end-page: 1128
  ident: Bib0131
  article-title: Convolutional neural network with shape prior applied to cardiac MRI segmentation
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 39
  start-page: 44
  year: 2017
  end-page: 55
  ident: Bib0093
  article-title: Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans
  publication-title: Medical Image Analysis
– year: 2009
  ident: Bib0084
  article-title: Evaluation framework for algorithms segmenting short axis cardiac MRI. In Proceedings of the MICCAI 2009 Workshop: Cardiac MR left ventricle segmentation challenge.
  publication-title: http://hdl.handle.net/10380/3070
– volume: 37
  start-page: 2514
  issue: 11
  year: 2018
  end-page: 2525
  ident: Bib0011
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?
  publication-title: IEEE Transactions on Medical Imaging
– year: 2017
  ident: Bib0067
  publication-title: MRI from Picture to Proton (3rd ed.)
– start-page: 171
  year: 2011
  end-page: 183
  ident: Bib0070
  article-title: A convex max-flow segmentation of LV using subject-specific distributions on cardiac MRI
  publication-title: Information Processing in Medical Imaging
– volume: 31
  start-page: 239
  issue: 1
  year: 2011
  end-page: 259
  ident: Bib0016
  article-title: Evaluation of left ventricular diastolic function with cardiac MR imaging
  publication-title: RadioGraphics
– volume: 15
  start-page: 169
  issue: 2
  year: 2011
  end-page: 184
  ident: Bib0078
  article-title: A review of segmentation methods in short axis cardiac MR images
  publication-title: Medical Image Analysis
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 12
  ident: Bib0102
  article-title: Validation and development of a new automatic algorithm for time-resolved segmentation of the left ventricle in magnetic resonance imaging
  publication-title: BioMed Research International
– volume: 21
  start-page: 1
  issue: 1
  year: 2012
  end-page: 17
  ident: Bib0040
  article-title: Heart chambers and whole heart segmentation techniques: Review
  publication-title: Journal of Electronic Imaging
– start-page: 561
  year: 2018
  end-page: 568
  ident: Bib0068
  article-title: The deep Poincaré map: A novel approach for left ventricle segmentation
  publication-title: Medical Image Computing and Computer Assisted Intervention—MICCAI 2018
– volume: 76
  start-page: 44
  year: 1987
  end-page: 51
  ident: Bib0109
  article-title: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction
  publication-title: Circulation
– start-page: 3838
  year: 2018
  end-page: 3843
  ident: Bib0127
  article-title: Fully automatic segmentation of the left ventricle using multi-scale fusion learning
  publication-title: Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR’18)
– start-page: 1
  year: 2007
  end-page: 9
  ident: Bib0069
  article-title: An open, clinically-validated database of 3D+t cine-MR images of the left ventricle with associated manual and automated segmentation
– volume: 19
  start-page: 98
  issue: 1
  year: 2015
  end-page: 109
  ident: Bib0007
  article-title: Multi-atlas segmentation with augmented features for cardiac MR images
  publication-title: Medical Image Analysis
– volume: 24
  start-page: 593
  issue: 5
  year: 2005
  end-page: 603
  ident: Bib0080
  article-title: STACS: New active contour scheme for cardiac MR image segmentation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 11
  start-page: 237
  issue: 4
  year: 2017
  end-page: 244
  ident: Bib0108
  article-title: Segmentation of the left ventricle in short-axis sequences by combining deformation flow and optical flow
  publication-title: IET Image Processing
– volume: 2018
  start-page: 1463
  issue: 16
  year: 2018
  end-page: 1467
  ident: Bib0020
  article-title: Invert-U-Net DNN segmentation model for MRI cardiac left ventricle segmentation
  publication-title: Journal of Engineering
– volume: 290
  start-page: 81
  issue: 1
  year: 2019
  end-page: 88
  ident: Bib0099
  article-title: Deep learning–based method for fully automatic quantification of left ventricle function from cine MR images: A multivendor, multicenter study
  publication-title: Radiology
– volume: 21
  start-page: 140
  issue: 2
  year: 2005
  end-page: 148
  ident: Bib0049
  article-title: Assessment of left ventricular function by breath-hold cine MR imaging: Comparison of different steady-state free precession sequences
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 13
  start-page: 1611
  issue: 12
  year: 1992
  end-page: 1618
  ident: Bib0074
  article-title: Prognosis after recovery from myocardial infarction: The relative importance of cardiac dilatation and coronary stenoses
  publication-title: European Heart Journal
– volume: 32
  start-page: 1302
  issue: 7
  year: 2013
  end-page: 1315
  ident: Bib0008
  article-title: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 1
  year: 2018
  end-page: 5
  ident: Bib0047
  article-title: Hybrid forests for left ventricle segmentation using only the first slice label
  publication-title: Proceedings of the 2018 International Conference on Intelligent Systems and Computer Vision (ISCV’18)
– volume: 10
  start-page: 79
  issue: 1
  year: 2016
  end-page: 86
  ident: Bib0125
  article-title: Cardiac image segmentation by random walks with dynamic shape constraint
  publication-title: IET Computer Vision
– start-page: 695
  year: 2013
  end-page: 699
  ident: Bib0071
  article-title: Left ventricle segmentation from cardiac MRI combining level set methods with deep belief networks
  publication-title: Proceedings of the 2013 IEEE International Conference on Image Processing.
– volume: 12
  start-page: 1549
  issue: 8, Part 1
  year: 2019
  end-page: 1565
  ident: Bib0058
  article-title: State-of-the-art deep learning in cardiovascular image analysis
  publication-title: JACC: Cardiovascular Imaging
– volume: 17
  start-page: 236
  issue: 2
  year: 2013
  end-page: 253
  ident: Bib0032
  article-title: Segmentation by retrieval with guided random walks: Application to left ventricle segmentation in MRI
  publication-title: Medical Image Analysis
– volume: 35
  start-page: 2174
  issue: 9
  year: 2016
  end-page: 2188
  ident: Bib0015
  article-title: Unsupervised freeview groupwise cardiac segmentation using synchronized spectral network
  publication-title: IEEE Transactions on Medical Imaging
– volume: 10
  start-page: 30
  issue: 1
  year: 2010
  end-page: 43
  ident: Bib0028
  article-title: Automatic left ventricular contour extraction from cardiac magnetic resonance images using cantilever beam and random walk approach
  publication-title: Cardiovascular Engineering
– volume: 19
  start-page: 723
  issue: 6
  year: 2012
  end-page: 731
  ident: Bib0060
  article-title: Automatic left ventricle segmentation in cardiac MRI using topological stable-state thresholding and region restricted dynamic programming
  publication-title: Academic Radiology
– volume: 1
  start-page: 321
  issue: 4
  year: 1988
  end-page: 331
  ident: Bib0041
  article-title: Snakes: Active contour models
  publication-title: International Journal of Computer Vision
– volume: 23
  start-page: 942
  issue: 3
  year: 2019
  end-page: 948
  ident: Bib0029
  article-title: Direct segmentation-based full quantification for left ventricle via deep multi-task regression learning network
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 10
  start-page: 667
  issue: 5
  year: 1999
  end-page: 675
  ident: Bib0092
  article-title: Stress functional MRI: Detection of ischemic heart disease and myocardial viability
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 11
  start-page: 346
  issue: 2
  year: 2021
  ident: Bib0113
  article-title: Fast and automated segmentation for the three-directional multi-slice cine myocardial velocity mapping
  publication-title: Diagnostics
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: Bib0059
  article-title: A survey on deep learning in medical image analysis
  publication-title: Medical Image Analysis
– volume: 33
  start-page: 88
  year: 2017
  end-page: 95
  ident: Bib0004
  article-title: Simultaneous left and right ventricle segmentation using topology preserving level sets
  publication-title: Biomedical Signal Processing and Control
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 9
  ident: Bib0106
  article-title: Left ventricle: Fully automated segmentation based on spatiotemporal continuity and myocardium information in cine cardiac magnetic resonance imaging (LV-FAST)
  publication-title: BioMed Research International
– volume: 117
  start-page: 990
  issue: 9
  year: 2013
  end-page: 1003
  ident: Bib0115
  article-title: Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model
  publication-title: Computer Vision and Image Understanding
– volume: 109
  start-page: 290
  year: 2019
  end-page: 302
  ident: Bib0100
  article-title: RIANet: Recurrent interleaved attention network for cardiac MRI segmentation
  publication-title: Computers in Biology and Medicine
– volume: 127
  start-page: 991
  issue: 3
  year: 2016
  end-page: 1002
  ident: Bib0079
  article-title: Active contour model and nonlinear shape priors with application to left ventricle segmentation in cardiac MR images
  publication-title: Optik
– year: 2014
  ident: Bib0121
  article-title: Automatic left ventricle segmentation based on multiatlas registration in 4D CT images
  publication-title: Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI’14)
– volume: 8
  start-page: 1
  issue: 1
  year: 2014
  end-page: 11
  ident: Bib0025
  article-title: AnnularCut: A graph-cut design for left ventricle segmentation from magnetic resonance images
  publication-title: IET Image Processing
– volume: 37
  start-page: 2137
  issue: 9
  year: 2018
  end-page: 2148
  ident: Bib0128
  article-title: 3-D consistent and robust segmentation of cardiac images by deep learning with spatial propagation
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 1747
  year: 2017
  end-page: 1751
  ident: Bib0088
  article-title: Fast and accurate segmentation of the LV in MR volumes using a deformable model with dynamic programming
  publication-title: Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP’17)
– start-page: 55
  year: 2021
  end-page: 62
  ident: Bib0048
  article-title: Three-dimensional embedded attentive RNN (3D-EAR) segmentor for left ventricle delineation from myocardial velocity mapping
  publication-title: Functional Imaging and Modeling of the Heart
– volume: 11
  start-page: 50
  issue: 1
  year: 2009
  ident: Bib0033
  article-title: Radial dyssynchrony assessed by cardiovascular magnetic resonance in relation to left ventricular function, myocardial scarring and QRS duration in patients with heart failure
  publication-title: Journal of Cardiovascular Magnetic Resonance
– volume: 31
  start-page: 575
  issue: 4
  year: 2013
  end-page: 584
  ident: Bib0038
  article-title: Hybrid segmentation of left ventricle in cardiac MRI using Gaussian-mixture model and region restricted dynamic programming
  publication-title: Magnetic Resonance Imaging
– volume: 71
  start-page: 102037
  year: 2021
  ident: Bib0116
  article-title: Super-resolution of cardiac MR cine imaging using conditional GANs and unsupervised transfer learning
  publication-title: Medical Image Analysis
– volume: 48
  start-page: 95
  year: 2018
  end-page: 106
  ident: Bib0103
  article-title: \( \Omega \) -Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks
  publication-title: Medical Image Analysis
– start-page: 1
  year: 2017
  end-page: 6
  ident: Bib0022
  article-title: Automatic myocardial segmentation by using a deep learning network in cardiac MRI
  publication-title: Proceedings of the 2017 XLIII Latin American Computer Conference (CLEI’17).
– volume: 35
  start-page: 845
  issue: 3
  year: 2016
  end-page: 859
  ident: Bib0002
  article-title: An algorithm for the segmentation of highly abnormal hearts using a generic statistical shape model
  publication-title: IEEE Transactions on Medical Imaging
– volume: 29
  start-page: 155
  issue: 2
  year: 2016
  end-page: 195
  ident: Bib0076
  article-title: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging
  publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine
– volume: 40
  start-page: 1683
  issue: 7
  year: 2018
  end-page: 1696
  ident: Bib0046
  article-title: Multi-atlas segmentation using partially annotated data: Methods and annotation strategies
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 3118
  year: 2014
  end-page: 3125
  ident: Bib0072
  article-title: Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference
  publication-title: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 16
  ident: Bib0095
  article-title: Segmentation of left and right ventricles in cardiac MRI using active contours
  publication-title: Computational and Mathematical Methods in Medicine
– start-page: 1
  year: 2015
  end-page: 6
  ident: Bib0105
  article-title: Automatic left ventricle segmentation in cardiac MRI via level set and fuzzy C-means
  publication-title: Proceedings of the 2015 2nd International Conference on Recent Advances in Engineering Computational Sciences (RAECS’15)
– start-page: 1
  year: 2021
  ident: Bib0019
  article-title: JAS-GAN: Generative adversarial network based joint atrium and scar segmentation on unbalanced atrial targets
  publication-title: IEEE Journal of Biomedical and Health Informatics
– start-page: 3110
  year: 2017
  end-page: 3114
  ident: Bib0101
  article-title: A joint multi-scale convolutional network for fully automatic segmentation of the left ventricle
  publication-title: Proceedings of the IEEE International Conference on Image Processing (ICIP’17)
– volume: 18
  start-page: 50
  issue: 1
  year: 2014
  end-page: 62
  ident: Bib0096
  article-title: A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images
  publication-title: Medical Image Analysis
– volume: 8
  start-page: 151817
  year: 2020
  end-page: 151828
  ident: Bib0062
  article-title: Exploring uncertainty measures in Bayesian deep attentive neural networks for prostate zonal segmentation
  publication-title: IEEE Access
– volume: 124
  start-page: 58
  year: 2016
  end-page: 66
  ident: Bib0081
  article-title: Detecting left ventricular impaired relaxation in cardiac MRI using moving mesh correspondences
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 57
  start-page: 187
  year: 2015
  end-page: 200
  ident: Bib0014
  article-title: Mathematical model in left ventricle segmentation
  publication-title: Computers in Biology and Medicine
– volume: 57
  start-page: 905
  issue: 4
  year: 2010
  end-page: 913
  ident: Bib0050
  article-title: Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 40
  start-page: 429
  issue: 4
  year: 2011
  end-page: 455
  ident: Bib0024
  article-title: Performance divergence with data discrepancy: A review
  publication-title: Artificial Intelligence Review
– volume: 55
  start-page: 1563
  issue: 9
  year: 2017
  end-page: 1577
  ident: Bib0124
  article-title: Automatic segmentation of left ventricle cavity from short-axis cardiac magnetic resonance images
  publication-title: Medical & Biological Engineering & Computing
– volume: 26
  start-page: 721
  issue: 4
  year: 2013
  end-page: 730
  ident: Bib0064
  article-title: Cardiac image segmentation from cine cardiac MRI using graph cuts and shape priors
  publication-title: Journal of Digital Imaging
– volume: 70
  start-page: 34
  issue: 1
  year: 1992
  end-page: 40
  ident: Bib0077
  article-title: Magnetic resonance imaging during dobutamine stress in coronary artery disease
  publication-title: American Journal of Cardiology
– volume: 9
  start-page: 1
  issue: 12
  year: 2014
  end-page: 17
  ident: Bib0037
  article-title: Automatic segmentation of the left ventricle in cardiac MRI using local binary fitting model and dynamic programming techniques
  publication-title: PLoS ONE
– volume: 347
  start-page: 139
  year: 2019
  end-page: 148
  ident: Bib0039
  article-title: Automatic segmentation of left ventricle from cardiac MRI via deep learning and region constrained dynamic programming
  publication-title: Neurocomputing
– volume: 7
  start-page: 359
  issue: 3
  year: 1998
  end-page: 369
  ident: Bib0117
  article-title: Snakes, shapes, and gradient vector flow
  publication-title: IEEE Transactions on Image Processing
– volume: 11
  start-page: 1951
  issue: 11
  year: 2016
  end-page: 1964
  ident: Bib0063
  article-title: An SPCNN-GVF-based approach for the automatic segmentation of left ventricle in cardiac cine MR images
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– ident: e_1_3_2_4_2
  doi: 10.1016/j.media.2007.12.003
– ident: e_1_3_2_36_2
  doi: 10.1007/s11517-019-01952-9
– ident: e_1_3_2_127_2
  doi: 10.1049/iet-cvi.2016.0482
– ident: e_1_3_2_53_2
  doi: 10.1109/TIP.2010.2103950
– ident: e_1_3_2_76_2
  doi: 10.1109/TMI.2010.2086465
– ident: e_1_3_2_94_2
  doi: 10.1016/j.media.2017.04.004
– ident: e_1_3_2_8_2
  doi: 10.1016/j.media.2014.09.005
– ident: e_1_3_2_55_2
  doi: 10.1109/TIP.2010.2069690
– ident: e_1_3_2_22_2
  doi: 10.1016/j.media.2011.01.002
– ident: e_1_3_2_58_2
  doi: 10.1016/j.mri.2019.08.004
– ident: e_1_3_2_48_2
  doi: 10.1109/ISACV.2018.8354039
– ident: e_1_3_2_131_2
  doi: 10.1109/TMI.2010.2047112
– ident: e_1_3_2_83_2
  doi: 10.1109/TBME.2010.2048752
– ident: e_1_3_2_108_2
  doi: 10.1002/mp.13245
– ident: e_1_3_2_64_2
  doi: 10.1007/s11548-016-1429-9
– ident: e_1_3_2_3_2
  doi: 10.1109/TMI.2015.2497906
– ident: e_1_3_2_133_2
  doi: 10.1109/ISBI.2016.7493206
– ident: e_1_3_2_35_2
  doi: 10.1038/nrcardio.2014.165
– ident: e_1_3_2_100_2
  doi: 10.1148/radiol.2018180513
– ident: e_1_3_2_15_2
  doi: 10.1016/j.compbiomed.2014.12.009
– ident: e_1_3_2_132_2
  doi: 10.1109/JBHI.2018.2865450
– ident: e_1_3_2_32_2
  doi: 10.1109/ACCESS.2017.2789179
– ident: e_1_3_2_77_2
  doi: 10.1007/s10334-015-0521-4
– ident: e_1_3_2_128_2
  doi: 10.1109/ICPR.2018.8545390
– ident: e_1_3_2_79_2
  doi: 10.1016/j.media.2010.12.004
– ident: e_1_3_2_44_2
  doi: 10.1109/ICCKE.2013.6682837
– ident: e_1_3_2_51_2
  doi: 10.1109/TBME.2009.2014545
– ident: e_1_3_2_93_2
  doi: 10.1002/(SICI)1522-2586(199911)10:5<667::AID-JMRI9>3.0.CO;2-8
– ident: e_1_3_2_17_2
  doi: 10.1148/rg.311105049
– ident: e_1_3_2_42_2
  doi: 10.1007/BF00133570
– ident: e_1_3_2_118_2
  doi: 10.1109/83.661186
– ident: e_1_3_2_7_2
  doi: 10.1016/j.media.2011.05.009
– ident: e_1_3_2_60_2
  doi: 10.1016/j.media.2017.07.005
– ident: e_1_3_2_21_2
  doi: 10.1049/joe.2018.8302
– ident: e_1_3_2_110_2
  doi: 10.1161/01.CIR.76.1.44
– ident: e_1_3_2_11_2
  doi: 10.1145/3167132.3167168
– ident: e_1_3_2_117_2
  doi: 10.1016/j.media.2021.102037
– ident: e_1_3_2_9_2
  doi: 10.1109/TMI.2013.2256922
– ident: e_1_3_2_65_2
  doi: 10.1007/s10278-012-9548-5
– ident: e_1_3_2_115_2
  doi: 10.3389/fphys.2021.709230
– ident: e_1_3_2_46_2
  doi: 10.1016/j.media.2018.10.004
– ident: e_1_3_2_68_2
  doi: 10.1017/9781107706958
– volume-title: Human Anatomy (6th ed., media update ed.)
  year: 2012
  ident: e_1_3_2_67_2
– ident: e_1_3_2_70_2
  doi: 10.54294/c3nv9t
– ident: e_1_3_2_74_2
  doi: 10.1016/j.media.2016.05.009
– ident: e_1_3_2_45_2
  doi: 10.1016/j.mri.2018.04.011
– ident: e_1_3_2_72_2
  doi: 10.1109/ICIP.2013.6738143
– ident: e_1_3_2_27_2
  doi: 10.1109/JSEN.2017.2736641
– ident: e_1_3_2_106_2
  doi: 10.1109/RAECS.2015.7453332
– ident: e_1_3_2_112_2
  doi: 10.1016/j.cviu.2012.11.012
– ident: e_1_3_2_107_2
  doi: 10.1155/2015/573956
– ident: e_1_3_2_33_2
  doi: 10.1016/j.media.2012.10.005
– ident: e_1_3_2_103_2
  doi: 10.1155/2015/970357
– ident: e_1_3_2_26_2
  doi: 10.1049/iet-ipr.2013.0088
– ident: e_1_3_2_6_2
  doi: 10.1016/j.media.2016.01.005
– ident: e_1_3_2_56_2
  doi: 10.1016/j.compbiomed.2020.103728
– ident: e_1_3_2_120_2
  doi: 10.1109/ISBI.2018.8363620
– ident: e_1_3_2_81_2
  doi: 10.1109/TMI.2005.843740
– ident: e_1_3_2_24_2
  doi: 10.1016/j.cmpb.2018.12.002
– ident: e_1_3_2_91_2
  doi: 10.1109/SNAMS.2018.8554962
– ident: e_1_3_2_130_2
  doi: 10.1260/2040-2295.4.3.371
– ident: e_1_3_2_16_2
  doi: 10.1109/TMI.2016.2553153
– volume-title: The Top 10 Causes of Death
  year: 2019
  ident: e_1_3_2_113_2
– ident: e_1_3_2_90_2
  doi: 10.1016/j.cmpb.2017.10.028
– ident: e_1_3_2_29_2
  doi: 10.1007/s10558-009-9091-2
– ident: e_1_3_2_86_2
  doi: 10.1016/j.bspc.2018.04.008
– ident: e_1_3_2_14_2
  doi: 10.1016/j.jchf.2012.10.002
– ident: e_1_3_2_75_2
  doi: 10.1093/oxfordjournals.eurheartj.a060113
– ident: e_1_3_2_18_2
  doi: 10.1109/83.902291
– ident: e_1_3_2_88_2
  doi: 10.1016/j.hfc.2018.12.008
– ident: e_1_3_2_116_2
  doi: 10.1016/j.cviu.2012.12.008
– start-page: 561
  volume-title: Medical Image Computing and Computer Assisted Intervention—MICCAI 2018
  year: 2018
  ident: e_1_3_2_69_2
– ident: e_1_3_2_38_2
  doi: 10.1371/journal.pone.0114760
– ident: e_1_3_2_43_2
  doi: 10.1109/TBME.2011.2174235
– ident: e_1_3_2_39_2
  doi: 10.1016/j.mri.2012.10.004
– start-page: 171
  volume-title: Information Processing in Medical Imaging
  year: 2011
  ident: e_1_3_2_71_2
  doi: 10.1007/978-3-642-22092-0_15
– ident: e_1_3_2_19_2
  doi: 10.1109/BIBM.2018.8621552
– ident: e_1_3_2_95_2
  doi: 10.1016/j.mri.2021.02.003
– ident: e_1_3_2_125_2
  doi: 10.1007/s11517-017-1614-1
– ident: e_1_3_2_114_2
  doi: 10.3390/diagnostics11020346
– ident: e_1_3_2_59_2
  doi: 10.1016/j.jcmg.2019.06.009
– ident: e_1_3_2_28_2
  doi: 10.1016/j.jvcir.2015.10.016
– ident: e_1_3_2_40_2
  doi: 10.1016/j.neucom.2019.02.008
– ident: e_1_3_2_105_2
  doi: 10.1016/j.jacr.2016.10.009
– ident: e_1_3_2_98_2
  doi: 10.1016/j.media.2013.09.001
– ident: e_1_3_2_123_2
  doi: 10.1016/j.media.2018.07.009
– start-page: 1
  year: 2021
  ident: e_1_3_2_20_2
  article-title: JAS-GAN: Generative adversarial network based joint atrium and scar segmentation on unbalanced atrial targets
  publication-title: IEEE Journal of Biomedical and Health Informatics
– ident: e_1_3_2_52_2
  doi: 10.1109/EMBC.2018.8513140
– ident: e_1_3_2_66_2
  doi: 10.1007/s10278-013-9573-z
– ident: e_1_3_2_80_2
  doi: 10.1016/j.ijleo.2015.10.162
– ident: e_1_3_2_101_2
  doi: 10.1016/j.compbiomed.2019.04.042
– ident: e_1_3_2_73_2
  doi: 10.1109/CVPR.2014.399
– ident: e_1_3_2_78_2
  doi: 10.1016/0002-9149(92)91386-I
– ident: e_1_3_2_119_2
  doi: 10.1016/j.mri.2017.01.011
– ident: e_1_3_2_31_2
  doi: 10.1109/JTEHM.2019.2900628
– ident: e_1_3_2_2_2
  doi: 10.1049/iet-ipr.2012.0512
– ident: e_1_3_2_23_2
  doi: 10.1109/CLEI.2017.8226420
– ident: e_1_3_2_5_2
  doi: 10.1016/j.bspc.2016.11.002
– ident: e_1_3_2_63_2
  doi: 10.1109/ACCESS.2020.3017168
– ident: e_1_3_2_96_2
  doi: 10.1155/2017/8350680
– ident: e_1_3_2_97_2
  doi: 10.1016/j.media.2013.09.001
– start-page: 55
  volume-title: Functional Imaging and Modeling of the Heart
  year: 2021
  ident: e_1_3_2_49_2
  doi: 10.1007/978-3-030-78710-3_6
– ident: e_1_3_2_104_2
  doi: 10.1016/j.media.2018.05.008
– ident: e_1_3_2_10_2
  doi: 10.1161/CIR.0000000000000659
– ident: e_1_3_2_54_2
  doi: 10.1109/tip.2008.2002304
– year: 2009
  ident: e_1_3_2_85_2
  article-title: Evaluation framework for algorithms segmenting short axis cardiac MRI. In Proceedings of the MICCAI 2009 Workshop: Cardiac MR left ventricle segmentation challenge.
  publication-title: http://hdl.handle.net/10380/3070
– ident: e_1_3_2_34_2
  doi: 10.1186/1532-429X-11-50
– ident: e_1_3_2_61_2
  doi: 10.1016/j.acra.2012.02.011
– ident: e_1_3_2_129_2
  doi: 10.1109/TMI.2018.2820742
– start-page: 234
  volume-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015
  year: 2015
  ident: e_1_3_2_87_2
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_3_2_57_2
  doi: 10.1109/TCYB.2017.2778799
– ident: e_1_3_2_41_2
  doi: 10.1117/1.JEI.21.1.010901
– ident: e_1_3_2_89_2
  doi: 10.1109/ICIP.2017.8296581
– ident: e_1_3_2_121_2
  doi: 10.1016/j.future.2020.02.005
– ident: e_1_3_2_62_2
  doi: 10.1016/j.mri.2015.12.027
– ident: e_1_3_2_50_2
  doi: 10.1002/jmri.20230
– ident: e_1_3_2_102_2
  doi: 10.1109/ICIP.2017.8296855
– ident: e_1_3_2_47_2
  doi: 10.1109/TPAMI.2017.2711020
– ident: e_1_3_2_13_2
  doi: 10.1016/S0140-6736(86)90837-8
– ident: e_1_3_2_30_2
  doi: 10.1109/JBHI.2018.2879188
– ident: e_1_3_2_25_2
  doi: 10.1007/s10462-011-9289-8
– ident: e_1_3_2_92_2
  doi: 10.1016/j.media.2010.05.009
– ident: e_1_3_2_109_2
  doi: 10.1049/iet-ipr.2016.0410
– ident: e_1_3_2_99_2
  doi: 10.1016/j.media.2017.04.002
– ident: e_1_3_2_126_2
  doi: 10.1049/iet-cvi.2014.0450
– ident: e_1_3_2_82_2
  doi: 10.1016/j.cmpb.2015.10.015
– ident: e_1_3_2_111_2
  doi: 10.1161/01.CIR.76.1.44
– ident: e_1_3_2_84_2
  doi: 10.1016/j.neucom.2014.07.044
– ident: e_1_3_2_124_2
  doi: 10.1155/2020/8899957
– ident: e_1_3_2_37_2
  doi: 10.1049/iet-ipr.2015.0408
– ident: e_1_3_2_12_2
  doi: 10.1109/TMI.2018.2837502
– ident: e_1_3_2_122_2
  doi: 10.1109/ISBI.2014.6867896
SSID ssj0002416
Score 2.4364321
Snippet Left ventricle segmentation in short-axis cardiac magnetic resonance images is important to diagnose heart disease. However, repetitive manual segmentation of...
SourceID unpaywall
crossref
acm
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Applied computing
Artificial intelligence
Computing methodologies
General and reference
Image segmentation
Imaging
Surveys and overviews
SubjectTermsDisplay Applied computing -- Imaging
Computing methodologies -- Artificial intelligence
Computing methodologies -- Image segmentation
General and reference -- Surveys and overviews
Title Left Ventricle Segmentation in Cardiac MR: A Systematic Mapping of the Past Decade
URI https://dl.acm.org/doi/10.1145/3517190
https://dl.acm.org/doi/pdf/10.1145/3517190
UnpaywallVersion publishedVersion
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Business Source Ultimate
  customDbUrl:
  eissn: 1557-7341
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002416
  issn: 0360-0300
  databaseCode: AKVCP
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1557-7341
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002416
  issn: 0360-0300
  databaseCode: ADMLS
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT8IwFG0UHvRFFDXiB6mJ8W3IPrpuvhGUEBVCQAg-kbbriHEMIiNGf723W0HUmPiwJkvOmqW97b3b7TkXoQthwYbHOHym-tA4jhAGo5JD4_MgIMK1U7mmVttt9p27IRlqmRzFhQki6GeSpvDVmp4FoRa0JVc2MSm4r02Ud1UyKYfy_Xan9pQlI6sGWGvKfiSEGhT25owhu_6kckBi8s0BbS3iGXt_Y1G05lUahaw80TwVI1SHSV4qi4RXxMcPqcb_vfAu2tHBJa5l1rCHNmRcRIVl4Qas1_E-6j7IMMED9WNXAXFPjieagxTj5xjXU7MRuNW9xjXcW4k94xZTcg5jPA0xBI64w-YJvpHqiP0B6jduH-tNQxdXMJhFaWK4jDCIhYhgYUACz3MsuPUJF77tCVdILiyL-a5PIUKSjgdzJinzue0wQeBi9iHKxdNYHiEcUtc0Q9vjVEqHex5nnh-aVSZkILlj8hIqwhCNZpl8xkgPSwldLudhJLQeuSqLEY0yrjT5AuIVcNnHL8j5aiL_whz_A3OCti1Fb6ia4JtOUS55XcgzCDoSXkb52v2g3ilrq_sEd5DQWg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26PeiL06k4v4ggvnWuH2la38Z0DHFjbE7mU0nSdIhdN1yH6K_3ps3mVIQ9NFA4DSW5yb3tzTkXoUthwYbHOHym-tA4jhAGo5JD4_MwJMK1M7mmdsdtDZz7IRlqmRzFhQlj6GecpfDVmp6GkRa0Jdc2MSm4r01UdFUyqYCKg063_pwnI2sGWGvGfiSEGhT25pwhu_qkckBi_MMBbc2TKft4Z3G84lWapbw80SwTI1SHSV6r85RXxecvqcb1XngX7ejgEtdza9hDGzIpo9KicAPW63gf9R5klOIn9WNXAXFfjsaag5TglwQ3MrMRuN27wXXcX4o94zZTcg4jPIkwBI64y2YpvpXqiP0BGjTvHhstQxdXMJhFaWq4jDCIhYhgUUhCz3MsuPUJF77tCVdILiyL-a5PIUKSjgdzJinzue0wQeBi9iEqJJNEHiEcUdc0I9vjVEqHex5nnh-ZNSZkKLlj8goqwxAF01w-I9DDUkFXi3kIhNYjV2Ux4iDnSpNvIF4CF338gVwsJ_I_zPEamBO0bSl6Q80E33SKCunbXJ5B0JHyc21tX_yAzsI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Left+Ventricle+Segmentation+in+Cardiac+MR%3A+A+Systematic+Mapping+of+the+Past+Decade&rft.jtitle=ACM+computing+surveys&rft.au=Ribeiro%2C+Matheus+A.+O.&rft.au=Nunes%2C+F%C3%A1tima+L.+S.&rft.date=2022-01-31&rft.pub=ACM&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=54&rft.issue=11s&rft.spage=1&rft.epage=38&rft_id=info:doi/10.1145%2F3517190&rft.externalDocID=3517190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon