Investigation of the Stability Mechanisms of Eight-Atom Binary Metal Clusters Using DFT Calculations and k‑means Clustering Algorithm

Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clu...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 61; no. 7; pp. 3411 - 3420
Main Authors Orlando Morais, Felipe, Andriani, Karla F, Da Silva, Juarez L. F
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 26.07.2021
Subjects
Online AccessGet full text
ISSN1549-9596
1549-960X
1549-960X
DOI10.1021/acs.jcim.1c00253

Cover

Abstract Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clusters). Based on the excess energy analysis, the six most stable binary clusters are NiAl, NiGa, CoAl, FeNi, NiZn, and FeAl, and except for FeNi, their highest energetic stabilities can be explained by the hybridization of the d- and sp-states, which is maximized at the 50% composition, i.e., A4B4. Based on the Spearman correlation analysis, the energetic stability of the binary clusters increases with an increase in the highest occupied molecule orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy separation, which can be considered as a global descriptor. Furthermore, reducing the total magnetic moment values increases the stability for binary clusters without the Fe, Co, and Ni species, while the binary FeB, CoB, and NiB clusters increase their energetic stability with a decrease in the cluster radius, respectively, i.e., an energetic preference for compact structures.
AbstractList Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clusters). Based on the excess energy analysis, the six most stable binary clusters are NiAl, NiGa, CoAl, FeNi, NiZn, and FeAl, and except for FeNi, their highest energetic stabilities can be explained by the hybridization of the d- and sp-states, which is maximized at the 50% composition, i.e., A4B4. Based on the Spearman correlation analysis, the energetic stability of the binary clusters increases with an increase in the highest occupied molecule orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy separation, which can be considered as a global descriptor. Furthermore, reducing the total magnetic moment values increases the stability for binary clusters without the Fe, Co, and Ni species, while the binary FeB, CoB, and NiB clusters increase their energetic stability with a decrease in the cluster radius, respectively, i.e., an energetic preference for compact structures.
Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clusters). Based on the excess energy analysis, the six most stable binary clusters are NiAl, NiGa, CoAl, FeNi, NiZn, and FeAl, and except for FeNi, their highest energetic stabilities can be explained by the hybridization of the d- and sp-states, which is maximized at the 50% composition, i.e., A4B4. Based on the Spearman correlation analysis, the energetic stability of the binary clusters increases with an increase in the highest occupied molecule orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy separation, which can be considered as a global descriptor. Furthermore, reducing the total magnetic moment values increases the stability for binary clusters without the Fe, Co, and Ni species, while the binary FeB, CoB, and NiB clusters increase their energetic stability with a decrease in the cluster radius, respectively, i.e., an energetic preference for compact structures.Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clusters). Based on the excess energy analysis, the six most stable binary clusters are NiAl, NiGa, CoAl, FeNi, NiZn, and FeAl, and except for FeNi, their highest energetic stabilities can be explained by the hybridization of the d- and sp-states, which is maximized at the 50% composition, i.e., A4B4. Based on the Spearman correlation analysis, the energetic stability of the binary clusters increases with an increase in the highest occupied molecule orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy separation, which can be considered as a global descriptor. Furthermore, reducing the total magnetic moment values increases the stability for binary clusters without the Fe, Co, and Ni species, while the binary FeB, CoB, and NiB clusters increase their energetic stability with a decrease in the cluster radius, respectively, i.e., an energetic preference for compact structures.
Author Andriani, Karla F
Da Silva, Juarez L. F
Orlando Morais, Felipe
Author_xml – sequence: 1
  givenname: Felipe
  orcidid: 0000-0003-4113-725X
  surname: Orlando Morais
  fullname: Orlando Morais, Felipe
– sequence: 2
  givenname: Karla F
  orcidid: 0000-0002-6662-660X
  surname: Andriani
  fullname: Andriani, Karla F
– sequence: 3
  givenname: Juarez L. F
  orcidid: 0000-0003-0645-8760
  surname: Da Silva
  fullname: Da Silva, Juarez L. F
  email: juarez_dasilva@iqsc.usp.br
BookMark eNp9kTtPwzAUhS0EEs-d0RILAym2EzvJWMpTAjEAElvkOE7r4thgO0hsbMz8RX4JTlsWJJiur853rq7v2QbrxhoJwD5GI4wIPubCj-ZCdSMsECI0XQNbmGZlUjL0uP7zpiXbBNvezxFK05KRLfBxZV6lD2rKg7IG2haGmYR3gddKq_AGb6SYcaN85wftTE1nIRkH28ETZbgb9MA1nOjeB-k8fPDKTOHp-T2ccC16vZjqITcNfPp6_-wkj92KHsixnlqnwqzbBRst117ureoOeDg_u59cJte3F1eT8XXCSY5DQmuCckJF3VBWCkHLhpEya5jIRRREyds6xzLLZNo0NcYkbdsm521bsEZgJot0Bxwu5z47-9LHn1ed8kJqzY20va8IzbKiwAVNI3rwC53b3pm4XaRoXuQooyhSaEkJZ713sq2eneriaSqMqiGZKiZTDclUq2Sihf2yCBUWlwqOK_2f8WhpXCg_y_yJfwPsvqk8
CitedBy_id crossref_primary_10_1016_j_mcat_2023_113366
crossref_primary_10_1039_D4DD00282B
crossref_primary_10_1007_s00214_022_02912_7
crossref_primary_10_1021_acs_jcim_2c00957
crossref_primary_10_1063_5_0180906
crossref_primary_10_1155_2022_8193800
crossref_primary_10_1016_j_ica_2024_122376
crossref_primary_10_1063_5_0196840
crossref_primary_10_1016_j_colsurfa_2025_136286
crossref_primary_10_1016_j_chemphys_2024_112512
crossref_primary_10_1016_j_watres_2022_119065
crossref_primary_10_1039_D4CP00672K
crossref_primary_10_1016_j_commatsci_2022_111805
crossref_primary_10_1063_5_0091145
crossref_primary_10_1021_acs_jcim_1c01570
crossref_primary_10_1155_2022_7544772
crossref_primary_10_1021_acs_jpcc_4c03846
crossref_primary_10_1016_j_apsusc_2022_154413
crossref_primary_10_1038_s41598_025_86141_5
Cites_doi 10.1103/PhysRev.140.A1133
10.1063/1.5125689
10.1016/j.cpc.2009.06.022
10.1016/j.jcp.2009.08.008
10.1103/PhysRevB.15.4716
10.1021/acs.jpcc.9b00291
10.1140/epjd/e2012-30447-y
10.1016/j.commatsci.2014.11.022
10.1088/1468-6996/15/6/063501
10.1063/1.3533422
10.1039/c2cs15325d
10.1103/PhysRev.136.B864
10.1021/acs.jpcc.5b02242
10.1016/j.molstruc.2012.02.026
10.1103/PhysRevLett.77.3865
10.1021/acs.jcim.1c00097
10.1103/PhysRevLett.108.058301
10.1016/j.apcatb.2017.01.064
10.1021/jp508220h
10.1002/anie.201806039
10.1021/jp302844f
10.1021/ct6003752
10.1039/D0DT01853H
10.1016/j.jallcom.2018.08.033
10.1039/D0CP06179D
10.1021/acs.jpcc.6b10404
10.1021/acs.inorgchem.7b02585
10.1016/j.tsf.2010.01.018
10.1038/srep15951
10.1021/acs.jpcc.5b09453
10.1063/1.1680020
10.1021/acs.jpcc.9b09561
10.1039/C5CP00728C
10.1126/sciadv.aav5577
10.1021/jp801837d
10.1088/0953-8984/28/17/175302
10.1063/1.472460
10.1021/acscatal.5b01816
10.1039/C8SC03902J
10.1021/acs.jpcc.7b05714
10.1039/a805753b
10.1039/C7CP02240A
10.1006/enfo.2001.0061
10.1021/jp3017997
10.1039/C9CP00201D
10.1002/anie.197000251
10.1021/acssuschemeng.9b06823
10.1002/jcc.10089
10.1021/cr040090g
10.1021/cr980391o
10.1038/nnano.2015.140
10.1039/c2cp42386c
10.1038/natrevmats.2017.50
10.1021/acs.accounts.8b00327
10.1038/srep19656
10.2307/1412159
10.1126/science.aas8815
10.1246/cl.131232
10.1021/nn2039565
10.1039/C8CP03384F
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright American Chemical Society Jul 26, 2021
Copyright_xml – notice: 2021 American Chemical Society
– notice: Copyright American Chemical Society Jul 26, 2021
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jcim.1c00253
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
EndPage 3420
ExternalDocumentID 10_1021_acs_jcim_1c00253
c012051295
GroupedDBID -
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABUCX
ACGFS
ACIWK
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
D0L
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
P2P
PQEST
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
CITATION
CUPRZ
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a271t-5b20725cbd569cc59d6294d6c7c207c9afb71e44e3ddb1123ffd7aff86dc16e83
IEDL.DBID ACS
ISSN 1549-9596
1549-960X
IngestDate Thu Jul 10 23:31:26 EDT 2025
Mon Jun 30 10:56:29 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
Tue Jul 01 03:04:45 EDT 2025
Wed Jul 28 04:36:07 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a271t-5b20725cbd569cc59d6294d6c7c207c9afb71e44e3ddb1123ffd7aff86dc16e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0645-8760
0000-0002-6662-660X
0000-0003-4113-725X
PQID 2557870450
PQPubID 28739
PageCount 10
ParticipantIDs proquest_miscellaneous_2544881853
proquest_journals_2557870450
crossref_primary_10_1021_acs_jcim_1c00253
crossref_citationtrail_10_1021_acs_jcim_1c00253
acs_journals_10_1021_acs_jcim_1c00253
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210726
2021-07-26
PublicationDateYYYYMMDD 2021-07-26
PublicationDate_xml – month: 07
  year: 2021
  text: 20210726
  day: 26
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref43/cit43
  doi: 10.1103/PhysRev.140.A1133
– ident: ref32/cit32
  doi: 10.1063/1.5125689
– ident: ref47/cit47
  doi: 10.1016/j.cpc.2009.06.022
– ident: ref48/cit48
  doi: 10.1016/j.jcp.2009.08.008
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.15.4716
– ident: ref14/cit14
  doi: 10.1021/acs.jpcc.9b00291
– ident: ref36/cit36
  doi: 10.1140/epjd/e2012-30447-y
– ident: ref30/cit30
  doi: 10.1016/j.commatsci.2014.11.022
– ident: ref6/cit6
  doi: 10.1088/1468-6996/15/6/063501
– ident: ref60/cit60
  doi: 10.1063/1.3533422
– ident: ref1/cit1
  doi: 10.1039/c2cs15325d
– ident: ref42/cit42
  doi: 10.1103/PhysRev.136.B864
– ident: ref27/cit27
  doi: 10.1021/acs.jpcc.5b02242
– ident: ref37/cit37
  doi: 10.1016/j.molstruc.2012.02.026
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref52/cit52
  doi: 10.1021/acs.jcim.1c00097
– ident: ref51/cit51
  doi: 10.1103/PhysRevLett.108.058301
– ident: ref3/cit3
  doi: 10.1016/j.apcatb.2017.01.064
– ident: ref31/cit31
  doi: 10.1021/jp508220h
– ident: ref35/cit35
  doi: 10.1002/anie.201806039
– ident: ref26/cit26
  doi: 10.1021/jp302844f
– ident: ref56/cit56
  doi: 10.1021/ct6003752
– ident: ref22/cit22
  doi: 10.1039/D0DT01853H
– ident: ref58/cit58
  doi: 10.1016/j.jallcom.2018.08.033
– ident: ref25/cit25
  doi: 10.1039/D0CP06179D
– ident: ref33/cit33
  doi: 10.1021/acs.jpcc.6b10404
– ident: ref8/cit8
  doi: 10.1021/acs.inorgchem.7b02585
– ident: ref21/cit21
  doi: 10.1016/j.tsf.2010.01.018
– ident: ref17/cit17
  doi: 10.1038/srep15951
– ident: ref11/cit11
  doi: 10.1021/acs.jpcc.5b09453
– ident: ref45/cit45
  doi: 10.1063/1.1680020
– ident: ref29/cit29
  doi: 10.1021/acs.jpcc.9b09561
– ident: ref18/cit18
  doi: 10.1039/C5CP00728C
– ident: ref39/cit39
  doi: 10.1126/sciadv.aav5577
– ident: ref40/cit40
  doi: 10.1021/jp801837d
– ident: ref34/cit34
  doi: 10.1088/0953-8984/28/17/175302
– ident: ref49/cit49
  doi: 10.1063/1.472460
– ident: ref2/cit2
  doi: 10.1021/acscatal.5b01816
– ident: ref20/cit20
  doi: 10.1039/C8SC03902J
– ident: ref28/cit28
  doi: 10.1021/acs.jpcc.7b05714
– ident: ref10/cit10
  doi: 10.1039/a805753b
– ident: ref24/cit24
  doi: 10.1039/C7CP02240A
– ident: ref55/cit55
  doi: 10.1006/enfo.2001.0061
– ident: ref41/cit41
  doi: 10.1021/jp3017997
– ident: ref15/cit15
  doi: 10.1039/C9CP00201D
– ident: ref59/cit59
  doi: 10.1002/anie.197000251
– ident: ref4/cit4
  doi: 10.1021/acssuschemeng.9b06823
– ident: ref50/cit50
  doi: 10.1002/jcc.10089
– ident: ref53/cit53
  doi: 10.1021/cr040090g
– ident: ref23/cit23
  doi: 10.1021/cr980391o
– ident: ref7/cit7
  doi: 10.1038/nnano.2015.140
– ident: ref57/cit57
  doi: 10.1039/c2cp42386c
– ident: ref5/cit5
  doi: 10.1038/natrevmats.2017.50
– ident: ref12/cit12
  doi: 10.1021/acs.accounts.8b00327
– ident: ref19/cit19
  doi: 10.1038/srep19656
– ident: ref54/cit54
  doi: 10.2307/1412159
– ident: ref38/cit38
  doi: 10.1126/science.aas8815
– ident: ref9/cit9
  doi: 10.1246/cl.131232
– ident: ref16/cit16
  doi: 10.1021/nn2039565
– ident: ref13/cit13
  doi: 10.1039/C8CP03384F
SSID ssj0033962
Score 2.4631894
Snippet Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3411
SubjectTerms Algorithms
Aluminum
Cluster analysis
Clustering
Cobalt
Computational Chemistry
Copper
Correlation analysis
Density functional theory
Intermetallic compounds
Iron
Magnetic moments
Mathematical analysis
Metal clusters
Molecular orbitals
Nickel aluminides
Nickel base alloys
Nickel compounds
Stability analysis
Vector quantization
Title Investigation of the Stability Mechanisms of Eight-Atom Binary Metal Clusters Using DFT Calculations and k‑means Clustering Algorithm
URI http://dx.doi.org/10.1021/acs.jcim.1c00253
https://www.proquest.com/docview/2557870450
https://www.proquest.com/docview/2544881853
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-960X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033962
  issn: 1549-9596
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODS8hRbCjISHDh4G9uxHR-X0FWFVC60Um-Rn7B0k1RN9lBO3Dj3L_JLsL1JSwFVvWbGkWNPZj5rxt8A8MY4LrzXGlFjNcqtlyicQywqGNeaWI9Juh598InvH-Ufj9nxFU3O3xl8gneV6abfzKKeYhMDNL0L7hEuRCzfm5WfR69LqUzNQyPjGJJMjinJ_70hBiLTXQ9E1_1wCi7zrXWXoi5xEsaakpPpqtdT8_1fxsZbzPsh2BwwJpytjeIRuOOax-B-ObZ2ewJ-_sGu0Taw9TDAQBhwZ6qUPYcHLt4HXnR1F2V7iWtk1rc1fJ9u7wZ5gOywXK4iy0IHU9kB_DA_hKVamqEfWAdVY-HJrx8XtQvhcNSOmrPll_Zs0X-tn4Kj-d5huY-GjgxIEYF7xDTJBGFGW8alMUxaTmRuuREmCIxUXgvs8txRa3VActR7K5T3BbcGc1fQZ2CjaRv3HEAmsKLCU2W0yqXPlM584XBR5IWPwHMC3oYVrIY_qqtSspzgKj0My1oNyzoBu-M2VmagNY_dNZY3jHh3OeJ0Telxg-7OaBlXUwmnsOjmcpZNwOtLcdjCmGtRjWtXUSecexMY2r7lh7wAD0isl8kEInwHbPRnK_cyAJ5ev0qW_hv3bv8Y
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigX3oiFAkaCA4ds4zh24uMSulqg2wNspd4iP2HpJkFN9gAnbpz5i_wSbDfZUoQquHrG1sR2PDOamW8AninDMmuljIjSMkq15ZHzQ3SUUyZloi1OQnn0_JDNjtI3x_R4C_BQC-OEaN1KbQjin6ML4D0_9kktqzFWXk-TK3CVshR7f2tSvB8eX0J46CHqgcciTvkQmfzbCl4fqfaiPrr4HAcdM70B7zbShdSSk_G6k2P19Q_gxv8S_yZc7y1ONDm7Irdgy9S3YacYGr3dge-_YW00NWosckYhclZoyJv9gubGVwcv26r1tP2APDLpmgq9DLW8ju4MeFSs1h5zoUUhCQG9mi5QIVaq7w7WIlFrdPLz24_KOOU4cHvOyepDc7rsPlZ34Wi6vyhmUd-fIRJJhruIyiTOEqqkpowrRblmCU81U5lyBMWFlRk2aWqI1tLZdcRanQlrc6YVZiYn92C7bmpzHxDNsCCZJUJJkXIbCxnb3OA8T3PrzdARPHc7WPb_V1uG0HmCyzDotrXst3UEe8NplqoHOfe9NlaXzHixmfH5DODjEt7d4YKci-J8Mv_opTQewdMN2R2hj7yI2jRrz-O84GAaPfjHD3kCO7PF_KA8eH349iFcS3wmTZxFCduF7e50bR45U6iTj8Pl_wWq3weJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkYAL5VWxUMBIcODgbRzHdnxc0q7KoxUSLeot8hOWbpKqyR7gxI1z_2J_SW03WShCFVw9tuX3fNbMfAPAC20Zd04pRLRRKDNOIP8PMSinTKnUOJzG8OjdPbZzkL09pIcrgA6xMH4Qre-pjUb8cKuPjesZBvBmKP-qZ9UY66CryTVwnTJ_0wMiKj4ODzAhIuYRDeRjSFAxWCf_1kPQSbq9rJMuP8lRz0zXwKflCKN7ydF40amx_v4HeeN_T-EOuN0jTzi5OCp3wYqt74GbxZDw7T74-RvnRlPDxkEPDqFHo9F_9hvctSFKeNZWbZBtRwaSSddU8HWM6fVyD-RhMV8E7oUWRmcEuDXdh4Wc6z5LWAtlbeDR2Y_TynolOdQONSfzz83JrPtSPQAH0-39Ygf1eRqQTDnuEFVpwlOqlaFMaE2FYanIDNNce4EW0imObZZZYozy-I44Z7h0LmdGY2Zzsg5W66a2DwGkHEvCHZFayUy4RKrE5RbneZa7AEdH4KVfwbK_Z20ZTegpLmOhX9ayX9YR2Bx2tNQ92XnIuTG_osWrZYvjC6KPK-puDIfk11D83yw8fhlNRuD5Uuy3MFhgZG2bRajjf8MRIj36x4k8Azc-bE3L92_23j0Gt9LgUJNwlLINsNqdLOwTj4g69TSe_3MW9woM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+Stability+Mechanisms+of+Eight-Atom+Binary+Metal+Clusters+Using+DFT+Calculations+and+k+-means+Clustering+Algorithm&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Orlando+Morais%2C+Felipe&rft.au=Andriani%2C+Karla+F.&rft.au=Da+Silva%2C+Juarez+L.+F.&rft.date=2021-07-26&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=61&rft.issue=7&rft.spage=3411&rft.epage=3420&rft_id=info:doi/10.1021%2Facs.jcim.1c00253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jcim_1c00253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon