Critical Tools for Machine Learning: Working with Intersectional Critical Concepts in Machine Learning Systems Design

Saved in:
Bibliographic Details
Published in2022 ACM Conference on Fairness, Accountability, and Transparency
Format Conference Proceeding
LanguageEnglish
Online AccessGet full text
DOI10.1145/3531146.3533207

Cover

BookMark eNplkDtPwzAURj3AAIWZ1X8gxY_YSdhQeFUKYqCIMbpx7NYitSPbVZV_TxARC9O5utJ3hnOJzpx3GqEbStaU5uKWCz5TrmdyRooLdKyDTVbBgLfeDxEbH_ArqL11GjcagrNud4c_ffiaD3yyaY83LukQtUrWu3n3J6i9U3pMEVv3T4Hfp5j0IeIHHe3OXaFzA0PU1wtX6OPpcVu_ZM3b86a-bzJgskyZyKXoITekk2VOKsWJYroSpCokFKzLy4rC_DbGCKaLjjJQsqclY6KviFIdXyHy6z26EaYTDEM7BnuAMLWUtD9F2qVIuxTh32-LXE4
ContentType Conference Proceeding
DBID ADTOC
UNPAY
DOI 10.1145/3531146.3533207
DatabaseName Unpaywall for CDI: Periodical Content
Unpaywall
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 10.1145/3531146.3533207
GroupedDBID ADTOC
UNPAY
ID FETCH-LOGICAL-a268t-5465da4f0b68409c30c2e950976a72b4891a09cfff52e7b12ac6d18225d90ccb3
IEDL.DBID UNPAY
IngestDate Wed Oct 29 11:38:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a268t-5465da4f0b68409c30c2e950976a72b4891a09cfff52e7b12ac6d18225d90ccb3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://dl.acm.org/doi/pdf/10.1145/3531146.3533207
ParticipantIDs unpaywall_primary_10_1145_3531146_3533207
PublicationTitle 2022 ACM Conference on Fairness, Accountability, and Transparency
Score 1.99257
SourceID unpaywall
SourceType Open Access Repository
Title Critical Tools for Machine Learning: Working with Intersectional Critical Concepts in Machine Learning Systems Design
URI https://dl.acm.org/doi/pdf/10.1145/3531146.3533207
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA5jO4gXFScqKjl48dDZpU3aeJPpGIJjhw3mqSRpImLtxtoi-ut9abMp6mWnQgiPkr4033t53_cQuoQoI7Y_f48o6nshk9QTsQIgB_EQ52Ea-aIukB2z0Sx8mNN5C5E1FybNwM5bfYVv9_QyNU7Qll4H4C6wr3vwDIglkHcYBfzdRp3ZeHL75HR7_pm5i3aqfCk-3kWW_Tg8hnsNoa-oNQdtzchrryplT33-UmTc7r32UfebrIcnm2PoALV0foiqdQsDPF0ssgIDNMWPdd2kxk5S9fkGu0w5tslYXOcGi7oyC5wLbwwMGmJjgV_yPyawEzzHd3UhSBfNhvfTwchzHRY8QVhcerYTeipC40ur-cJV4CuiOWCIiImIyDDmfQHDxhhKdCT7RCiWQkRCaMp9pWRwhNr5ItfHCBOSApTjOhTMhFGshGFUMM2swJExQp-gq81HSJaNkkbSsKJp4pYwcUt4usXcM9QuV5U-B2hQygvnC18MtbZ4
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA5jO4gXFScqKjl48dDZpU3aeJPpGIJjhw3mqSRpImLtxtoi-ut9abMp6mWnQgiPkr4033t53_cQuoQoI7Y_f48o6nshk9QTsQIgB_EQ52Ea-aIukB2z0Sx8mNN5C5E1FybNwM5bfYVv9_QyNU7Qll4H4C6wr3vwDIglkHcYBfzdRp3ZeHL75HR7_pm5i3aqfCk-3kWW_Tg8hnsNoa-oNQdtzchrryplT33-UmTc7r32UfebrIcnm2PoALV0foiqdQsDPF0ssgIDNMWPdd2kxk5S9fkGu0w5tslYXOcGi7oyC5wLbwwMGmJjgV_yPyawEzzHd3UhSBfNhvfTwchzHRY8QVhcerYTeipC40ur-cJV4CuiOWCIiImIyDDmfQHDxhhKdCT7RCiWQkRCaMp9pWRwhNr5ItfHCBOSApTjOhTMhFGshGFUMM2swJExQp-gq81HSJaNkkbSsKJp4pYwcUt4usXcM9QuV5U-B2hQygvnC18MtbZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+ACM+Conference+on+Fairness%2C+Accountability%2C+and+Transparency&rft.atitle=Critical+Tools+for+Machine+Learning%3A+Working+with+Intersectional+Critical+Concepts+in+Machine+Learning+Systems+Design&rft_id=info:doi/10.1145%2F3531146.3533207&rft.externalDocID=10.1145%2F3531146.3533207