Left Ventricle Segmentation in Cardiac MR: A Systematic Mapping of the Past Decade
Left ventricle segmentation in short-axis cardiac magnetic resonance images is important to diagnose heart disease. However, repetitive manual segmentation of these images requires considerable human effort and can decrease diagnostic accuracy. In recent years, several fully and semi-automatic appro...
Saved in:
Published in | ACM computing surveys Vol. 54; no. 11s; pp. 1 - 38 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
ACM
31.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-0300 1557-7341 1557-7341 |
DOI | 10.1145/3517190 |
Cover
Abstract | Left ventricle segmentation in short-axis cardiac magnetic resonance images is important to diagnose heart disease. However, repetitive manual segmentation of these images requires considerable human effort and can decrease diagnostic accuracy. In recent years, several fully and semi-automatic approaches have been proposed, mainly using image-based, atlas, graph, deformable model, and artificial intelligence methods. This article presents a systematic mapping on left ventricle segmentation, considering 74 studies published in the past decade. The main contributions of this review are definition of the main segmentation challenges in these images; proposal of a new schematization, dividing the segmentation process into stages; categorization and analysis of the segmentation methods, including hybrid combinations; and analysis of the evaluation process, metrics, and databases. The performance of the methods in the most used public database is assessed, and the main limitations, weaknesses, and strengths of each method category are presented. Finally, trends, challenges, and research opportunities are discussed. The analysis indicates that methods from all categories can achieve good performance, and hybrid methods combining deep learning and deformable models obtain the best results. Methods still fail in specific slices, segment wrong regions, and produce anatomically impossible segmentations. |
---|---|
AbstractList | Left ventricle segmentation in short-axis cardiac magnetic resonance images is important to diagnose heart disease. However, repetitive manual segmentation of these images requires considerable human effort and can decrease diagnostic accuracy. In recent years, several fully and semi-automatic approaches have been proposed, mainly using image-based, atlas, graph, deformable model, and artificial intelligence methods. This article presents a systematic mapping on left ventricle segmentation, considering 74 studies published in the past decade. The main contributions of this review are definition of the main segmentation challenges in these images; proposal of a new schematization, dividing the segmentation process into stages; categorization and analysis of the segmentation methods, including hybrid combinations; and analysis of the evaluation process, metrics, and databases. The performance of the methods in the most used public database is assessed, and the main limitations, weaknesses, and strengths of each method category are presented. Finally, trends, challenges, and research opportunities are discussed. The analysis indicates that methods from all categories can achieve good performance, and hybrid methods combining deep learning and deformable models obtain the best results. Methods still fail in specific slices, segment wrong regions, and produce anatomically impossible segmentations. |
ArticleNumber | 241 |
Author | Ribeiro, Matheus A. O. Nunes, Fátima L. S. |
Author_xml | – sequence: 1 givenname: Matheus A. O. orcidid: 0000-0002-9133-0683 surname: Ribeiro fullname: Ribeiro, Matheus A. O. email: matheus.alberto.ribeiro@usp.br organization: Universidade de São Paulo, São Paulo, Brazil – sequence: 2 givenname: Fátima L. S. orcidid: 0000-0003-0040-0752 surname: Nunes fullname: Nunes, Fátima L. S. email: fatima.nunes@usp.br organization: Universidade de São Paulo, São Paulo, Brazil |
BookMark | eNp1kM1LxDAQxYOs4LqKd0-56aWaNF-tt2X9hBVlV72W2TRdI21akojsf2-lqwfRwzC8eT8ezNtHI9c6g9ARJWeUcnHOBFU0JztoTIVQiWKcjtCYMEkSwgjZQ_shvBFCUk7lGC3mpor4xbjora4NXpp10wuItnXYOjwDX1rQ-H5xgad4uQnRNL3ZH6DrrFvjtsLx1eBHCBFfGg2lOUC7FdTBHG73BD1fXz3NbpP5w83dbDpPIFUqJhIESM6FhqoUZZbxtJe5WOmcZVpqs9JpCrnMFRHS8EwyZhTkK8ZBi36ATdDpkPvuOth8QF0XnbcN-E1BSfHVRbHtokeTAdW-DcGbqtB2-DF6sPUf_Mkv_v_k44EE3fxA3-YnF3d1Iw |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2022_106889 crossref_primary_10_1016_j_neucom_2024_129326 crossref_primary_10_5753_jbcs_2025_4443 crossref_primary_10_3390_math11143245 crossref_primary_10_1016_j_jbi_2023_104366 crossref_primary_10_3233_THC_240062 crossref_primary_10_31083_j_rcm2512447 |
Cites_doi | 10.3389/fphys.2021.709230 10.1260/2040-2295.4.3.371 10.1016/j.media.2007.12.003 10.1007/s11517-019-01952-9 10.1049/iet-cvi.2016.0482 10.1109/TIP.2010.2103950 10.1109/TMI.2010.2086465 10.1016/j.media.2017.04.004 10.1016/j.media.2014.09.005 10.1109/TIP.2010.2069690 10.1016/j.media.2011.01.002 10.1016/j.mri.2019.08.004 10.1109/ISACV.2018.8354039 10.1109/TMI.2010.2047112 10.1109/TBME.2010.2048752 10.1002/mp.13245 10.1007/s11548-016-1429-9 10.1109/TMI.2015.2497906 10.1109/ISBI.2016.7493206 10.1038/nrcardio.2014.165 10.1148/radiol.2018180513 10.1016/j.compbiomed.2014.12.009 10.1109/JBHI.2018.2865450 10.1109/ACCESS.2017.2789179 10.1007/s10334-015-0521-4 10.1109/ICPR.2018.8545390 10.1016/j.media.2010.12.004 10.1109/ICCKE.2013.6682837 10.1109/TBME.2009.2014545 10.1002/(SICI)1522-2586(199911)10:5<667::AID-JMRI9>3.0.CO;2-8 10.1148/rg.311105049 10.1007/BF00133570 10.1109/83.661186 10.1016/j.media.2011.05.009 10.1016/j.media.2017.07.005 10.1049/joe.2018.8302 10.1161/01.CIR.76.1.44 10.1145/3167132.3167168 10.1016/j.media.2021.102037 10.1109/TMI.2013.2256922 10.1007/s10278-012-9548-5 10.1016/j.media.2018.10.004 10.1017/9781107706958 10.54294/c3nv9t 10.1016/j.media.2016.05.009 10.1016/j.mri.2018.04.011 10.1109/ICIP.2013.6738143 10.1109/JSEN.2017.2736641 10.1109/RAECS.2015.7453332 10.1016/j.cviu.2012.11.012 10.1155/2015/573956 10.1016/j.media.2012.10.005 10.1155/2015/970357 10.1049/iet-ipr.2013.0088 10.1016/j.media.2016.01.005 10.1016/j.compbiomed.2020.103728 10.1109/ISBI.2018.8363620 10.1109/TMI.2005.843740 10.1016/j.cmpb.2018.12.002 10.1109/SNAMS.2018.8554962 10.1109/TMI.2016.2553153 10.1016/j.cmpb.2017.10.028 10.1007/s10558-009-9091-2 10.1016/j.bspc.2018.04.008 10.1016/j.jchf.2012.10.002 10.1093/oxfordjournals.eurheartj.a060113 10.1109/83.902291 10.1016/j.hfc.2018.12.008 10.1016/j.cviu.2012.12.008 10.1371/journal.pone.0114760 10.1109/TBME.2011.2174235 10.1016/j.mri.2012.10.004 10.1007/978-3-642-22092-0_15 10.1109/BIBM.2018.8621552 10.1016/j.mri.2021.02.003 10.1007/s11517-017-1614-1 10.3390/diagnostics11020346 10.1016/j.jcmg.2019.06.009 10.1016/j.jvcir.2015.10.016 10.1016/j.neucom.2019.02.008 10.1016/j.jacr.2016.10.009 10.1016/j.media.2013.09.001 10.1016/j.media.2018.07.009 10.1109/EMBC.2018.8513140 10.1007/s10278-013-9573-z 10.1016/j.ijleo.2015.10.162 10.1016/j.compbiomed.2019.04.042 10.1109/CVPR.2014.399 10.1016/0002-9149(92)91386-I 10.1016/j.mri.2017.01.011 10.1109/JTEHM.2019.2900628 10.1049/iet-ipr.2012.0512 10.1109/CLEI.2017.8226420 10.1016/j.bspc.2016.11.002 10.1109/ACCESS.2020.3017168 10.1155/2017/8350680 10.1007/978-3-030-78710-3_6 10.1016/j.media.2018.05.008 10.1161/CIR.0000000000000659 10.1109/tip.2008.2002304 10.1186/1532-429X-11-50 10.1016/j.acra.2012.02.011 10.1109/TMI.2018.2820742 10.1007/978-3-319-24574-4_28 10.1109/TCYB.2017.2778799 10.1117/1.JEI.21.1.010901 10.1109/ICIP.2017.8296581 10.1016/j.future.2020.02.005 10.1016/j.mri.2015.12.027 10.1002/jmri.20230 10.1109/ICIP.2017.8296855 10.1109/TPAMI.2017.2711020 10.1016/S0140-6736(86)90837-8 10.1109/JBHI.2018.2879188 10.1007/s10462-011-9289-8 10.1016/j.media.2010.05.009 10.1049/iet-ipr.2016.0410 10.1016/j.media.2017.04.002 10.1049/iet-cvi.2014.0450 10.1016/j.cmpb.2015.10.015 10.1016/j.neucom.2014.07.044 10.1155/2020/8899957 10.1049/iet-ipr.2015.0408 10.1109/TMI.2018.2837502 10.1109/ISBI.2014.6867896 |
ContentType | Journal Article |
Copyright | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from |
Copyright_xml | – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from |
DBID | AAYXX CITATION ADTOC UNPAY |
DOI | 10.1145/3517190 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1557-7341 |
EndPage | 38 |
ExternalDocumentID | 10.1145/3517190 10_1145_3517190 3517190 |
GrantInformation_xml | – fundername: São Paulo Research Foundation (FAPESP) grantid: 2019/22116-7 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)—Finance Code 001 |
GroupedDBID | --Z -DZ -~X .4S .DC 23M 4.4 5GY 5VS 6J9 85S 8US 8VB AAIKC AAKMM AALFJ AAMNW AAYFX ABPPZ ACGFO ACGOD ACM ACNCT ADBCU ADL ADMLS ADPZR AEBYY AEGXH AEMOZ AENEX AENSD AFWIH AFWXC AGHSJ AHQJS AIAGR AIKLT AKVCP ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BDXCO CCLIF CS3 EBE EBR EBU EDO EMK FEDTE GUFHI HGAVV H~9 IAO ICD IEA IGS IOF K1G LHSKQ N95 P1C P2P PQQKQ QWB RNS ROL RXW TAE TH9 U5U UKR UPT VQA W7O WH7 X6Y XH6 XSW XZL YXB Z5M ZCA ZL0 77I AAYXX AEFXT AEJOY AETEA AKRVB CITATION 41~ 4R4 9M8 AAFWJ ACBNA ADMHC ADTOC ADXHL AFFNX AI. BAAKF EBS EJD HF~ ITC MVM OHT TAF UNPAY VH1 XJT XOL YR5 ZCG |
ID | FETCH-LOGICAL-a277t-6a5a6445cafd5d8842a6495bc938c6cebc22a9697056e48633e7a9b34ac54aca3 |
IEDL.DBID | UNPAY |
ISSN | 0360-0300 1557-7341 |
IngestDate | Tue Aug 19 18:59:36 EDT 2025 Thu Apr 24 22:54:13 EDT 2025 Wed Oct 01 06:05:26 EDT 2025 Fri Feb 21 01:12:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11s |
Keywords | cardiac magnetic resonance imaging Left ventricle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a277t-6a5a6445cafd5d8842a6495bc938c6cebc22a9697056e48633e7a9b34ac54aca3 |
ORCID | 0000-0002-9133-0683 0000-0003-0040-0752 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://dl.acm.org/doi/pdf/10.1145/3517190 |
PageCount | 38 |
ParticipantIDs | unpaywall_primary_10_1145_3517190 crossref_citationtrail_10_1145_3517190 crossref_primary_10_1145_3517190 acm_primary_3517190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-31 |
PublicationDateYYYYMMDD | 2022-01-31 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | ACM computing surveys |
PublicationTitleAbbrev | ACM CSUR |
PublicationYear | 2022 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | (Bib0016) 2011; 31 (Bib0045) 2019; 51 (Bib0084) 2009 (Bib0009) 2019 (Bib0103) 2018; 48 (Bib0038) 2013; 31 (Bib0127) 2018 (Bib0114) 2021; 12 (Bib0019) 2021 (Bib0104) 2017; 14 (Bib0013) 2013; 1 (Bib0124) 2017; 55 (Bib0073) 2017; 35 (Bib0111) 2013; 117 (Bib0008) 2013; 32 (Bib0024) 2011; 40 (Bib0092) 1999; 10 (Bib0087) 2019; 15 (Bib0085) 2018; 44 (Bib0062) 2020; 8 (Bib0034) 2014; 12 (Bib0003) 2008; 12 (Bib0102) 2015; 2015 (Bib0112) 2019 (Bib0044) 2018; 51 (Bib0063) 2016; 11 (Bib0070) 2011 (Bib0125) 2016; 10 (Bib0048) 2021 (Bib0067) 2017 (Bib0035) 2019; 57 (Bib0046) 2018; 40 (Bib0004) 2017; 33 (Bib0094) 2021; 78 (Bib0101) 2017 (Bib0126) 2017; 11 (Bib0098) 2017; 39 (Bib0002) 2016; 35 (Bib0050) 2010; 57 (Bib0107) 2019; 46 (Bib0014) 2015; 57 (Bib0015) 2016; 35 (Bib0026) 2017; 17 (Bib0030) 2019; 7 (Bib0037) 2014; 9 (Bib0054) 2010; 19 (Bib0057) 2020; 66 (Bib0071) 2013 (Bib0106) 2015; 2015 (Bib0017) 2001; 10 (Bib0005) 2016; 30 (Bib0079) 2016; 127 (Bib0113) 2021; 11 (Bib0123) 2020; 2020 (Bib0031) 2018; 6 (Bib0033) 2009; 11 (Bib0043) 2013 (Bib0089) 2018; 154 (Bib0076) 2016; 29 (Bib0066) 2012 (Bib0119) 2018 (Bib0115) 2013; 117 (Bib0023) 2019; 169 (Bib0131) 2019; 23 (Bib0060) 2012; 19 (Bib0064) 2013; 26 (Bib0088) 2017 (Bib0128) 2018; 37 (Bib0122) 2018; 49 (Bib0118) 2017; 38 (Bib0006) 2012; 16 (Bib0078) 2011; 15 (Bib0055) 2020; 120 (Bib0093) 2017; 39 (Bib0022) 2017 (Bib0096) 2014; 18 (Bib0072) 2014 (Bib0091) 2010; 14 (Bib0049) 2005; 21 (Bib0110) 1987; 76 (Bib0077) 1992; 70 (Bib0116) 2021; 71 (Bib0032) 2013; 17 (Bib0068) 2018 (Bib0041) 1988; 1 (Bib0056) 2019; 49 (Bib0129) 2013; 4 (Bib0061) 2016; 34 (Bib0029) 2019; 23 (Bib0108) 2017; 11 (Bib0020) 2018; 2018 (Bib0120) 2020; 107 (Bib0080) 2005; 24 (Bib0117) 1998; 7 (Bib0001) 2014; 8 (Bib0047) 2018 (Bib0010) 2018 (Bib0058) 2019; 12 (Bib0028) 2010; 10 (Bib0042) 2012; 59 (Bib0095) 2017; 2017 (Bib0039) 2019; 347 (Bib0065) 2013; 26 (Bib0069) 2007 (Bib0027) 2016; 34 (Bib0132) 2016 (Bib0090) 2018 (Bib0105) 2015 (Bib0075) 2011; 30 (Bib0040) 2012; 21 (Bib0011) 2018; 37 (Bib0082) 2010; 57 (Bib0081) 2016; 124 (Bib0018) 2018 (Bib0052) 2011; 20 (Bib0059) 2017; 42 (Bib0036) 2016; 10 (Bib0053) 2008; 17 (Bib0099) 2019; 290 (Bib0083) 2015; 149 (Bib0074) 1992; 13 (Bib0109) 1987; 76 (Bib0025) 2014; 8 (Bib0051) 2018 (Bib0012) 1986; 327 (Bib0097) 2014; 18 (Bib0021) 2011; 15 (Bib0100) 2019; 109 (Bib0007) 2015; 19 (Bib0130) 2010; 29 (Bib0086) 2015 (Bib0121) 2014 e_1_3_2_28_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_123_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_127_2 Nambakhsh Mohammad Saleh (e_1_3_2_71_2) 2011 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 Chen Jun (e_1_3_2_20_2) 2021 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_92_2 e_1_3_2_131_2 e_1_3_2_50_2 Kuang Mengmeng (e_1_3_2_49_2) 2021 e_1_3_2_116_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_126_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_122_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_130_2 e_1_3_2_70_2 e_1_3_2_111_2 Radau Perry (e_1_3_2_85_2) 2009 e_1_3_2_119_2 e_1_3_2_26_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 Marieb Elaine Nicpon (e_1_3_2_67_2) 2012 e_1_3_2_125_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_121_2 e_1_3_2_106_2 e_1_3_2_129_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_114_2 e_1_3_2_94_2 e_1_3_2_110_2 e_1_3_2_133_2 Ronneberger Olaf (e_1_3_2_87_2) 2015 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_124_2 e_1_3_2_61_2 e_1_3_2_120_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_109_2 e_1_3_2_105_2 Organization World Health (e_1_3_2_113_2) 2019 e_1_3_2_128_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_72_2 e_1_3_2_132_2 e_1_3_2_117_2 Mo Yuanhan (e_1_3_2_69_2) 2018 |
References_xml | – volume: 154 start-page: 9 year: 2018 end-page: 23 ident: Bib0089 article-title: Fast segmentation of the left ventricle in cardiac MRI using dynamic programming publication-title: Computer Methods and Programs in Biomedicine – volume: 49 start-page: 60 year: 2018 end-page: 75 ident: Bib0122 article-title: Neural multi-atlas label fusion: Application to cardiac MR images publication-title: Medical Image Analysis – volume: 15 start-page: 321 issue: 2 year: 2019 end-page: 331 ident: Bib0087 article-title: Biomarkers and imaging: Complementary or subtractive? publication-title: Heart Failure Clinics – volume: 59 start-page: 445 issue: 2 year: 2012 end-page: 455 ident: Bib0042 article-title: Accurate automatic analysis of cardiac cine images publication-title: IEEE Transactions on Biomedical Engineering – volume: 1 start-page: 1 issue: 1 year: 2013 end-page: 20 ident: Bib0013 article-title: Heart failure publication-title: JACC: Heart Failure – volume: 6 start-page: 3828 year: 2018 end-page: 3838 ident: Bib0031 article-title: Deep regression segmentation for cardiac bi-ventricle MR images publication-title: IEEE Access – volume: 51 start-page: 21 year: 2019 end-page: 45 ident: Bib0045 article-title: Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers publication-title: Medical Image Analysis – volume: 29 start-page: 1612 issue: 9 year: 2010 end-page: 1625 ident: Bib0130 article-title: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI publication-title: IEEE Transactions on Medical Imaging – volume: 17 start-page: 5971 issue: 18 year: 2017 end-page: 5981 ident: Bib0026 article-title: Towards left ventricle segmentation from magnetic resonance images publication-title: IEEE Sensors Journal – volume: 10 start-page: 710 issue: 10 year: 2016 end-page: 716 ident: Bib0036 article-title: Multilabel statistical shape prior for image segmentation publication-title: IET Image Processing – volume: 17 start-page: 1940 issue: 10 year: 2008 end-page: 1949 ident: Bib0053 article-title: Minimization of region-scalable fitting energy for image segmentation publication-title: IEEE Transactions on Image Processing – volume: 14 start-page: 191 issue: 2 year: 2017 end-page: 197 ident: Bib0104 article-title: Tired in the reading room: The influence of fatigue in radiology publication-title: Journal of the American College of Radiology – start-page: 223 year: 2013 end-page: 228 ident: Bib0043 article-title: A new patch-based active contour for segmentation of the myocardium of the left ventricle in cardiac magnetic resonance images publication-title: Proceedings of the International eConference on Computer and Knowledge Engineering (ICCKE’13) – volume: 169 start-page: 37 year: 2019 end-page: 50 ident: Bib0023 article-title: Automatic quantification of the LV function and mass: A deep learning approach for cardiovascular MRI publication-title: Computer Methods and Programs in Biomedicine – volume: 34 start-page: 699 issue: 5 year: 2016 end-page: 706 ident: Bib0061 article-title: Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI publication-title: Magnetic Resonance Imaging – volume: 34 start-page: 89 year: 2016 end-page: 102 ident: Bib0027 article-title: Pathological liver segmentation using stochastic resonance and cellular automata publication-title: Journal of Visual Communication and Image Representation – volume: 12 year: 2021 ident: Bib0114 article-title: Recent advances in fibrosis and scar segmentation from cardiac MRI: A state-of-the-art review and future perspectives publication-title: Frontiers in Physiology doi: 10.3389/fphys.2021.709230 – volume: 14 start-page: 738 issue: 6 year: 2010 end-page: 749 ident: Bib0091 article-title: A dynamic elastic model for segmentation and tracking of the heart in MR image sequences publication-title: Medical Image Analysis – volume: 39 start-page: 78 year: 2017 end-page: 86 ident: Bib0098 article-title: Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences publication-title: Medical Image Analysis – volume: 38 start-page: 202 year: 2017 end-page: 213 ident: Bib0118 article-title: Left ventricle segmentation via two-layer level sets with circular shape constraint publication-title: Magnetic Resonance Imaging – year: 2019 ident: Bib0009 article-title: Heart disease and stroke statistics—2019 update: A report from the American Heart Association publication-title: Circulation – volume: 10 start-page: 266 issue: 2 year: 2001 end-page: 277 ident: Bib0017 article-title: Active contours without edges publication-title: IEEE Transactions on Image Processing – volume: 44 start-page: 48 year: 2018 end-page: 57 ident: Bib0085 article-title: Myocardial segmentation in cardiac magnetic resonance images using fully convolutional neural networks publication-title: Biomedical Signal Processing and Control – volume: 12 start-page: 91 issue: 2 year: 2014 end-page: 102 ident: Bib0034 article-title: Pathophysiology and treatment of cardiac amyloidosis publication-title: Nature Reviews Cardiology – year: 2019 ident: Bib0112 publication-title: The Top 10 Causes of Death – volume: 66 start-page: 152 year: 2020 end-page: 164 ident: Bib0057 article-title: A data augmentation approach to train fully convolutional networks for left ventricle segmentation publication-title: Magnetic Resonance Imaging – volume: 51 start-page: 51 year: 2018 end-page: 60 ident: Bib0044 article-title: FoCA: A new framework of coupled geometric active contours for segmentation of 3D cardiac magnetic resonance images publication-title: Magnetic Resonance Imaging – volume: 327 start-page: 307 issue: 8476 year: 1986 end-page: 310 ident: Bib0012 publication-title: Lancet – volume: 8 start-page: 207 issue: 4 year: 2014 end-page: 212 ident: Bib0001 article-title: Greedy framework for optical flow tracking of myocardium contours publication-title: IET Image Processing – volume: 26 start-page: 898 issue: 5 year: 2013 end-page: 908 ident: Bib0065 article-title: Cardiac MRI segmentation using mutual context information from left and right ventricle publication-title: Journal of Digital Imaging – volume: 46 start-page: 180 issue: 1 year: 2019 end-page: 189 ident: Bib0107 article-title: Fully automatic segmentation of 4D MRI for cardiac functional measurements publication-title: Medical Physics – start-page: 234 year: 2015 end-page: 241 ident: Bib0086 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 – volume: 2020 start-page: 1 year: 2020 end-page: 6 ident: Bib0123 article-title: Deep RetinaNet for dynamic left ventricle detection in multiview echocardiography classification publication-title: Scientific Programming – volume: 12 start-page: 335 issue: 3 year: 2008 end-page: 357 ident: Bib0003 article-title: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI publication-title: Medical Image Analysis – volume: 7 start-page: 1 year: 2019 end-page: 10 ident: Bib0030 article-title: Cardiac-DeepIED: Automatic pixel-level deep segmentation for cardiac bi-ventricle using improved end-to-end encoder-decoder network publication-title: IEEE Journal of Translational Engineering in Health and Medicine – volume: 76 start-page: 44 year: 1987 end-page: 51 ident: Bib0110 article-title: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction publication-title: Circulation – start-page: 479 year: 2018 end-page: 483 ident: Bib0119 article-title: Multi-component deformable models coupled with 2D-3D U-Net for automated probabilistic segmentation of cardiac walls and blood publication-title: Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI’18) – year: 2016 ident: Bib0132 article-title: Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks publication-title: Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI’16) – volume: 120 start-page: 103728 year: 2020 ident: Bib0055 article-title: MV-RAN: Multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis publication-title: Computers in Biology and Medicine – volume: 107 start-page: 215 year: 2020 end-page: 228 ident: Bib0120 article-title: Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention publication-title: Future Generation Computer Systems – year: 2012 ident: Bib0066 publication-title: Human Anatomy (6th ed., media update ed.) – volume: 78 start-page: 109 year: 2021 end-page: 118 ident: Bib0094 article-title: Convexity preserving level set for left ventricle segmentation publication-title: Magnetic Resonance Imaging – volume: 18 start-page: 50 issue: 1 year: 2014 end-page: 62 ident: Bib0097 article-title: A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images publication-title: Medical Image Analysis – volume: 30 start-page: 108 year: 2016 end-page: 119 ident: Bib0005 article-title: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI publication-title: Medical Image Analysis – volume: 15 start-page: 283 issue: 3 year: 2011 end-page: 301 ident: Bib0021 article-title: Unsupervised 4D myocardium segmentation with a Markov random field based deformable model publication-title: Medical Image Analysis – volume: 57 start-page: 1213 issue: 6 year: 2019 end-page: 1228 ident: Bib0035 article-title: Image-based clustering and connected component labeling for rapid automated left and right ventricular endocardial volume extraction and segmentation in full cardiac cycle multi-frame MRI images of cardiac patients publication-title: Medical & Biological Engineering & Computing – start-page: 22 year: 2018 end-page: 29 ident: Bib0010 article-title: 3D medical objects processing and retrieval using spherical harmonics: A case study with congestive heart failure MRI exams publication-title: Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC’18) – volume: 117 start-page: 1084 issue: 9 year: 2013 end-page: 1094 ident: Bib0111 article-title: Multiphase segmentation using an implicit dual shape prior: Application to detection of left ventricle in cardiac MRI publication-title: Computer Vision and Image Understanding – volume: 35 start-page: 159 year: 2017 end-page: 171 ident: Bib0073 article-title: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance publication-title: Medical Image Analysis – start-page: 153 year: 2018 end-page: 158 ident: Bib0090 article-title: Automated segmentation on the entire cardiac cycle using a deep learning work-flow publication-title: Proceedings of the 2018 5th International Conference on Social Networks Analysis, Management, and Security (SNAMS’18). – volume: 30 start-page: 461 issue: 2 year: 2011 end-page: 474 ident: Bib0075 article-title: A novel model-based 3D \( {+} \) time left ventricular segmentation technique publication-title: IEEE Transactions on Medical Imaging – volume: 11 start-page: 643 issue: 8 year: 2017 end-page: 649 ident: Bib0126 article-title: Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images publication-title: IET Computer Vision – volume: 19 start-page: 3243 issue: 12 year: 2010 end-page: 3254 ident: Bib0054 article-title: Distance regularized level set evolution and its application to image segmentation publication-title: IEEE Transactions on Image Processing – start-page: 327 year: 2018 end-page: 332 ident: Bib0018 article-title: Optimizing U-Net to segment left ventricle from magnetic resonance imaging publication-title: Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM’18). – year: 2018 ident: Bib0051 article-title: Computational platform based on deep learning for segmenting ventricular endocardium in long-axis cardiac MR imaging publication-title: Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’18) – volume: 4 start-page: 371 issue: 3 year: 2013 end-page: 408 ident: Bib0129 article-title: Challenges and methodologies of fully automatic whole heart segmentation: A review publication-title: Journal of Healthcare Engineering doi: 10.1260/2040-2295.4.3.371 – volume: 149 start-page: 904 year: 2015 end-page: 913 ident: Bib0083 article-title: Feature competition and partial sparse shape modeling for cardiac image sequences segmentation publication-title: Neurocomputing – volume: 16 start-page: 87 issue: 1 year: 2012 end-page: 100 ident: Bib0006 article-title: Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure publication-title: Medical Image Analysis – volume: 20 start-page: 2007 issue: 7 year: 2011 end-page: 2016 ident: Bib0052 article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI publication-title: IEEE Transactions on Image Processing – volume: 49 start-page: 495 issue: 2 year: 2019 end-page: 504 ident: Bib0056 article-title: Estimation of the volume of the left ventricle from MRI images using deep neural networks publication-title: IEEE Transactions on Cybernetics – volume: 57 start-page: 2001 issue: 8 year: 2010 end-page: 2010 ident: Bib0082 article-title: Tracking endocardial motion via multiple model filtering publication-title: IEEE Transactions on Biomedical Engineering – volume: 23 start-page: 1119 issue: 3 year: 2019 end-page: 1128 ident: Bib0131 article-title: Convolutional neural network with shape prior applied to cardiac MRI segmentation publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 39 start-page: 44 year: 2017 end-page: 55 ident: Bib0093 article-title: Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans publication-title: Medical Image Analysis – year: 2009 ident: Bib0084 article-title: Evaluation framework for algorithms segmenting short axis cardiac MRI. In Proceedings of the MICCAI 2009 Workshop: Cardiac MR left ventricle segmentation challenge. publication-title: http://hdl.handle.net/10380/3070 – volume: 37 start-page: 2514 issue: 11 year: 2018 end-page: 2525 ident: Bib0011 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? publication-title: IEEE Transactions on Medical Imaging – year: 2017 ident: Bib0067 publication-title: MRI from Picture to Proton (3rd ed.) – start-page: 171 year: 2011 end-page: 183 ident: Bib0070 article-title: A convex max-flow segmentation of LV using subject-specific distributions on cardiac MRI publication-title: Information Processing in Medical Imaging – volume: 31 start-page: 239 issue: 1 year: 2011 end-page: 259 ident: Bib0016 article-title: Evaluation of left ventricular diastolic function with cardiac MR imaging publication-title: RadioGraphics – volume: 15 start-page: 169 issue: 2 year: 2011 end-page: 184 ident: Bib0078 article-title: A review of segmentation methods in short axis cardiac MR images publication-title: Medical Image Analysis – volume: 2015 start-page: 1 year: 2015 end-page: 12 ident: Bib0102 article-title: Validation and development of a new automatic algorithm for time-resolved segmentation of the left ventricle in magnetic resonance imaging publication-title: BioMed Research International – volume: 21 start-page: 1 issue: 1 year: 2012 end-page: 17 ident: Bib0040 article-title: Heart chambers and whole heart segmentation techniques: Review publication-title: Journal of Electronic Imaging – start-page: 561 year: 2018 end-page: 568 ident: Bib0068 article-title: The deep Poincaré map: A novel approach for left ventricle segmentation publication-title: Medical Image Computing and Computer Assisted Intervention—MICCAI 2018 – volume: 76 start-page: 44 year: 1987 end-page: 51 ident: Bib0109 article-title: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction publication-title: Circulation – start-page: 3838 year: 2018 end-page: 3843 ident: Bib0127 article-title: Fully automatic segmentation of the left ventricle using multi-scale fusion learning publication-title: Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR’18) – start-page: 1 year: 2007 end-page: 9 ident: Bib0069 article-title: An open, clinically-validated database of 3D+t cine-MR images of the left ventricle with associated manual and automated segmentation – volume: 19 start-page: 98 issue: 1 year: 2015 end-page: 109 ident: Bib0007 article-title: Multi-atlas segmentation with augmented features for cardiac MR images publication-title: Medical Image Analysis – volume: 24 start-page: 593 issue: 5 year: 2005 end-page: 603 ident: Bib0080 article-title: STACS: New active contour scheme for cardiac MR image segmentation publication-title: IEEE Transactions on Medical Imaging – volume: 11 start-page: 237 issue: 4 year: 2017 end-page: 244 ident: Bib0108 article-title: Segmentation of the left ventricle in short-axis sequences by combining deformation flow and optical flow publication-title: IET Image Processing – volume: 2018 start-page: 1463 issue: 16 year: 2018 end-page: 1467 ident: Bib0020 article-title: Invert-U-Net DNN segmentation model for MRI cardiac left ventricle segmentation publication-title: Journal of Engineering – volume: 290 start-page: 81 issue: 1 year: 2019 end-page: 88 ident: Bib0099 article-title: Deep learning–based method for fully automatic quantification of left ventricle function from cine MR images: A multivendor, multicenter study publication-title: Radiology – volume: 21 start-page: 140 issue: 2 year: 2005 end-page: 148 ident: Bib0049 article-title: Assessment of left ventricular function by breath-hold cine MR imaging: Comparison of different steady-state free precession sequences publication-title: Journal of Magnetic Resonance Imaging – volume: 13 start-page: 1611 issue: 12 year: 1992 end-page: 1618 ident: Bib0074 article-title: Prognosis after recovery from myocardial infarction: The relative importance of cardiac dilatation and coronary stenoses publication-title: European Heart Journal – volume: 32 start-page: 1302 issue: 7 year: 2013 end-page: 1315 ident: Bib0008 article-title: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images publication-title: IEEE Transactions on Medical Imaging – start-page: 1 year: 2018 end-page: 5 ident: Bib0047 article-title: Hybrid forests for left ventricle segmentation using only the first slice label publication-title: Proceedings of the 2018 International Conference on Intelligent Systems and Computer Vision (ISCV’18) – volume: 10 start-page: 79 issue: 1 year: 2016 end-page: 86 ident: Bib0125 article-title: Cardiac image segmentation by random walks with dynamic shape constraint publication-title: IET Computer Vision – start-page: 695 year: 2013 end-page: 699 ident: Bib0071 article-title: Left ventricle segmentation from cardiac MRI combining level set methods with deep belief networks publication-title: Proceedings of the 2013 IEEE International Conference on Image Processing. – volume: 12 start-page: 1549 issue: 8, Part 1 year: 2019 end-page: 1565 ident: Bib0058 article-title: State-of-the-art deep learning in cardiovascular image analysis publication-title: JACC: Cardiovascular Imaging – volume: 17 start-page: 236 issue: 2 year: 2013 end-page: 253 ident: Bib0032 article-title: Segmentation by retrieval with guided random walks: Application to left ventricle segmentation in MRI publication-title: Medical Image Analysis – volume: 35 start-page: 2174 issue: 9 year: 2016 end-page: 2188 ident: Bib0015 article-title: Unsupervised freeview groupwise cardiac segmentation using synchronized spectral network publication-title: IEEE Transactions on Medical Imaging – volume: 10 start-page: 30 issue: 1 year: 2010 end-page: 43 ident: Bib0028 article-title: Automatic left ventricular contour extraction from cardiac magnetic resonance images using cantilever beam and random walk approach publication-title: Cardiovascular Engineering – volume: 19 start-page: 723 issue: 6 year: 2012 end-page: 731 ident: Bib0060 article-title: Automatic left ventricle segmentation in cardiac MRI using topological stable-state thresholding and region restricted dynamic programming publication-title: Academic Radiology – volume: 1 start-page: 321 issue: 4 year: 1988 end-page: 331 ident: Bib0041 article-title: Snakes: Active contour models publication-title: International Journal of Computer Vision – volume: 23 start-page: 942 issue: 3 year: 2019 end-page: 948 ident: Bib0029 article-title: Direct segmentation-based full quantification for left ventricle via deep multi-task regression learning network publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 10 start-page: 667 issue: 5 year: 1999 end-page: 675 ident: Bib0092 article-title: Stress functional MRI: Detection of ischemic heart disease and myocardial viability publication-title: Journal of Magnetic Resonance Imaging – volume: 11 start-page: 346 issue: 2 year: 2021 ident: Bib0113 article-title: Fast and automated segmentation for the three-directional multi-slice cine myocardial velocity mapping publication-title: Diagnostics – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: Bib0059 article-title: A survey on deep learning in medical image analysis publication-title: Medical Image Analysis – volume: 33 start-page: 88 year: 2017 end-page: 95 ident: Bib0004 article-title: Simultaneous left and right ventricle segmentation using topology preserving level sets publication-title: Biomedical Signal Processing and Control – volume: 2015 start-page: 1 year: 2015 end-page: 9 ident: Bib0106 article-title: Left ventricle: Fully automated segmentation based on spatiotemporal continuity and myocardium information in cine cardiac magnetic resonance imaging (LV-FAST) publication-title: BioMed Research International – volume: 117 start-page: 990 issue: 9 year: 2013 end-page: 1003 ident: Bib0115 article-title: Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model publication-title: Computer Vision and Image Understanding – volume: 109 start-page: 290 year: 2019 end-page: 302 ident: Bib0100 article-title: RIANet: Recurrent interleaved attention network for cardiac MRI segmentation publication-title: Computers in Biology and Medicine – volume: 127 start-page: 991 issue: 3 year: 2016 end-page: 1002 ident: Bib0079 article-title: Active contour model and nonlinear shape priors with application to left ventricle segmentation in cardiac MR images publication-title: Optik – year: 2014 ident: Bib0121 article-title: Automatic left ventricle segmentation based on multiatlas registration in 4D CT images publication-title: Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI’14) – volume: 8 start-page: 1 issue: 1 year: 2014 end-page: 11 ident: Bib0025 article-title: AnnularCut: A graph-cut design for left ventricle segmentation from magnetic resonance images publication-title: IET Image Processing – volume: 37 start-page: 2137 issue: 9 year: 2018 end-page: 2148 ident: Bib0128 article-title: 3-D consistent and robust segmentation of cardiac images by deep learning with spatial propagation publication-title: IEEE Transactions on Medical Imaging – start-page: 1747 year: 2017 end-page: 1751 ident: Bib0088 article-title: Fast and accurate segmentation of the LV in MR volumes using a deformable model with dynamic programming publication-title: Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP’17) – start-page: 55 year: 2021 end-page: 62 ident: Bib0048 article-title: Three-dimensional embedded attentive RNN (3D-EAR) segmentor for left ventricle delineation from myocardial velocity mapping publication-title: Functional Imaging and Modeling of the Heart – volume: 11 start-page: 50 issue: 1 year: 2009 ident: Bib0033 article-title: Radial dyssynchrony assessed by cardiovascular magnetic resonance in relation to left ventricular function, myocardial scarring and QRS duration in patients with heart failure publication-title: Journal of Cardiovascular Magnetic Resonance – volume: 31 start-page: 575 issue: 4 year: 2013 end-page: 584 ident: Bib0038 article-title: Hybrid segmentation of left ventricle in cardiac MRI using Gaussian-mixture model and region restricted dynamic programming publication-title: Magnetic Resonance Imaging – volume: 71 start-page: 102037 year: 2021 ident: Bib0116 article-title: Super-resolution of cardiac MR cine imaging using conditional GANs and unsupervised transfer learning publication-title: Medical Image Analysis – volume: 48 start-page: 95 year: 2018 end-page: 106 ident: Bib0103 article-title: \( \Omega \) -Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks publication-title: Medical Image Analysis – start-page: 1 year: 2017 end-page: 6 ident: Bib0022 article-title: Automatic myocardial segmentation by using a deep learning network in cardiac MRI publication-title: Proceedings of the 2017 XLIII Latin American Computer Conference (CLEI’17). – volume: 35 start-page: 845 issue: 3 year: 2016 end-page: 859 ident: Bib0002 article-title: An algorithm for the segmentation of highly abnormal hearts using a generic statistical shape model publication-title: IEEE Transactions on Medical Imaging – volume: 29 start-page: 155 issue: 2 year: 2016 end-page: 195 ident: Bib0076 article-title: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine – volume: 40 start-page: 1683 issue: 7 year: 2018 end-page: 1696 ident: Bib0046 article-title: Multi-atlas segmentation using partially annotated data: Methods and annotation strategies publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 3118 year: 2014 end-page: 3125 ident: Bib0072 article-title: Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference publication-title: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition – volume: 2017 start-page: 1 year: 2017 end-page: 16 ident: Bib0095 article-title: Segmentation of left and right ventricles in cardiac MRI using active contours publication-title: Computational and Mathematical Methods in Medicine – start-page: 1 year: 2015 end-page: 6 ident: Bib0105 article-title: Automatic left ventricle segmentation in cardiac MRI via level set and fuzzy C-means publication-title: Proceedings of the 2015 2nd International Conference on Recent Advances in Engineering Computational Sciences (RAECS’15) – start-page: 1 year: 2021 ident: Bib0019 article-title: JAS-GAN: Generative adversarial network based joint atrium and scar segmentation on unbalanced atrial targets publication-title: IEEE Journal of Biomedical and Health Informatics – start-page: 3110 year: 2017 end-page: 3114 ident: Bib0101 article-title: A joint multi-scale convolutional network for fully automatic segmentation of the left ventricle publication-title: Proceedings of the IEEE International Conference on Image Processing (ICIP’17) – volume: 18 start-page: 50 issue: 1 year: 2014 end-page: 62 ident: Bib0096 article-title: A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images publication-title: Medical Image Analysis – volume: 8 start-page: 151817 year: 2020 end-page: 151828 ident: Bib0062 article-title: Exploring uncertainty measures in Bayesian deep attentive neural networks for prostate zonal segmentation publication-title: IEEE Access – volume: 124 start-page: 58 year: 2016 end-page: 66 ident: Bib0081 article-title: Detecting left ventricular impaired relaxation in cardiac MRI using moving mesh correspondences publication-title: Computer Methods and Programs in Biomedicine – volume: 57 start-page: 187 year: 2015 end-page: 200 ident: Bib0014 article-title: Mathematical model in left ventricle segmentation publication-title: Computers in Biology and Medicine – volume: 57 start-page: 905 issue: 4 year: 2010 end-page: 913 ident: Bib0050 article-title: Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI publication-title: IEEE Transactions on Biomedical Engineering – volume: 40 start-page: 429 issue: 4 year: 2011 end-page: 455 ident: Bib0024 article-title: Performance divergence with data discrepancy: A review publication-title: Artificial Intelligence Review – volume: 55 start-page: 1563 issue: 9 year: 2017 end-page: 1577 ident: Bib0124 article-title: Automatic segmentation of left ventricle cavity from short-axis cardiac magnetic resonance images publication-title: Medical & Biological Engineering & Computing – volume: 26 start-page: 721 issue: 4 year: 2013 end-page: 730 ident: Bib0064 article-title: Cardiac image segmentation from cine cardiac MRI using graph cuts and shape priors publication-title: Journal of Digital Imaging – volume: 70 start-page: 34 issue: 1 year: 1992 end-page: 40 ident: Bib0077 article-title: Magnetic resonance imaging during dobutamine stress in coronary artery disease publication-title: American Journal of Cardiology – volume: 9 start-page: 1 issue: 12 year: 2014 end-page: 17 ident: Bib0037 article-title: Automatic segmentation of the left ventricle in cardiac MRI using local binary fitting model and dynamic programming techniques publication-title: PLoS ONE – volume: 347 start-page: 139 year: 2019 end-page: 148 ident: Bib0039 article-title: Automatic segmentation of left ventricle from cardiac MRI via deep learning and region constrained dynamic programming publication-title: Neurocomputing – volume: 7 start-page: 359 issue: 3 year: 1998 end-page: 369 ident: Bib0117 article-title: Snakes, shapes, and gradient vector flow publication-title: IEEE Transactions on Image Processing – volume: 11 start-page: 1951 issue: 11 year: 2016 end-page: 1964 ident: Bib0063 article-title: An SPCNN-GVF-based approach for the automatic segmentation of left ventricle in cardiac cine MR images publication-title: International Journal of Computer Assisted Radiology and Surgery – ident: e_1_3_2_4_2 doi: 10.1016/j.media.2007.12.003 – ident: e_1_3_2_36_2 doi: 10.1007/s11517-019-01952-9 – ident: e_1_3_2_127_2 doi: 10.1049/iet-cvi.2016.0482 – ident: e_1_3_2_53_2 doi: 10.1109/TIP.2010.2103950 – ident: e_1_3_2_76_2 doi: 10.1109/TMI.2010.2086465 – ident: e_1_3_2_94_2 doi: 10.1016/j.media.2017.04.004 – ident: e_1_3_2_8_2 doi: 10.1016/j.media.2014.09.005 – ident: e_1_3_2_55_2 doi: 10.1109/TIP.2010.2069690 – ident: e_1_3_2_22_2 doi: 10.1016/j.media.2011.01.002 – ident: e_1_3_2_58_2 doi: 10.1016/j.mri.2019.08.004 – ident: e_1_3_2_48_2 doi: 10.1109/ISACV.2018.8354039 – ident: e_1_3_2_131_2 doi: 10.1109/TMI.2010.2047112 – ident: e_1_3_2_83_2 doi: 10.1109/TBME.2010.2048752 – ident: e_1_3_2_108_2 doi: 10.1002/mp.13245 – ident: e_1_3_2_64_2 doi: 10.1007/s11548-016-1429-9 – ident: e_1_3_2_3_2 doi: 10.1109/TMI.2015.2497906 – ident: e_1_3_2_133_2 doi: 10.1109/ISBI.2016.7493206 – ident: e_1_3_2_35_2 doi: 10.1038/nrcardio.2014.165 – ident: e_1_3_2_100_2 doi: 10.1148/radiol.2018180513 – ident: e_1_3_2_15_2 doi: 10.1016/j.compbiomed.2014.12.009 – ident: e_1_3_2_132_2 doi: 10.1109/JBHI.2018.2865450 – ident: e_1_3_2_32_2 doi: 10.1109/ACCESS.2017.2789179 – ident: e_1_3_2_77_2 doi: 10.1007/s10334-015-0521-4 – ident: e_1_3_2_128_2 doi: 10.1109/ICPR.2018.8545390 – ident: e_1_3_2_79_2 doi: 10.1016/j.media.2010.12.004 – ident: e_1_3_2_44_2 doi: 10.1109/ICCKE.2013.6682837 – ident: e_1_3_2_51_2 doi: 10.1109/TBME.2009.2014545 – ident: e_1_3_2_93_2 doi: 10.1002/(SICI)1522-2586(199911)10:5<667::AID-JMRI9>3.0.CO;2-8 – ident: e_1_3_2_17_2 doi: 10.1148/rg.311105049 – ident: e_1_3_2_42_2 doi: 10.1007/BF00133570 – ident: e_1_3_2_118_2 doi: 10.1109/83.661186 – ident: e_1_3_2_7_2 doi: 10.1016/j.media.2011.05.009 – ident: e_1_3_2_60_2 doi: 10.1016/j.media.2017.07.005 – ident: e_1_3_2_21_2 doi: 10.1049/joe.2018.8302 – ident: e_1_3_2_110_2 doi: 10.1161/01.CIR.76.1.44 – ident: e_1_3_2_11_2 doi: 10.1145/3167132.3167168 – ident: e_1_3_2_117_2 doi: 10.1016/j.media.2021.102037 – ident: e_1_3_2_9_2 doi: 10.1109/TMI.2013.2256922 – ident: e_1_3_2_65_2 doi: 10.1007/s10278-012-9548-5 – ident: e_1_3_2_115_2 doi: 10.3389/fphys.2021.709230 – ident: e_1_3_2_46_2 doi: 10.1016/j.media.2018.10.004 – ident: e_1_3_2_68_2 doi: 10.1017/9781107706958 – volume-title: Human Anatomy (6th ed., media update ed.) year: 2012 ident: e_1_3_2_67_2 – ident: e_1_3_2_70_2 doi: 10.54294/c3nv9t – ident: e_1_3_2_74_2 doi: 10.1016/j.media.2016.05.009 – ident: e_1_3_2_45_2 doi: 10.1016/j.mri.2018.04.011 – ident: e_1_3_2_72_2 doi: 10.1109/ICIP.2013.6738143 – ident: e_1_3_2_27_2 doi: 10.1109/JSEN.2017.2736641 – ident: e_1_3_2_106_2 doi: 10.1109/RAECS.2015.7453332 – ident: e_1_3_2_112_2 doi: 10.1016/j.cviu.2012.11.012 – ident: e_1_3_2_107_2 doi: 10.1155/2015/573956 – ident: e_1_3_2_33_2 doi: 10.1016/j.media.2012.10.005 – ident: e_1_3_2_103_2 doi: 10.1155/2015/970357 – ident: e_1_3_2_26_2 doi: 10.1049/iet-ipr.2013.0088 – ident: e_1_3_2_6_2 doi: 10.1016/j.media.2016.01.005 – ident: e_1_3_2_56_2 doi: 10.1016/j.compbiomed.2020.103728 – ident: e_1_3_2_120_2 doi: 10.1109/ISBI.2018.8363620 – ident: e_1_3_2_81_2 doi: 10.1109/TMI.2005.843740 – ident: e_1_3_2_24_2 doi: 10.1016/j.cmpb.2018.12.002 – ident: e_1_3_2_91_2 doi: 10.1109/SNAMS.2018.8554962 – ident: e_1_3_2_130_2 doi: 10.1260/2040-2295.4.3.371 – ident: e_1_3_2_16_2 doi: 10.1109/TMI.2016.2553153 – volume-title: The Top 10 Causes of Death year: 2019 ident: e_1_3_2_113_2 – ident: e_1_3_2_90_2 doi: 10.1016/j.cmpb.2017.10.028 – ident: e_1_3_2_29_2 doi: 10.1007/s10558-009-9091-2 – ident: e_1_3_2_86_2 doi: 10.1016/j.bspc.2018.04.008 – ident: e_1_3_2_14_2 doi: 10.1016/j.jchf.2012.10.002 – ident: e_1_3_2_75_2 doi: 10.1093/oxfordjournals.eurheartj.a060113 – ident: e_1_3_2_18_2 doi: 10.1109/83.902291 – ident: e_1_3_2_88_2 doi: 10.1016/j.hfc.2018.12.008 – ident: e_1_3_2_116_2 doi: 10.1016/j.cviu.2012.12.008 – start-page: 561 volume-title: Medical Image Computing and Computer Assisted Intervention—MICCAI 2018 year: 2018 ident: e_1_3_2_69_2 – ident: e_1_3_2_38_2 doi: 10.1371/journal.pone.0114760 – ident: e_1_3_2_43_2 doi: 10.1109/TBME.2011.2174235 – ident: e_1_3_2_39_2 doi: 10.1016/j.mri.2012.10.004 – start-page: 171 volume-title: Information Processing in Medical Imaging year: 2011 ident: e_1_3_2_71_2 doi: 10.1007/978-3-642-22092-0_15 – ident: e_1_3_2_19_2 doi: 10.1109/BIBM.2018.8621552 – ident: e_1_3_2_95_2 doi: 10.1016/j.mri.2021.02.003 – ident: e_1_3_2_125_2 doi: 10.1007/s11517-017-1614-1 – ident: e_1_3_2_114_2 doi: 10.3390/diagnostics11020346 – ident: e_1_3_2_59_2 doi: 10.1016/j.jcmg.2019.06.009 – ident: e_1_3_2_28_2 doi: 10.1016/j.jvcir.2015.10.016 – ident: e_1_3_2_40_2 doi: 10.1016/j.neucom.2019.02.008 – ident: e_1_3_2_105_2 doi: 10.1016/j.jacr.2016.10.009 – ident: e_1_3_2_98_2 doi: 10.1016/j.media.2013.09.001 – ident: e_1_3_2_123_2 doi: 10.1016/j.media.2018.07.009 – start-page: 1 year: 2021 ident: e_1_3_2_20_2 article-title: JAS-GAN: Generative adversarial network based joint atrium and scar segmentation on unbalanced atrial targets publication-title: IEEE Journal of Biomedical and Health Informatics – ident: e_1_3_2_52_2 doi: 10.1109/EMBC.2018.8513140 – ident: e_1_3_2_66_2 doi: 10.1007/s10278-013-9573-z – ident: e_1_3_2_80_2 doi: 10.1016/j.ijleo.2015.10.162 – ident: e_1_3_2_101_2 doi: 10.1016/j.compbiomed.2019.04.042 – ident: e_1_3_2_73_2 doi: 10.1109/CVPR.2014.399 – ident: e_1_3_2_78_2 doi: 10.1016/0002-9149(92)91386-I – ident: e_1_3_2_119_2 doi: 10.1016/j.mri.2017.01.011 – ident: e_1_3_2_31_2 doi: 10.1109/JTEHM.2019.2900628 – ident: e_1_3_2_2_2 doi: 10.1049/iet-ipr.2012.0512 – ident: e_1_3_2_23_2 doi: 10.1109/CLEI.2017.8226420 – ident: e_1_3_2_5_2 doi: 10.1016/j.bspc.2016.11.002 – ident: e_1_3_2_63_2 doi: 10.1109/ACCESS.2020.3017168 – ident: e_1_3_2_96_2 doi: 10.1155/2017/8350680 – ident: e_1_3_2_97_2 doi: 10.1016/j.media.2013.09.001 – start-page: 55 volume-title: Functional Imaging and Modeling of the Heart year: 2021 ident: e_1_3_2_49_2 doi: 10.1007/978-3-030-78710-3_6 – ident: e_1_3_2_104_2 doi: 10.1016/j.media.2018.05.008 – ident: e_1_3_2_10_2 doi: 10.1161/CIR.0000000000000659 – ident: e_1_3_2_54_2 doi: 10.1109/tip.2008.2002304 – year: 2009 ident: e_1_3_2_85_2 article-title: Evaluation framework for algorithms segmenting short axis cardiac MRI. In Proceedings of the MICCAI 2009 Workshop: Cardiac MR left ventricle segmentation challenge. publication-title: http://hdl.handle.net/10380/3070 – ident: e_1_3_2_34_2 doi: 10.1186/1532-429X-11-50 – ident: e_1_3_2_61_2 doi: 10.1016/j.acra.2012.02.011 – ident: e_1_3_2_129_2 doi: 10.1109/TMI.2018.2820742 – start-page: 234 volume-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 year: 2015 ident: e_1_3_2_87_2 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_3_2_57_2 doi: 10.1109/TCYB.2017.2778799 – ident: e_1_3_2_41_2 doi: 10.1117/1.JEI.21.1.010901 – ident: e_1_3_2_89_2 doi: 10.1109/ICIP.2017.8296581 – ident: e_1_3_2_121_2 doi: 10.1016/j.future.2020.02.005 – ident: e_1_3_2_62_2 doi: 10.1016/j.mri.2015.12.027 – ident: e_1_3_2_50_2 doi: 10.1002/jmri.20230 – ident: e_1_3_2_102_2 doi: 10.1109/ICIP.2017.8296855 – ident: e_1_3_2_47_2 doi: 10.1109/TPAMI.2017.2711020 – ident: e_1_3_2_13_2 doi: 10.1016/S0140-6736(86)90837-8 – ident: e_1_3_2_30_2 doi: 10.1109/JBHI.2018.2879188 – ident: e_1_3_2_25_2 doi: 10.1007/s10462-011-9289-8 – ident: e_1_3_2_92_2 doi: 10.1016/j.media.2010.05.009 – ident: e_1_3_2_109_2 doi: 10.1049/iet-ipr.2016.0410 – ident: e_1_3_2_99_2 doi: 10.1016/j.media.2017.04.002 – ident: e_1_3_2_126_2 doi: 10.1049/iet-cvi.2014.0450 – ident: e_1_3_2_82_2 doi: 10.1016/j.cmpb.2015.10.015 – ident: e_1_3_2_111_2 doi: 10.1161/01.CIR.76.1.44 – ident: e_1_3_2_84_2 doi: 10.1016/j.neucom.2014.07.044 – ident: e_1_3_2_124_2 doi: 10.1155/2020/8899957 – ident: e_1_3_2_37_2 doi: 10.1049/iet-ipr.2015.0408 – ident: e_1_3_2_12_2 doi: 10.1109/TMI.2018.2837502 – ident: e_1_3_2_122_2 doi: 10.1109/ISBI.2014.6867896 |
SSID | ssj0002416 |
Score | 2.4364321 |
Snippet | Left ventricle segmentation in short-axis cardiac magnetic resonance images is important to diagnose heart disease. However, repetitive manual segmentation of... |
SourceID | unpaywall crossref acm |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Applied computing Artificial intelligence Computing methodologies General and reference Image segmentation Imaging Surveys and overviews |
SubjectTermsDisplay | Applied computing -- Imaging Computing methodologies -- Artificial intelligence Computing methodologies -- Image segmentation General and reference -- Surveys and overviews |
Title | Left Ventricle Segmentation in Cardiac MR: A Systematic Mapping of the Past Decade |
URI | https://dl.acm.org/doi/10.1145/3517190 https://dl.acm.org/doi/pdf/10.1145/3517190 |
UnpaywallVersion | publishedVersion |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Business Source Ultimate customDbUrl: eissn: 1557-7341 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002416 issn: 0360-0300 databaseCode: AKVCP dateStart: 20040301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1557-7341 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002416 issn: 0360-0300 databaseCode: ADMLS dateStart: 20040301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT8IwFG0UHvRFFDXiB6mJ8W3IPrpuvhGUEBVCQAg-kbbriHEMIiNGf723W0HUmPiwJkvOmqW97b3b7TkXoQthwYbHOHym-tA4jhAGo5JD4_MgIMK1U7mmVttt9p27IRlqmRzFhQki6GeSpvDVmp4FoRa0JVc2MSm4r02Ud1UyKYfy_Xan9pQlI6sGWGvKfiSEGhT25owhu_6kckBi8s0BbS3iGXt_Y1G05lUahaw80TwVI1SHSV4qi4RXxMcPqcb_vfAu2tHBJa5l1rCHNmRcRIVl4Qas1_E-6j7IMMED9WNXAXFPjieagxTj5xjXU7MRuNW9xjXcW4k94xZTcg5jPA0xBI64w-YJvpHqiP0B6jduH-tNQxdXMJhFaWK4jDCIhYhgYUACz3MsuPUJF77tCVdILiyL-a5PIUKSjgdzJinzue0wQeBi9iHKxdNYHiEcUtc0Q9vjVEqHex5nnh-aVSZkILlj8hIqwhCNZpl8xkgPSwldLudhJLQeuSqLEY0yrjT5AuIVcNnHL8j5aiL_whz_A3OCti1Fb6ia4JtOUS55XcgzCDoSXkb52v2g3ilrq_sEd5DQWg |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26PeiL06k4v4ggvnWuH2la38Z0DHFjbE7mU0nSdIhdN1yH6K_3ps3mVIQ9NFA4DSW5yb3tzTkXoUthwYbHOHym-tA4jhAGo5JD4_MwJMK1M7mmdsdtDZz7IRlqmRzFhQlj6GecpfDVmp6GkRa0Jdc2MSm4r01UdFUyqYCKg063_pwnI2sGWGvGfiSEGhT25pwhu_qkckBi_MMBbc2TKft4Z3G84lWapbw80SwTI1SHSV6r85RXxecvqcb1XngX7ejgEtdza9hDGzIpo9KicAPW63gf9R5klOIn9WNXAXFfjsaag5TglwQ3MrMRuN27wXXcX4o94zZTcg4jPIkwBI64y2YpvpXqiP0BGjTvHhstQxdXMJhFaWq4jDCIhYhgUUhCz3MsuPUJF77tCVdILiyL-a5PIUKSjgdzJinzue0wQeBi9iEqJJNEHiEcUdc0I9vjVEqHex5nnh-ZNSZkKLlj8goqwxAF01w-I9DDUkFXi3kIhNYjV2Ux4iDnSpNvIF4CF338gVwsJ_I_zPEamBO0bSl6Q80E33SKCunbXJ5B0JHyc21tX_yAzsI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Left+Ventricle+Segmentation+in+Cardiac+MR%3A+A+Systematic+Mapping+of+the+Past+Decade&rft.jtitle=ACM+computing+surveys&rft.au=Ribeiro%2C+Matheus+A.+O.&rft.au=Nunes%2C+F%C3%A1tima+L.+S.&rft.date=2022-01-31&rft.pub=ACM&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=54&rft.issue=11s&rft.spage=1&rft.epage=38&rft_id=info:doi/10.1145%2F3517190&rft.externalDocID=3517190 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon |