3D-Printable RGB LED Photometer Controlled by an Arduino–Python Interface for Molecular Absorption Applications in Chemistry Laboratories

Among quantitative analysis techniques, molecular absorption methods in the ultraviolet/visible region are the most commonly employed in chemical laboratories worldwide. In general, the absorbance measurements are performed with a benchtop ultraviolet–visible spectrophotometer or photometer that has...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical education Vol. 102; no. 8; pp. 3615 - 3622
Main Authors González-Laprea, Jesús, Smith-Rincón, Carlos E., García-Goitia, María F., Coronel, Martin, Fernandez, Lenys, Borrero-González, Luis J.
Format Journal Article
LanguageEnglish
Published Easton American Chemical Society and Division of Chemical Education, Inc 12.08.2025
American Chemical Society
Subjects
Online AccessGet full text
ISSN0021-9584
1938-1328
DOI10.1021/acs.jchemed.5c00082

Cover

Abstract Among quantitative analysis techniques, molecular absorption methods in the ultraviolet/visible region are the most commonly employed in chemical laboratories worldwide. In general, the absorbance measurements are performed with a benchtop ultraviolet–visible spectrophotometer or photometer that has the characteristic of being a “black box”; that is, they cannot be opened to show to the students their basic components and functioning principles. Therefore, for a better understanding of the molecular absorption fundamentals, it is beneficial to use a device that allows showing its basic components. Herein, we report a low-cost photometer developed by compactly assembling a RGB LED, a light sensor, and an Arduino microcontroller in a 3D-printed housing. To manage the RGB LED and the light sensor and to compute and visualize absorbance values, an interface between Arduino and Python was created. The photometer was connected via USB port to a computer. We demonstrated the functionality of the photometer by studying Lambert–Beer’s law in colored aqueous standard solutions such as chromium­(III) nitrate, potassium permanganate, and copper sulfate. The plots of absorbance versus concentration have an excellent adjusted coefficient of determination: R adj 2 = {0.99977, 0.99952, 0.99983} for chromium­(III) nitrate, potassium permanganate, and copper sulfate, respectively, suggesting that the photometer can be used to validate Lambert–Beer’s law. In addition, a Didactic Guide was designed with learning objectives and a step-by-step process to guide the assembly of the photometer. Moreover, the photometer was used with students in an Instrumental Analysis course. The students made the electrical connections, uploaded the code to the Arduino, assembled the photometers, measured the absorbances, constructed the calibration curves, and determined the concentration of an unknown solution. Their results proved to be both precise and accurate. Therefore, the present work provides an affordable photometer for absorbance measurements in colored solutions, contributes to the democratization of expensive instruments for students, and is valuable for the teaching of basic concepts of molecular absorption spectroscopy in Analytical Chemistry and Instrumental Analysis courses.
AbstractList Among quantitative analysis techniques, molecular absorption methods in the ultraviolet/visible region are the most commonly employed in chemical laboratories worldwide. In general, the absorbance measurements are performed with a benchtop ultraviolet–visible spectrophotometer or photometer that has the characteristic of being a “black box”; that is, they cannot be opened to show to the students their basic components and functioning principles. Therefore, for a better understanding of the molecular absorption fundamentals, it is beneficial to use a device that allows showing its basic components. Herein, we report a low-cost photometer developed by compactly assembling a RGB LED, a light sensor, and an Arduino microcontroller in a 3D-printed housing. To manage the RGB LED and the light sensor and to compute and visualize absorbance values, an interface between Arduino and Python was created. The photometer was connected via USB port to a computer. We demonstrated the functionality of the photometer by studying Lambert–Beer’s law in colored aqueous standard solutions such as chromium­(III) nitrate, potassium permanganate, and copper sulfate. The plots of absorbance versus concentration have an excellent adjusted coefficient of determination: R adj 2 = {0.99977, 0.99952, 0.99983} for chromium­(III) nitrate, potassium permanganate, and copper sulfate, respectively, suggesting that the photometer can be used to validate Lambert–Beer’s law. In addition, a Didactic Guide was designed with learning objectives and a step-by-step process to guide the assembly of the photometer. Moreover, the photometer was used with students in an Instrumental Analysis course. The students made the electrical connections, uploaded the code to the Arduino, assembled the photometers, measured the absorbances, constructed the calibration curves, and determined the concentration of an unknown solution. Their results proved to be both precise and accurate. Therefore, the present work provides an affordable photometer for absorbance measurements in colored solutions, contributes to the democratization of expensive instruments for students, and is valuable for the teaching of basic concepts of molecular absorption spectroscopy in Analytical Chemistry and Instrumental Analysis courses.
Among quantitative analysis techniques, molecular absorption methods in the ultraviolet/visible region are the most commonly employed in chemical laboratories worldwide. In general, the absorbance measurements are performed with a benchtop ultraviolet–visible spectrophotometer or photometer that has the characteristic of being a "black box"; that is, they cannot be opened to show to the students their basic components and functioning principles. Therefore, for a better understanding of the molecular absorption fundamentals, it is beneficial to use a device that allows showing its basic components. Herein, we report a low-cost photometer developed by compactly assembling a RGB LED, a light sensor, and an Arduino microcontroller in a 3D-printed housing. To manage the RGB LED and the light sensor and to compute and visualize absorbance values, an interface between Arduino and Python was created. The photometer was connected via USB port to a computer. We demonstrated the functionality of the photometer by studying Lambert–Beer's law in colored aqueous standard solutions such as chromium(III) nitrate, potassium permanganate, and copper sulfate. The plots of absorbance versus concentration have an excellent adjusted coefficient of determination: Radj2 = {0.99977, 0.99952, 0.99983} for chromium(III) nitrate, potassium permanganate, and copper sulfate, respectively, suggesting that the photometer can be used to validate Lambert–Beer's law. In addition, a Didactic Guide was designed with learning objectives and a step-by-step process to guide the assembly of the photometer. Moreover, the photometer was used with students in an Instrumental Analysis course. The students made the electrical connections, uploaded the code to the Arduino, assembled the photometers, measured the absorbances, constructed the calibration curves, and determined the concentration of an unknown solution. Their results proved to be both precise and accurate. Therefore, the present work provides an affordable photometer for absorbance measurements in colored solutions, contributes to the democratization of expensive instruments for students, and is valuable for the teaching of basic concepts of molecular absorption spectroscopy in Analytical Chemistry and Instrumental Analysis courses.
Author García-Goitia, María F.
González-Laprea, Jesús
Fernandez, Lenys
Smith-Rincón, Carlos E.
Coronel, Martin
Borrero-González, Luis J.
AuthorAffiliation Facultad de Ciencias Exactas, Naturales y Ambientales, Escuela de Ciencias Físicas y Matemática, Laboratorio de Óptica Aplicada
Sorbonne Université, CNRS, Institut des Nanosciences de Paris
Pontificia Universidad Católica del Ecuador
Facultad de Ciencias Exactas, Naturales y Ambientales, Escuela de Ciencias Químicas
Facultad Internacional de Innovación PUCE-Icam, Laboratorio de Óptica Aplicada
AuthorAffiliation_xml – name: Facultad de Ciencias Exactas, Naturales y Ambientales, Escuela de Ciencias Físicas y Matemática, Laboratorio de Óptica Aplicada
– name: Sorbonne Université, CNRS, Institut des Nanosciences de Paris
– name: Facultad Internacional de Innovación PUCE-Icam, Laboratorio de Óptica Aplicada
– name: Pontificia Universidad Católica del Ecuador
– name: Facultad de Ciencias Exactas, Naturales y Ambientales, Escuela de Ciencias Químicas
Author_xml – sequence: 1
  givenname: Jesús
  surname: González-Laprea
  fullname: González-Laprea, Jesús
  organization: Facultad Internacional de Innovación PUCE-Icam, Laboratorio de Óptica Aplicada
– sequence: 2
  givenname: Carlos E.
  surname: Smith-Rincón
  fullname: Smith-Rincón, Carlos E.
  organization: Sorbonne Université, CNRS, Institut des Nanosciences de Paris
– sequence: 3
  givenname: María F.
  surname: García-Goitia
  fullname: García-Goitia, María F.
  organization: Pontificia Universidad Católica del Ecuador
– sequence: 4
  givenname: Martin
  surname: Coronel
  fullname: Coronel, Martin
  organization: Pontificia Universidad Católica del Ecuador
– sequence: 5
  givenname: Lenys
  surname: Fernandez
  fullname: Fernandez, Lenys
  organization: Pontificia Universidad Católica del Ecuador
– sequence: 6
  givenname: Luis J.
  orcidid: 0000-0003-3853-5433
  surname: Borrero-González
  fullname: Borrero-González, Luis J.
  email: ljborrero@puce.edu.ec
  organization: Pontificia Universidad Católica del Ecuador
BookMark eNp9kL1OwzAUhS1UJFrgCVgsMaf1XxpnLOVXKqJCMEfXjqOmSu1gu0M3dkbekCfB0LIy3Svd75x7dEZoYJ01CF1QMqaE0QnoMF7rldmYepxrQohkR2hISy4zypkcoCFJWFbmUpygUQhrQijLSzlEH_w6W_rWRlCdwc93V3hxc42XKxfdxkTj8dzZ6F3XmRqrHQaLZ77ettZ9vX8ud3HlLH6wiWtAG9w4jx9dZ_S2A49nKjjfxzYhs77vWg0_e8CtxfMUtQ3R7_AClPMQnW9NOEPHDXTBnB_mKXq9vXmZ32eLp7uH-WyRAZuWMQMlmQYCkhgBumiKXHEFTW1KKJXIFU1RpoxxAUUjiBI1JYIpwYQkWvGm5qfocu_be_e2NSFWa7f1Nr2sOBOCFMW0kInie0p7F4I3TdX7dgN-V1FS_bRepdarQ-vVofWkmuxVv8c_2_8U3zCjjc0
Cites_doi 10.1039/D2AY00678B
10.1021/acs.jchemed.2c00642
10.1021/acs.jchemed.5b00409
10.1021/acs.jchemed.0c01085
10.1021/acs.jchemed.2c01029
10.1021/acs.jchemed.0c01089
10.1021/acs.jchemed.4c00386
10.1021/acs.jchemed.0c00404
10.1021/acs.jchemed.5b00984
10.1021/acs.jchemed.5b00654
10.1021/acs.jchemed.2c00679
10.1021/acs.jchemed.4c00526
10.1021/acs.jchemed.4c01173
10.1021/acs.jchemed.3c00248
10.1021/acs.jchemed.9b00548
10.1021/acs.jchemed.6b00676
10.1021/acs.jchemed.0c01345
10.1021/acs.jchemed.1c00742
10.1021/acs.jchemed.8b00529
10.1021/acs.jchemed.6b00041
10.1021/acs.jchemed.7b00172
10.1021/ed400887t
10.1021/acs.jchemed.1c00560
10.1021/ed4009073
10.1021/acs.jchemed.3c01021
10.1021/ed5008102
10.1021/acs.jchemed.2c00060
10.1021/acs.jchemed.3c00406
10.1590/1806-9126-rbef-2018-0294
10.1021/acs.jchemed.6b00262
10.1021/acs.jchemed.9b01023
10.1021/acs.jchemed.8b00870
10.1021/acs.jchemed.5b00494
10.1021/acs.jchemed.2c00372
10.1021/acs.jchemed.8b01037
10.21577/0100-4042.20230065
10.1021/ed400784x
10.1016/j.microc.2020.104986
10.1007/s12161-019-01611-7
ContentType Journal Article
Copyright Published 2025 by American Chemical Society and Division of Chemical Education, Inc.
Copyright American Chemical Society 2025
Copyright_xml – notice: Published 2025 by American Chemical Society and Division of Chemical Education, Inc.
– notice: Copyright American Chemical Society 2025
DBID AAYXX
CITATION
AHOVV
K9.
DOI 10.1021/acs.jchemed.5c00082
DatabaseName CrossRef
Education Research Index
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Education
Chemistry
EISSN 1938-1328
EndPage 3622
ExternalDocumentID 10_1021_acs_jchemed_5c00082
b287932356
Genre Feature
GroupedDBID -DZ
-ET
-~X
.K2
4.4
55A
5GY
5VS
6TJ
7K8
85S
AABCJ
AABXI
AAHBH
AAIKC
AAMNW
AAWRB
ABBLG
ABDQB
ABEFU
ABJNI
ABLBI
ABMVS
ABOCM
ABPPZ
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACNCT
ACQAM
ACS
ADHLV
ADUKH
AEESW
AENEX
AFEFF
AFXLT
AHGAQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQSVZ
BAANH
CJ0
CUPRZ
DU5
E.L
EBS
ED~
F5P
FA8
FAC
GGK
GNL
HF~
JG~
LG6
M0P
P2P
RNS
ROL
RWL
RXW
SJN
TAE
TN5
TWZ
UHB
UI2
UKR
UPT
VF5
VG9
W1F
WH7
X7L
XKZ
XSW
XZL
YQT
YR5
YYQ
YZZ
ZCA
ZUP
~02
AAYXX
CITATION
AHOVV
K9.
ID FETCH-LOGICAL-a269t-ab82ca0a80e4ac7f75b3bafde9a9b45b1ace62234a7f40b4d1042b42480cb3fd3
IEDL.DBID ACS
ISSN 0021-9584
IngestDate Fri Sep 12 07:20:43 EDT 2025
Wed Oct 01 05:39:34 EDT 2025
Wed Aug 13 03:11:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Hands-On Learning/Manipulatives
Instrumental Methods
Spectroscopy
UV−vis Spectroscopy
Upper-Division Undergraduate
Analytical Chemistry
Laboratory Computing/Interfacing
Laboratory Equipment/Apparatus
Inquiry-Based/Discovery Learning
Aqueous Solution Chemistry
Language English
License https://doi.org/10.15223/policy-017
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a269t-ab82ca0a80e4ac7f75b3bafde9a9b45b1ace62234a7f40b4d1042b42480cb3fd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ORCID 0000-0003-3853-5433
PQID 3244077678
PQPubID 41672
PageCount 8
ParticipantIDs proquest_journals_3244077678
crossref_primary_10_1021_acs_jchemed_5c00082
acs_journals_10_1021_acs_jchemed_5c00082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-12
PublicationDateYYYYMMDD 2025-08-12
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-12
  day: 12
PublicationDecade 2020
PublicationPlace Easton
PublicationPlace_xml – name: Easton
PublicationTitle Journal of chemical education
PublicationTitleAlternate J. Chem. Educ
PublicationYear 2025
Publisher American Chemical Society and Division of Chemical Education, Inc
American Chemical Society
Publisher_xml – name: American Chemical Society and Division of Chemical Education, Inc
– name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Magnusson B. (ref44/cit44) 2014
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref24/cit24
ref38/cit38
Skoog D. A. (ref1/cit1) 2017
Robinson J. W. (ref43/cit43) 2004
ref7/cit7
References_xml – ident: ref39/cit39
  doi: 10.1039/D2AY00678B
– volume-title: Eurachem Guide: The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics
  year: 2014
  ident: ref44/cit44
– ident: ref28/cit28
  doi: 10.1021/acs.jchemed.2c00642
– ident: ref20/cit20
  doi: 10.1021/acs.jchemed.5b00409
– ident: ref3/cit3
  doi: 10.1021/acs.jchemed.0c01085
– ident: ref29/cit29
  doi: 10.1021/acs.jchemed.2c01029
– ident: ref12/cit12
  doi: 10.1021/acs.jchemed.0c01089
– ident: ref16/cit16
  doi: 10.1021/acs.jchemed.4c00386
– ident: ref37/cit37
  doi: 10.1021/acs.jchemed.0c00404
– ident: ref21/cit21
  doi: 10.1021/acs.jchemed.5b00984
– ident: ref26/cit26
  doi: 10.1021/acs.jchemed.5b00654
– ident: ref15/cit15
  doi: 10.1021/acs.jchemed.2c00679
– ident: ref14/cit14
  doi: 10.1021/acs.jchemed.4c00526
– ident: ref23/cit23
  doi: 10.1021/acs.jchemed.4c01173
– ident: ref4/cit4
  doi: 10.1021/acs.jchemed.3c00248
– ident: ref10/cit10
  doi: 10.1021/acs.jchemed.9b00548
– ident: ref13/cit13
  doi: 10.1021/acs.jchemed.6b00676
– ident: ref25/cit25
  doi: 10.1021/acs.jchemed.0c01345
– ident: ref6/cit6
  doi: 10.1021/acs.jchemed.1c00742
– ident: ref7/cit7
  doi: 10.1021/acs.jchemed.8b00529
– ident: ref18/cit18
  doi: 10.1021/acs.jchemed.6b00041
– ident: ref31/cit31
  doi: 10.1021/acs.jchemed.7b00172
– ident: ref19/cit19
  doi: 10.1021/ed400887t
– ident: ref27/cit27
  doi: 10.1021/acs.jchemed.1c00560
– ident: ref35/cit35
  doi: 10.1021/ed4009073
– ident: ref5/cit5
  doi: 10.1021/acs.jchemed.3c01021
– ident: ref32/cit32
  doi: 10.1021/ed5008102
– ident: ref8/cit8
  doi: 10.1021/acs.jchemed.2c00060
– ident: ref22/cit22
  doi: 10.1021/acs.jchemed.3c00406
– ident: ref33/cit33
  doi: 10.1590/1806-9126-rbef-2018-0294
– ident: ref2/cit2
  doi: 10.1021/acs.jchemed.6b00262
– ident: ref17/cit17
  doi: 10.1021/acs.jchemed.9b01023
– volume-title: Principles of Instrumental Analysis
  year: 2017
  ident: ref1/cit1
– ident: ref24/cit24
  doi: 10.1021/acs.jchemed.8b00870
– ident: ref30/cit30
  doi: 10.1021/acs.jchemed.5b00494
– ident: ref36/cit36
  doi: 10.1021/acs.jchemed.2c00372
– ident: ref41/cit41
– ident: ref42/cit42
– ident: ref11/cit11
  doi: 10.1021/acs.jchemed.8b01037
– ident: ref9/cit9
  doi: 10.21577/0100-4042.20230065
– volume-title: Undergraduate Instrumental Analysis
  year: 2004
  ident: ref43/cit43
– ident: ref34/cit34
  doi: 10.1021/ed400784x
– ident: ref38/cit38
  doi: 10.1016/j.microc.2020.104986
– ident: ref40/cit40
  doi: 10.1007/s12161-019-01611-7
SSID ssj0012598
Score 2.4208567
Snippet Among quantitative analysis techniques, molecular absorption methods in the ultraviolet/visible region are the most commonly employed in chemical laboratories...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 3615
SubjectTerms Absorbance
Absorption spectroscopy
Analytical chemistry
Assembling
Basic Skills
Chemistry
Chromium
Copper sulfate
Molecular absorption
Photometers
Potassium permanganate
Programming languages
Quantitative analysis
Science education
Science Laboratories
Students
Teaching methods
Trivalent chromium
Title 3D-Printable RGB LED Photometer Controlled by an Arduino–Python Interface for Molecular Absorption Applications in Chemistry Laboratories
URI http://dx.doi.org/10.1021/acs.jchemed.5c00082
https://www.proquest.com/docview/3244077678
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1938-1328
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012598
  issn: 0021-9584
  databaseCode: ACS
  dateStart: 19240101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLY4Bli4Ebc8MDCQkDjONZZyCbVVxSGxRc-OLcqRoDYdYGJn5B_yS7CdpJxCrFb07Dy_vCPv-BDaBj8moQBpRQEVFhVeYMWEU8uNpSudGAQYtIZ2Jzi5pKdX_tWnZvVvGXzi7gEf2DfqBZRxsH1ubNY4miRB5OpYq9E8HyUNlCdfKl5ddaAMaz1k6Hci2hzxwVdz9FUbGxNzNIs6daNOWVlyaw8LZvOnn3Mb_3f6OTRTOZu4UUrHPBoT2QKaatYYbwsas7mq71hEL96B1e33skI3U-Gz433cOjzA3eu8yO91zQxullXtdyLF7BFDpuimw16Wvz2_dh_1CAJsfi9K4AIrVxi3a-Rd3GCDvG90E258SpjjXoZHh8GtUhxzHbsvocujw4vmiVVBNVhAgriwgEWEgwORIyjwUIY-8xjIVMQQM-ozV20dKE-EQiipw2iqokDCKKGRw5knU28ZTWR5JlYQJuAGJI1ctR5RSVIgGh-bSI_HXPcMrqIdxdSk-tQGicmiEzcxiyWnk4rTq2i3vtzkoRze8ffjG7UAfJBXDic1I4-itf9vvI6micYJ1qNzyQaaKPpDsamcl4JtGZF9B08v7hw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DLDwRjwKeGBgICVxnDQZSx8UaFEFVGKLbMcW5ZGgJh3KxM7IP-SXYDtJCwghWK3ofHYuvs-5u-8A2CeOjyqcCMNzMTcwt13DRwwbli8sYfqEE92toXPhtnr47Ma5yYvCVC2MVCKRkhIdxJ-wC1hHauxOrkP6iLLDtOuaBrOaC0UBotrVOHYgAX12_qrkA-lfC66hn4Uor8SSr17p66GsPU1zEfTGOuoEk_vyMKVl9vyNvvG_i1gCCzn0hNXMVpbBFI9WwFyt6Pi2ojo459keq-DVrhvdQT9KVWkVvDw5hu1GHXZv4zR-VBk0sJbluD_wENIRJJGUGw77Ufz-8tYdKUICqH82CsI4lMAYdoo-vLBKk3igTypY_RQ-h_0IjpWB7cw4Y3WTXwO9ZuO61jLyxg0GQa6fGoR6iBGTeCbHhFVExaE2JSLkPvEpdqglp3YlLsGkIrBJcSjvhIhihD2TUVuE9jqYieKIbwCIiOWi0LPkuIcFCglS3bKRsJnPVAXhJjiQmxrkH14S6Jg6sgI9mO10kO_0Jjgs3nHwlFF5_P54qbCDiXgJP7EmQPK2_j7xHphrXXfaQfv04nwbzCPVQViR6qISmEkHQ74jYU1Kd7UVfwApOfaH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-MwFH5iQGK4sM0gdnzgwIGUxHHS5FhaylZQxSLBKbIdW5QlQU16gBN3jvxDfgm2kxQYIYTmakXPS579vuQ9fx_AOvVCXBdUWoFPhEWE61sh5sRyQulIO6SCGrWGo2N_75wcXHgXIxBUd2HUIDJlKTNJfL2r72NZMgw4W7r9Ws1FxYmax034-gVjniaB06CoeTrMHyhQX5zBugBBxdiKb-hrIzoy8exzZPp8MJto056Cy-E4TZHJTW2Qsxp__IfC8X8mMg2TJQRFjcJnZmBEJLPwu1kpv81qJeey6uMPPLstq9vvJbm-YoVOdrdRZ6eFuldpnt7pShrULGrdb0WM2AOiibIbD3pJ-vr00n3QxATI_HSUlAukADI6qvR4UYNlad-cWKjxIY2OegkaDgZ1CidN9Rf9Xzhv75w196xSwMGi2A9zi7IAc2rTwBaE8rqse8xlVMYipCEjHnNU177CJ4TWJbEZidW3IWYEk8DmzJWxOwejSZqIeUCYOj6OA0e1B0TimGKtmo2ly0OubxIuwIZa1KjcgFlkcuvYiUxjsdJRudILsFm95-i-oPT4_vHlyhfezSsYSgwRUrD4847XYLzbaked_ePDJZjAWkhYc-viZRjN-wOxotBNzlaNI78B8oH5AQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printable+RGB+LED+Photometer+Controlled+by+an+Arduino%E2%80%93Python+Interface+for+Molecular+Absorption+Applications+in+Chemistry+Laboratories&rft.jtitle=Journal+of+chemical+education&rft.au=Gonz%C3%A1lez-Laprea%2C+Jes%C3%BAs&rft.au=Smith-Rinc%C3%B3n%2C+Carlos+E.&rft.au=Garc%C3%ADa-Goitia%2C+Mar%C3%ADa+F.&rft.au=Coronel%2C+Martin&rft.date=2025-08-12&rft.issn=0021-9584&rft.eissn=1938-1328&rft.volume=102&rft.issue=8&rft.spage=3615&rft.epage=3622&rft_id=info:doi/10.1021%2Facs.jchemed.5c00082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jchemed_5c00082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9584&client=summon