3D-Printable RGB LED Photometer Controlled by an Arduino–Python Interface for Molecular Absorption Applications in Chemistry Laboratories
Among quantitative analysis techniques, molecular absorption methods in the ultraviolet/visible region are the most commonly employed in chemical laboratories worldwide. In general, the absorbance measurements are performed with a benchtop ultraviolet–visible spectrophotometer or photometer that has...
Saved in:
Published in | Journal of chemical education Vol. 102; no. 8; pp. 3615 - 3622 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Easton
American Chemical Society and Division of Chemical Education, Inc
12.08.2025
American Chemical Society |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9584 1938-1328 |
DOI | 10.1021/acs.jchemed.5c00082 |
Cover
Abstract | Among quantitative analysis techniques, molecular absorption methods in the ultraviolet/visible region are the most commonly employed in chemical laboratories worldwide. In general, the absorbance measurements are performed with a benchtop ultraviolet–visible spectrophotometer or photometer that has the characteristic of being a “black box”; that is, they cannot be opened to show to the students their basic components and functioning principles. Therefore, for a better understanding of the molecular absorption fundamentals, it is beneficial to use a device that allows showing its basic components. Herein, we report a low-cost photometer developed by compactly assembling a RGB LED, a light sensor, and an Arduino microcontroller in a 3D-printed housing. To manage the RGB LED and the light sensor and to compute and visualize absorbance values, an interface between Arduino and Python was created. The photometer was connected via USB port to a computer. We demonstrated the functionality of the photometer by studying Lambert–Beer’s law in colored aqueous standard solutions such as chromium(III) nitrate, potassium permanganate, and copper sulfate. The plots of absorbance versus concentration have an excellent adjusted coefficient of determination: R adj 2 = {0.99977, 0.99952, 0.99983} for chromium(III) nitrate, potassium permanganate, and copper sulfate, respectively, suggesting that the photometer can be used to validate Lambert–Beer’s law. In addition, a Didactic Guide was designed with learning objectives and a step-by-step process to guide the assembly of the photometer. Moreover, the photometer was used with students in an Instrumental Analysis course. The students made the electrical connections, uploaded the code to the Arduino, assembled the photometers, measured the absorbances, constructed the calibration curves, and determined the concentration of an unknown solution. Their results proved to be both precise and accurate. Therefore, the present work provides an affordable photometer for absorbance measurements in colored solutions, contributes to the democratization of expensive instruments for students, and is valuable for the teaching of basic concepts of molecular absorption spectroscopy in Analytical Chemistry and Instrumental Analysis courses. |
---|---|
AbstractList | Among quantitative analysis techniques, molecular absorption methods in the ultraviolet/visible region are the most commonly employed in chemical laboratories worldwide. In general, the absorbance measurements are performed with a benchtop ultraviolet–visible spectrophotometer or photometer that has the characteristic of being a “black box”; that is, they cannot be opened to show to the students their basic components and functioning principles. Therefore, for a better understanding of the molecular absorption fundamentals, it is beneficial to use a device that allows showing its basic components. Herein, we report a low-cost photometer developed by compactly assembling a RGB LED, a light sensor, and an Arduino microcontroller in a 3D-printed housing. To manage the RGB LED and the light sensor and to compute and visualize absorbance values, an interface between Arduino and Python was created. The photometer was connected via USB port to a computer. We demonstrated the functionality of the photometer by studying Lambert–Beer’s law in colored aqueous standard solutions such as chromium(III) nitrate, potassium permanganate, and copper sulfate. The plots of absorbance versus concentration have an excellent adjusted coefficient of determination: R adj 2 = {0.99977, 0.99952, 0.99983} for chromium(III) nitrate, potassium permanganate, and copper sulfate, respectively, suggesting that the photometer can be used to validate Lambert–Beer’s law. In addition, a Didactic Guide was designed with learning objectives and a step-by-step process to guide the assembly of the photometer. Moreover, the photometer was used with students in an Instrumental Analysis course. The students made the electrical connections, uploaded the code to the Arduino, assembled the photometers, measured the absorbances, constructed the calibration curves, and determined the concentration of an unknown solution. Their results proved to be both precise and accurate. Therefore, the present work provides an affordable photometer for absorbance measurements in colored solutions, contributes to the democratization of expensive instruments for students, and is valuable for the teaching of basic concepts of molecular absorption spectroscopy in Analytical Chemistry and Instrumental Analysis courses. Among quantitative analysis techniques, molecular absorption methods in the ultraviolet/visible region are the most commonly employed in chemical laboratories worldwide. In general, the absorbance measurements are performed with a benchtop ultraviolet–visible spectrophotometer or photometer that has the characteristic of being a "black box"; that is, they cannot be opened to show to the students their basic components and functioning principles. Therefore, for a better understanding of the molecular absorption fundamentals, it is beneficial to use a device that allows showing its basic components. Herein, we report a low-cost photometer developed by compactly assembling a RGB LED, a light sensor, and an Arduino microcontroller in a 3D-printed housing. To manage the RGB LED and the light sensor and to compute and visualize absorbance values, an interface between Arduino and Python was created. The photometer was connected via USB port to a computer. We demonstrated the functionality of the photometer by studying Lambert–Beer's law in colored aqueous standard solutions such as chromium(III) nitrate, potassium permanganate, and copper sulfate. The plots of absorbance versus concentration have an excellent adjusted coefficient of determination: Radj2 = {0.99977, 0.99952, 0.99983} for chromium(III) nitrate, potassium permanganate, and copper sulfate, respectively, suggesting that the photometer can be used to validate Lambert–Beer's law. In addition, a Didactic Guide was designed with learning objectives and a step-by-step process to guide the assembly of the photometer. Moreover, the photometer was used with students in an Instrumental Analysis course. The students made the electrical connections, uploaded the code to the Arduino, assembled the photometers, measured the absorbances, constructed the calibration curves, and determined the concentration of an unknown solution. Their results proved to be both precise and accurate. Therefore, the present work provides an affordable photometer for absorbance measurements in colored solutions, contributes to the democratization of expensive instruments for students, and is valuable for the teaching of basic concepts of molecular absorption spectroscopy in Analytical Chemistry and Instrumental Analysis courses. |
Author | García-Goitia, María F. González-Laprea, Jesús Fernandez, Lenys Smith-Rincón, Carlos E. Coronel, Martin Borrero-González, Luis J. |
AuthorAffiliation | Facultad de Ciencias Exactas, Naturales y Ambientales, Escuela de Ciencias Físicas y Matemática, Laboratorio de Óptica Aplicada Sorbonne Université, CNRS, Institut des Nanosciences de Paris Pontificia Universidad Católica del Ecuador Facultad de Ciencias Exactas, Naturales y Ambientales, Escuela de Ciencias Químicas Facultad Internacional de Innovación PUCE-Icam, Laboratorio de Óptica Aplicada |
AuthorAffiliation_xml | – name: Facultad de Ciencias Exactas, Naturales y Ambientales, Escuela de Ciencias Físicas y Matemática, Laboratorio de Óptica Aplicada – name: Sorbonne Université, CNRS, Institut des Nanosciences de Paris – name: Facultad Internacional de Innovación PUCE-Icam, Laboratorio de Óptica Aplicada – name: Pontificia Universidad Católica del Ecuador – name: Facultad de Ciencias Exactas, Naturales y Ambientales, Escuela de Ciencias Químicas |
Author_xml | – sequence: 1 givenname: Jesús surname: González-Laprea fullname: González-Laprea, Jesús organization: Facultad Internacional de Innovación PUCE-Icam, Laboratorio de Óptica Aplicada – sequence: 2 givenname: Carlos E. surname: Smith-Rincón fullname: Smith-Rincón, Carlos E. organization: Sorbonne Université, CNRS, Institut des Nanosciences de Paris – sequence: 3 givenname: María F. surname: García-Goitia fullname: García-Goitia, María F. organization: Pontificia Universidad Católica del Ecuador – sequence: 4 givenname: Martin surname: Coronel fullname: Coronel, Martin organization: Pontificia Universidad Católica del Ecuador – sequence: 5 givenname: Lenys surname: Fernandez fullname: Fernandez, Lenys organization: Pontificia Universidad Católica del Ecuador – sequence: 6 givenname: Luis J. orcidid: 0000-0003-3853-5433 surname: Borrero-González fullname: Borrero-González, Luis J. email: ljborrero@puce.edu.ec organization: Pontificia Universidad Católica del Ecuador |
BookMark | eNp9kL1OwzAUhS1UJFrgCVgsMaf1XxpnLOVXKqJCMEfXjqOmSu1gu0M3dkbekCfB0LIy3Svd75x7dEZoYJ01CF1QMqaE0QnoMF7rldmYepxrQohkR2hISy4zypkcoCFJWFbmUpygUQhrQijLSzlEH_w6W_rWRlCdwc93V3hxc42XKxfdxkTj8dzZ6F3XmRqrHQaLZ77ettZ9vX8ud3HlLH6wiWtAG9w4jx9dZ_S2A49nKjjfxzYhs77vWg0_e8CtxfMUtQ3R7_AClPMQnW9NOEPHDXTBnB_mKXq9vXmZ32eLp7uH-WyRAZuWMQMlmQYCkhgBumiKXHEFTW1KKJXIFU1RpoxxAUUjiBI1JYIpwYQkWvGm5qfocu_be_e2NSFWa7f1Nr2sOBOCFMW0kInie0p7F4I3TdX7dgN-V1FS_bRepdarQ-vVofWkmuxVv8c_2_8U3zCjjc0 |
Cites_doi | 10.1039/D2AY00678B 10.1021/acs.jchemed.2c00642 10.1021/acs.jchemed.5b00409 10.1021/acs.jchemed.0c01085 10.1021/acs.jchemed.2c01029 10.1021/acs.jchemed.0c01089 10.1021/acs.jchemed.4c00386 10.1021/acs.jchemed.0c00404 10.1021/acs.jchemed.5b00984 10.1021/acs.jchemed.5b00654 10.1021/acs.jchemed.2c00679 10.1021/acs.jchemed.4c00526 10.1021/acs.jchemed.4c01173 10.1021/acs.jchemed.3c00248 10.1021/acs.jchemed.9b00548 10.1021/acs.jchemed.6b00676 10.1021/acs.jchemed.0c01345 10.1021/acs.jchemed.1c00742 10.1021/acs.jchemed.8b00529 10.1021/acs.jchemed.6b00041 10.1021/acs.jchemed.7b00172 10.1021/ed400887t 10.1021/acs.jchemed.1c00560 10.1021/ed4009073 10.1021/acs.jchemed.3c01021 10.1021/ed5008102 10.1021/acs.jchemed.2c00060 10.1021/acs.jchemed.3c00406 10.1590/1806-9126-rbef-2018-0294 10.1021/acs.jchemed.6b00262 10.1021/acs.jchemed.9b01023 10.1021/acs.jchemed.8b00870 10.1021/acs.jchemed.5b00494 10.1021/acs.jchemed.2c00372 10.1021/acs.jchemed.8b01037 10.21577/0100-4042.20230065 10.1021/ed400784x 10.1016/j.microc.2020.104986 10.1007/s12161-019-01611-7 |
ContentType | Journal Article |
Copyright | Published 2025 by American Chemical Society and Division of Chemical Education, Inc. Copyright American Chemical Society 2025 |
Copyright_xml | – notice: Published 2025 by American Chemical Society and Division of Chemical Education, Inc. – notice: Copyright American Chemical Society 2025 |
DBID | AAYXX CITATION AHOVV K9. |
DOI | 10.1021/acs.jchemed.5c00082 |
DatabaseName | CrossRef Education Research Index ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education Chemistry |
EISSN | 1938-1328 |
EndPage | 3622 |
ExternalDocumentID | 10_1021_acs_jchemed_5c00082 b287932356 |
Genre | Feature |
GroupedDBID | -DZ -ET -~X .K2 4.4 55A 5GY 5VS 6TJ 7K8 85S AABCJ AABXI AAHBH AAIKC AAMNW AAWRB ABBLG ABDQB ABEFU ABJNI ABLBI ABMVS ABOCM ABPPZ ABQRX ABUCX ACGFO ACGFS ACGOD ACIWK ACKOT ACNCT ACQAM ACS ADHLV ADUKH AEESW AENEX AFEFF AFXLT AHGAQ ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQSVZ BAANH CJ0 CUPRZ DU5 E.L EBS ED~ F5P FA8 FAC GGK GNL HF~ JG~ LG6 M0P P2P RNS ROL RWL RXW SJN TAE TN5 TWZ UHB UI2 UKR UPT VF5 VG9 W1F WH7 X7L XKZ XSW XZL YQT YR5 YYQ YZZ ZCA ZUP ~02 AAYXX CITATION AHOVV K9. |
ID | FETCH-LOGICAL-a269t-ab82ca0a80e4ac7f75b3bafde9a9b45b1ace62234a7f40b4d1042b42480cb3fd3 |
IEDL.DBID | ACS |
ISSN | 0021-9584 |
IngestDate | Fri Sep 12 07:20:43 EDT 2025 Wed Oct 01 05:39:34 EDT 2025 Wed Aug 13 03:11:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Hands-On Learning/Manipulatives Instrumental Methods Spectroscopy UV−vis Spectroscopy Upper-Division Undergraduate Analytical Chemistry Laboratory Computing/Interfacing Laboratory Equipment/Apparatus Inquiry-Based/Discovery Learning Aqueous Solution Chemistry |
Language | English |
License | https://doi.org/10.15223/policy-017 https://doi.org/10.15223/policy-009 https://doi.org/10.15223/policy-001 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a269t-ab82ca0a80e4ac7f75b3bafde9a9b45b1ace62234a7f40b4d1042b42480cb3fd3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ORCID | 0000-0003-3853-5433 |
PQID | 3244077678 |
PQPubID | 41672 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3244077678 crossref_primary_10_1021_acs_jchemed_5c00082 acs_journals_10_1021_acs_jchemed_5c00082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-08-12 |
PublicationDateYYYYMMDD | 2025-08-12 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Easton |
PublicationPlace_xml | – name: Easton |
PublicationTitle | Journal of chemical education |
PublicationTitleAlternate | J. Chem. Educ |
PublicationYear | 2025 |
Publisher | American Chemical Society and Division of Chemical Education, Inc American Chemical Society |
Publisher_xml | – name: American Chemical Society and Division of Chemical Education, Inc – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Magnusson B. (ref44/cit44) 2014 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref24/cit24 ref38/cit38 Skoog D. A. (ref1/cit1) 2017 Robinson J. W. (ref43/cit43) 2004 ref7/cit7 |
References_xml | – ident: ref39/cit39 doi: 10.1039/D2AY00678B – volume-title: Eurachem Guide: The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics year: 2014 ident: ref44/cit44 – ident: ref28/cit28 doi: 10.1021/acs.jchemed.2c00642 – ident: ref20/cit20 doi: 10.1021/acs.jchemed.5b00409 – ident: ref3/cit3 doi: 10.1021/acs.jchemed.0c01085 – ident: ref29/cit29 doi: 10.1021/acs.jchemed.2c01029 – ident: ref12/cit12 doi: 10.1021/acs.jchemed.0c01089 – ident: ref16/cit16 doi: 10.1021/acs.jchemed.4c00386 – ident: ref37/cit37 doi: 10.1021/acs.jchemed.0c00404 – ident: ref21/cit21 doi: 10.1021/acs.jchemed.5b00984 – ident: ref26/cit26 doi: 10.1021/acs.jchemed.5b00654 – ident: ref15/cit15 doi: 10.1021/acs.jchemed.2c00679 – ident: ref14/cit14 doi: 10.1021/acs.jchemed.4c00526 – ident: ref23/cit23 doi: 10.1021/acs.jchemed.4c01173 – ident: ref4/cit4 doi: 10.1021/acs.jchemed.3c00248 – ident: ref10/cit10 doi: 10.1021/acs.jchemed.9b00548 – ident: ref13/cit13 doi: 10.1021/acs.jchemed.6b00676 – ident: ref25/cit25 doi: 10.1021/acs.jchemed.0c01345 – ident: ref6/cit6 doi: 10.1021/acs.jchemed.1c00742 – ident: ref7/cit7 doi: 10.1021/acs.jchemed.8b00529 – ident: ref18/cit18 doi: 10.1021/acs.jchemed.6b00041 – ident: ref31/cit31 doi: 10.1021/acs.jchemed.7b00172 – ident: ref19/cit19 doi: 10.1021/ed400887t – ident: ref27/cit27 doi: 10.1021/acs.jchemed.1c00560 – ident: ref35/cit35 doi: 10.1021/ed4009073 – ident: ref5/cit5 doi: 10.1021/acs.jchemed.3c01021 – ident: ref32/cit32 doi: 10.1021/ed5008102 – ident: ref8/cit8 doi: 10.1021/acs.jchemed.2c00060 – ident: ref22/cit22 doi: 10.1021/acs.jchemed.3c00406 – ident: ref33/cit33 doi: 10.1590/1806-9126-rbef-2018-0294 – ident: ref2/cit2 doi: 10.1021/acs.jchemed.6b00262 – ident: ref17/cit17 doi: 10.1021/acs.jchemed.9b01023 – volume-title: Principles of Instrumental Analysis year: 2017 ident: ref1/cit1 – ident: ref24/cit24 doi: 10.1021/acs.jchemed.8b00870 – ident: ref30/cit30 doi: 10.1021/acs.jchemed.5b00494 – ident: ref36/cit36 doi: 10.1021/acs.jchemed.2c00372 – ident: ref41/cit41 – ident: ref42/cit42 – ident: ref11/cit11 doi: 10.1021/acs.jchemed.8b01037 – ident: ref9/cit9 doi: 10.21577/0100-4042.20230065 – volume-title: Undergraduate Instrumental Analysis year: 2004 ident: ref43/cit43 – ident: ref34/cit34 doi: 10.1021/ed400784x – ident: ref38/cit38 doi: 10.1016/j.microc.2020.104986 – ident: ref40/cit40 doi: 10.1007/s12161-019-01611-7 |
SSID | ssj0012598 |
Score | 2.4208567 |
Snippet | Among quantitative analysis techniques, molecular absorption methods in the ultraviolet/visible region are the most commonly employed in chemical laboratories... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3615 |
SubjectTerms | Absorbance Absorption spectroscopy Analytical chemistry Assembling Basic Skills Chemistry Chromium Copper sulfate Molecular absorption Photometers Potassium permanganate Programming languages Quantitative analysis Science education Science Laboratories Students Teaching methods Trivalent chromium |
Title | 3D-Printable RGB LED Photometer Controlled by an Arduino–Python Interface for Molecular Absorption Applications in Chemistry Laboratories |
URI | http://dx.doi.org/10.1021/acs.jchemed.5c00082 https://www.proquest.com/docview/3244077678 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1938-1328 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012598 issn: 0021-9584 databaseCode: ACS dateStart: 19240101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLY4Bli4Ebc8MDCQkDjONZZyCbVVxSGxRc-OLcqRoDYdYGJn5B_yS7CdpJxCrFb07Dy_vCPv-BDaBj8moQBpRQEVFhVeYMWEU8uNpSudGAQYtIZ2Jzi5pKdX_tWnZvVvGXzi7gEf2DfqBZRxsH1ubNY4miRB5OpYq9E8HyUNlCdfKl5ddaAMaz1k6Hci2hzxwVdz9FUbGxNzNIs6daNOWVlyaw8LZvOnn3Mb_3f6OTRTOZu4UUrHPBoT2QKaatYYbwsas7mq71hEL96B1e33skI3U-Gz433cOjzA3eu8yO91zQxullXtdyLF7BFDpuimw16Wvz2_dh_1CAJsfi9K4AIrVxi3a-Rd3GCDvG90E258SpjjXoZHh8GtUhxzHbsvocujw4vmiVVBNVhAgriwgEWEgwORIyjwUIY-8xjIVMQQM-ozV20dKE-EQiipw2iqokDCKKGRw5knU28ZTWR5JlYQJuAGJI1ctR5RSVIgGh-bSI_HXPcMrqIdxdSk-tQGicmiEzcxiyWnk4rTq2i3vtzkoRze8ffjG7UAfJBXDic1I4-itf9vvI6micYJ1qNzyQaaKPpDsamcl4JtGZF9B08v7hw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DLDwRjwKeGBgICVxnDQZSx8UaFEFVGKLbMcW5ZGgJh3KxM7IP-SXYDtJCwghWK3ofHYuvs-5u-8A2CeOjyqcCMNzMTcwt13DRwwbli8sYfqEE92toXPhtnr47Ma5yYvCVC2MVCKRkhIdxJ-wC1hHauxOrkP6iLLDtOuaBrOaC0UBotrVOHYgAX12_qrkA-lfC66hn4Uor8SSr17p66GsPU1zEfTGOuoEk_vyMKVl9vyNvvG_i1gCCzn0hNXMVpbBFI9WwFyt6Pi2ojo459keq-DVrhvdQT9KVWkVvDw5hu1GHXZv4zR-VBk0sJbluD_wENIRJJGUGw77Ufz-8tYdKUICqH82CsI4lMAYdoo-vLBKk3igTypY_RQ-h_0IjpWB7cw4Y3WTXwO9ZuO61jLyxg0GQa6fGoR6iBGTeCbHhFVExaE2JSLkPvEpdqglp3YlLsGkIrBJcSjvhIhihD2TUVuE9jqYieKIbwCIiOWi0LPkuIcFCglS3bKRsJnPVAXhJjiQmxrkH14S6Jg6sgI9mO10kO_0Jjgs3nHwlFF5_P54qbCDiXgJP7EmQPK2_j7xHphrXXfaQfv04nwbzCPVQViR6qISmEkHQ74jYU1Kd7UVfwApOfaH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-MwFH5iQGK4sM0gdnzgwIGUxHHS5FhaylZQxSLBKbIdW5QlQU16gBN3jvxDfgm2kxQYIYTmakXPS579vuQ9fx_AOvVCXBdUWoFPhEWE61sh5sRyQulIO6SCGrWGo2N_75wcXHgXIxBUd2HUIDJlKTNJfL2r72NZMgw4W7r9Ws1FxYmax034-gVjniaB06CoeTrMHyhQX5zBugBBxdiKb-hrIzoy8exzZPp8MJto056Cy-E4TZHJTW2Qsxp__IfC8X8mMg2TJQRFjcJnZmBEJLPwu1kpv81qJeey6uMPPLstq9vvJbm-YoVOdrdRZ6eFuldpnt7pShrULGrdb0WM2AOiibIbD3pJ-vr00n3QxATI_HSUlAukADI6qvR4UYNlad-cWKjxIY2OegkaDgZ1CidN9Rf9Xzhv75w196xSwMGi2A9zi7IAc2rTwBaE8rqse8xlVMYipCEjHnNU177CJ4TWJbEZidW3IWYEk8DmzJWxOwejSZqIeUCYOj6OA0e1B0TimGKtmo2ly0OubxIuwIZa1KjcgFlkcuvYiUxjsdJRudILsFm95-i-oPT4_vHlyhfezSsYSgwRUrD4847XYLzbaked_ePDJZjAWkhYc-viZRjN-wOxotBNzlaNI78B8oH5AQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printable+RGB+LED+Photometer+Controlled+by+an+Arduino%E2%80%93Python+Interface+for+Molecular+Absorption+Applications+in+Chemistry+Laboratories&rft.jtitle=Journal+of+chemical+education&rft.au=Gonz%C3%A1lez-Laprea%2C+Jes%C3%BAs&rft.au=Smith-Rinc%C3%B3n%2C+Carlos+E.&rft.au=Garc%C3%ADa-Goitia%2C+Mar%C3%ADa+F.&rft.au=Coronel%2C+Martin&rft.date=2025-08-12&rft.issn=0021-9584&rft.eissn=1938-1328&rft.volume=102&rft.issue=8&rft.spage=3615&rft.epage=3622&rft_id=info:doi/10.1021%2Facs.jchemed.5c00082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jchemed_5c00082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9584&client=summon |