Investigation of the Stability Mechanisms of Eight-Atom Binary Metal Clusters Using DFT Calculations and k‑means Clustering Algorithm
Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clu...
Saved in:
| Published in | Journal of chemical information and modeling Vol. 61; no. 7; pp. 3411 - 3420 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Washington
American Chemical Society
26.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-9596 1549-960X 1549-960X |
| DOI | 10.1021/acs.jcim.1c00253 |
Cover
| Abstract | Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clusters). Based on the excess energy analysis, the six most stable binary clusters are NiAl, NiGa, CoAl, FeNi, NiZn, and FeAl, and except for FeNi, their highest energetic stabilities can be explained by the hybridization of the d- and sp-states, which is maximized at the 50% composition, i.e., A4B4. Based on the Spearman correlation analysis, the energetic stability of the binary clusters increases with an increase in the highest occupied molecule orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy separation, which can be considered as a global descriptor. Furthermore, reducing the total magnetic moment values increases the stability for binary clusters without the Fe, Co, and Ni species, while the binary FeB, CoB, and NiB clusters increase their energetic stability with a decrease in the cluster radius, respectively, i.e., an energetic preference for compact structures. |
|---|---|
| AbstractList | Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clusters). Based on the excess energy analysis, the six most stable binary clusters are NiAl, NiGa, CoAl, FeNi, NiZn, and FeAl, and except for FeNi, their highest energetic stabilities can be explained by the hybridization of the d- and sp-states, which is maximized at the 50% composition, i.e., A4B4. Based on the Spearman correlation analysis, the energetic stability of the binary clusters increases with an increase in the highest occupied molecule orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy separation, which can be considered as a global descriptor. Furthermore, reducing the total magnetic moment values increases the stability for binary clusters without the Fe, Co, and Ni species, while the binary FeB, CoB, and NiB clusters increase their energetic stability with a decrease in the cluster radius, respectively, i.e., an energetic preference for compact structures. Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clusters). Based on the excess energy analysis, the six most stable binary clusters are NiAl, NiGa, CoAl, FeNi, NiZn, and FeAl, and except for FeNi, their highest energetic stabilities can be explained by the hybridization of the d- and sp-states, which is maximized at the 50% composition, i.e., A4B4. Based on the Spearman correlation analysis, the energetic stability of the binary clusters increases with an increase in the highest occupied molecule orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy separation, which can be considered as a global descriptor. Furthermore, reducing the total magnetic moment values increases the stability for binary clusters without the Fe, Co, and Ni species, while the binary FeB, CoB, and NiB clusters increase their energetic stability with a decrease in the cluster radius, respectively, i.e., an energetic preference for compact structures.Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clusters). Based on the excess energy analysis, the six most stable binary clusters are NiAl, NiGa, CoAl, FeNi, NiZn, and FeAl, and except for FeNi, their highest energetic stabilities can be explained by the hybridization of the d- and sp-states, which is maximized at the 50% composition, i.e., A4B4. Based on the Spearman correlation analysis, the energetic stability of the binary clusters increases with an increase in the highest occupied molecule orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy separation, which can be considered as a global descriptor. Furthermore, reducing the total magnetic moment values increases the stability for binary clusters without the Fe, Co, and Ni species, while the binary FeB, CoB, and NiB clusters increase their energetic stability with a decrease in the cluster radius, respectively, i.e., an energetic preference for compact structures. |
| Author | Andriani, Karla F Da Silva, Juarez L. F Orlando Morais, Felipe |
| Author_xml | – sequence: 1 givenname: Felipe orcidid: 0000-0003-4113-725X surname: Orlando Morais fullname: Orlando Morais, Felipe – sequence: 2 givenname: Karla F orcidid: 0000-0002-6662-660X surname: Andriani fullname: Andriani, Karla F – sequence: 3 givenname: Juarez L. F orcidid: 0000-0003-0645-8760 surname: Da Silva fullname: Da Silva, Juarez L. F email: juarez_dasilva@iqsc.usp.br |
| BookMark | eNp9kTtPwzAUhS0EEs-d0RILAym2EzvJWMpTAjEAElvkOE7r4thgO0hsbMz8RX4JTlsWJJiur853rq7v2QbrxhoJwD5GI4wIPubCj-ZCdSMsECI0XQNbmGZlUjL0uP7zpiXbBNvezxFK05KRLfBxZV6lD2rKg7IG2haGmYR3gddKq_AGb6SYcaN85wftTE1nIRkH28ETZbgb9MA1nOjeB-k8fPDKTOHp-T2ccC16vZjqITcNfPp6_-wkj92KHsixnlqnwqzbBRst117ureoOeDg_u59cJte3F1eT8XXCSY5DQmuCckJF3VBWCkHLhpEya5jIRRREyds6xzLLZNo0NcYkbdsm521bsEZgJot0Bxwu5z47-9LHn1ed8kJqzY20va8IzbKiwAVNI3rwC53b3pm4XaRoXuQooyhSaEkJZ713sq2eneriaSqMqiGZKiZTDclUq2Sihf2yCBUWlwqOK_2f8WhpXCg_y_yJfwPsvqk8 |
| CitedBy_id | crossref_primary_10_1016_j_mcat_2023_113366 crossref_primary_10_1039_D4DD00282B crossref_primary_10_1007_s00214_022_02912_7 crossref_primary_10_1021_acs_jcim_2c00957 crossref_primary_10_1063_5_0180906 crossref_primary_10_1155_2022_8193800 crossref_primary_10_1016_j_ica_2024_122376 crossref_primary_10_1063_5_0196840 crossref_primary_10_1016_j_colsurfa_2025_136286 crossref_primary_10_1016_j_chemphys_2024_112512 crossref_primary_10_1016_j_watres_2022_119065 crossref_primary_10_1039_D4CP00672K crossref_primary_10_1016_j_commatsci_2022_111805 crossref_primary_10_1063_5_0091145 crossref_primary_10_1021_acs_jcim_1c01570 crossref_primary_10_1155_2022_7544772 crossref_primary_10_1021_acs_jpcc_4c03846 crossref_primary_10_1016_j_apsusc_2022_154413 crossref_primary_10_1038_s41598_025_86141_5 |
| Cites_doi | 10.1103/PhysRev.140.A1133 10.1063/1.5125689 10.1016/j.cpc.2009.06.022 10.1016/j.jcp.2009.08.008 10.1103/PhysRevB.15.4716 10.1021/acs.jpcc.9b00291 10.1140/epjd/e2012-30447-y 10.1016/j.commatsci.2014.11.022 10.1088/1468-6996/15/6/063501 10.1063/1.3533422 10.1039/c2cs15325d 10.1103/PhysRev.136.B864 10.1021/acs.jpcc.5b02242 10.1016/j.molstruc.2012.02.026 10.1103/PhysRevLett.77.3865 10.1021/acs.jcim.1c00097 10.1103/PhysRevLett.108.058301 10.1016/j.apcatb.2017.01.064 10.1021/jp508220h 10.1002/anie.201806039 10.1021/jp302844f 10.1021/ct6003752 10.1039/D0DT01853H 10.1016/j.jallcom.2018.08.033 10.1039/D0CP06179D 10.1021/acs.jpcc.6b10404 10.1021/acs.inorgchem.7b02585 10.1016/j.tsf.2010.01.018 10.1038/srep15951 10.1021/acs.jpcc.5b09453 10.1063/1.1680020 10.1021/acs.jpcc.9b09561 10.1039/C5CP00728C 10.1126/sciadv.aav5577 10.1021/jp801837d 10.1088/0953-8984/28/17/175302 10.1063/1.472460 10.1021/acscatal.5b01816 10.1039/C8SC03902J 10.1021/acs.jpcc.7b05714 10.1039/a805753b 10.1039/C7CP02240A 10.1006/enfo.2001.0061 10.1021/jp3017997 10.1039/C9CP00201D 10.1002/anie.197000251 10.1021/acssuschemeng.9b06823 10.1002/jcc.10089 10.1021/cr040090g 10.1021/cr980391o 10.1038/nnano.2015.140 10.1039/c2cp42386c 10.1038/natrevmats.2017.50 10.1021/acs.accounts.8b00327 10.1038/srep19656 10.2307/1412159 10.1126/science.aas8815 10.1246/cl.131232 10.1021/nn2039565 10.1039/C8CP03384F |
| ContentType | Journal Article |
| Copyright | 2021 American Chemical Society Copyright American Chemical Society Jul 26, 2021 |
| Copyright_xml | – notice: 2021 American Chemical Society – notice: Copyright American Chemical Society Jul 26, 2021 |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1021/acs.jcim.1c00253 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-960X |
| EndPage | 3420 |
| ExternalDocumentID | 10_1021_acs_jcim_1c00253 c012051295 |
| GroupedDBID | - 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABUCX ACGFS ACIWK ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ D0L DU5 EBS ED ED~ F5P GGK GNL IH9 JG JG~ P2P PQEST PQQKQ RNS ROL UI2 VF5 VG9 W1F X --- -~X AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV CITATION CUPRZ 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-a271t-5b20725cbd569cc59d6294d6c7c207c9afb71e44e3ddb1123ffd7aff86dc16e83 |
| IEDL.DBID | ACS |
| ISSN | 1549-9596 1549-960X |
| IngestDate | Thu Jul 10 23:31:26 EDT 2025 Mon Jun 30 10:56:29 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 Tue Jul 01 03:04:45 EDT 2025 Wed Jul 28 04:36:07 EDT 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a271t-5b20725cbd569cc59d6294d6c7c207c9afb71e44e3ddb1123ffd7aff86dc16e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0645-8760 0000-0002-6662-660X 0000-0003-4113-725X |
| PQID | 2557870450 |
| PQPubID | 28739 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2544881853 proquest_journals_2557870450 crossref_primary_10_1021_acs_jcim_1c00253 crossref_citationtrail_10_1021_acs_jcim_1c00253 acs_journals_10_1021_acs_jcim_1c00253 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210726 2021-07-26 |
| PublicationDateYYYYMMDD | 2021-07-26 |
| PublicationDate_xml | – month: 07 year: 2021 text: 20210726 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Journal of chemical information and modeling |
| PublicationTitleAlternate | J. Chem. Inf. Model |
| PublicationYear | 2021 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref43/cit43 doi: 10.1103/PhysRev.140.A1133 – ident: ref32/cit32 doi: 10.1063/1.5125689 – ident: ref47/cit47 doi: 10.1016/j.cpc.2009.06.022 – ident: ref48/cit48 doi: 10.1016/j.jcp.2009.08.008 – ident: ref46/cit46 doi: 10.1103/PhysRevB.15.4716 – ident: ref14/cit14 doi: 10.1021/acs.jpcc.9b00291 – ident: ref36/cit36 doi: 10.1140/epjd/e2012-30447-y – ident: ref30/cit30 doi: 10.1016/j.commatsci.2014.11.022 – ident: ref6/cit6 doi: 10.1088/1468-6996/15/6/063501 – ident: ref60/cit60 doi: 10.1063/1.3533422 – ident: ref1/cit1 doi: 10.1039/c2cs15325d – ident: ref42/cit42 doi: 10.1103/PhysRev.136.B864 – ident: ref27/cit27 doi: 10.1021/acs.jpcc.5b02242 – ident: ref37/cit37 doi: 10.1016/j.molstruc.2012.02.026 – ident: ref44/cit44 doi: 10.1103/PhysRevLett.77.3865 – ident: ref52/cit52 doi: 10.1021/acs.jcim.1c00097 – ident: ref51/cit51 doi: 10.1103/PhysRevLett.108.058301 – ident: ref3/cit3 doi: 10.1016/j.apcatb.2017.01.064 – ident: ref31/cit31 doi: 10.1021/jp508220h – ident: ref35/cit35 doi: 10.1002/anie.201806039 – ident: ref26/cit26 doi: 10.1021/jp302844f – ident: ref56/cit56 doi: 10.1021/ct6003752 – ident: ref22/cit22 doi: 10.1039/D0DT01853H – ident: ref58/cit58 doi: 10.1016/j.jallcom.2018.08.033 – ident: ref25/cit25 doi: 10.1039/D0CP06179D – ident: ref33/cit33 doi: 10.1021/acs.jpcc.6b10404 – ident: ref8/cit8 doi: 10.1021/acs.inorgchem.7b02585 – ident: ref21/cit21 doi: 10.1016/j.tsf.2010.01.018 – ident: ref17/cit17 doi: 10.1038/srep15951 – ident: ref11/cit11 doi: 10.1021/acs.jpcc.5b09453 – ident: ref45/cit45 doi: 10.1063/1.1680020 – ident: ref29/cit29 doi: 10.1021/acs.jpcc.9b09561 – ident: ref18/cit18 doi: 10.1039/C5CP00728C – ident: ref39/cit39 doi: 10.1126/sciadv.aav5577 – ident: ref40/cit40 doi: 10.1021/jp801837d – ident: ref34/cit34 doi: 10.1088/0953-8984/28/17/175302 – ident: ref49/cit49 doi: 10.1063/1.472460 – ident: ref2/cit2 doi: 10.1021/acscatal.5b01816 – ident: ref20/cit20 doi: 10.1039/C8SC03902J – ident: ref28/cit28 doi: 10.1021/acs.jpcc.7b05714 – ident: ref10/cit10 doi: 10.1039/a805753b – ident: ref24/cit24 doi: 10.1039/C7CP02240A – ident: ref55/cit55 doi: 10.1006/enfo.2001.0061 – ident: ref41/cit41 doi: 10.1021/jp3017997 – ident: ref15/cit15 doi: 10.1039/C9CP00201D – ident: ref59/cit59 doi: 10.1002/anie.197000251 – ident: ref4/cit4 doi: 10.1021/acssuschemeng.9b06823 – ident: ref50/cit50 doi: 10.1002/jcc.10089 – ident: ref53/cit53 doi: 10.1021/cr040090g – ident: ref23/cit23 doi: 10.1021/cr980391o – ident: ref7/cit7 doi: 10.1038/nnano.2015.140 – ident: ref57/cit57 doi: 10.1039/c2cp42386c – ident: ref5/cit5 doi: 10.1038/natrevmats.2017.50 – ident: ref12/cit12 doi: 10.1021/acs.accounts.8b00327 – ident: ref19/cit19 doi: 10.1038/srep19656 – ident: ref54/cit54 doi: 10.2307/1412159 – ident: ref38/cit38 doi: 10.1126/science.aas8815 – ident: ref9/cit9 doi: 10.1246/cl.131232 – ident: ref16/cit16 doi: 10.1021/nn2039565 – ident: ref13/cit13 doi: 10.1039/C8CP03384F |
| SSID | ssj0033962 |
| Score | 2.4631894 |
| Snippet | Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate... |
| SourceID | proquest crossref acs |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3411 |
| SubjectTerms | Algorithms Aluminum Cluster analysis Clustering Cobalt Computational Chemistry Copper Correlation analysis Density functional theory Intermetallic compounds Iron Magnetic moments Mathematical analysis Metal clusters Molecular orbitals Nickel aluminides Nickel base alloys Nickel compounds Stability analysis Vector quantization |
| Title | Investigation of the Stability Mechanisms of Eight-Atom Binary Metal Clusters Using DFT Calculations and k‑means Clustering Algorithm |
| URI | http://dx.doi.org/10.1021/acs.jcim.1c00253 https://www.proquest.com/docview/2557870450 https://www.proquest.com/docview/2544881853 |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-960X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033962 issn: 1549-9596 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODS8hRbCjISHDh4G9uxHR-X0FWFVC60Um-Rn7B0k1RN9lBO3Dj3L_JLsL1JSwFVvWbGkWNPZj5rxt8A8MY4LrzXGlFjNcqtlyicQywqGNeaWI9Juh598InvH-Ufj9nxFU3O3xl8gneV6abfzKKeYhMDNL0L7hEuRCzfm5WfR69LqUzNQyPjGJJMjinJ_70hBiLTXQ9E1_1wCi7zrXWXoi5xEsaakpPpqtdT8_1fxsZbzPsh2BwwJpytjeIRuOOax-B-ObZ2ewJ-_sGu0Taw9TDAQBhwZ6qUPYcHLt4HXnR1F2V7iWtk1rc1fJ9u7wZ5gOywXK4iy0IHU9kB_DA_hKVamqEfWAdVY-HJrx8XtQvhcNSOmrPll_Zs0X-tn4Kj-d5huY-GjgxIEYF7xDTJBGFGW8alMUxaTmRuuREmCIxUXgvs8txRa3VActR7K5T3BbcGc1fQZ2CjaRv3HEAmsKLCU2W0yqXPlM584XBR5IWPwHMC3oYVrIY_qqtSspzgKj0My1oNyzoBu-M2VmagNY_dNZY3jHh3OeJ0Telxg-7OaBlXUwmnsOjmcpZNwOtLcdjCmGtRjWtXUSecexMY2r7lh7wAD0isl8kEInwHbPRnK_cyAJ5ev0qW_hv3bv8Y |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigX3oiFAkaCA4ds4zh24uMSulqg2wNspd4iP2HpJkFN9gAnbpz5i_wSbDfZUoQquHrG1sR2PDOamW8AninDMmuljIjSMkq15ZHzQ3SUUyZloi1OQnn0_JDNjtI3x_R4C_BQC-OEaN1KbQjin6ML4D0_9kktqzFWXk-TK3CVshR7f2tSvB8eX0J46CHqgcciTvkQmfzbCl4fqfaiPrr4HAcdM70B7zbShdSSk_G6k2P19Q_gxv8S_yZc7y1ONDm7Irdgy9S3YacYGr3dge-_YW00NWosckYhclZoyJv9gubGVwcv26r1tP2APDLpmgq9DLW8ju4MeFSs1h5zoUUhCQG9mi5QIVaq7w7WIlFrdPLz24_KOOU4cHvOyepDc7rsPlZ34Wi6vyhmUd-fIRJJhruIyiTOEqqkpowrRblmCU81U5lyBMWFlRk2aWqI1tLZdcRanQlrc6YVZiYn92C7bmpzHxDNsCCZJUJJkXIbCxnb3OA8T3PrzdARPHc7WPb_V1uG0HmCyzDotrXst3UEe8NplqoHOfe9NlaXzHixmfH5DODjEt7d4YKci-J8Mv_opTQewdMN2R2hj7yI2jRrz-O84GAaPfjHD3kCO7PF_KA8eH349iFcS3wmTZxFCduF7e50bR45U6iTj8Pl_wWq3weJ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkYAL5VWxUMBIcODgbRzHdnxc0q7KoxUSLeot8hOWbpKqyR7gxI1z_2J_SW03WShCFVw9tuX3fNbMfAPAC20Zd04pRLRRKDNOIP8PMSinTKnUOJzG8OjdPbZzkL09pIcrgA6xMH4Qre-pjUb8cKuPjesZBvBmKP-qZ9UY66CryTVwnTJ_0wMiKj4ODzAhIuYRDeRjSFAxWCf_1kPQSbq9rJMuP8lRz0zXwKflCKN7ydF40amx_v4HeeN_T-EOuN0jTzi5OCp3wYqt74GbxZDw7T74-RvnRlPDxkEPDqFHo9F_9hvctSFKeNZWbZBtRwaSSddU8HWM6fVyD-RhMV8E7oUWRmcEuDXdh4Wc6z5LWAtlbeDR2Y_TynolOdQONSfzz83JrPtSPQAH0-39Ygf1eRqQTDnuEFVpwlOqlaFMaE2FYanIDNNce4EW0imObZZZYozy-I44Z7h0LmdGY2Zzsg5W66a2DwGkHEvCHZFayUy4RKrE5RbneZa7AEdH4KVfwbK_Z20ZTegpLmOhX9ayX9YR2Bx2tNQ92XnIuTG_osWrZYvjC6KPK-puDIfk11D83yw8fhlNRuD5Uuy3MFhgZG2bRajjf8MRIj36x4k8Azc-bE3L92_23j0Gt9LgUJNwlLINsNqdLOwTj4g69TSe_3MW9woM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+Stability+Mechanisms+of+Eight-Atom+Binary+Metal+Clusters+Using+DFT+Calculations+and+k+-means+Clustering+Algorithm&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Orlando+Morais%2C+Felipe&rft.au=Andriani%2C+Karla+F.&rft.au=Da+Silva%2C+Juarez+L.+F.&rft.date=2021-07-26&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=61&rft.issue=7&rft.spage=3411&rft.epage=3420&rft_id=info:doi/10.1021%2Facs.jcim.1c00253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jcim_1c00253 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |