Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery

Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group.

Saved in:
Bibliographic Details
Main Author Lei, Yaguo
Format eBook
LanguageEnglish
Published Chantilly Elsevier Science & Technology 2016
Butterworth-Heinemann
Edition1
Subjects
Online AccessGet full text
ISBN9780128115343
0128115343

Cover

Abstract Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group.
AbstractList Provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The main contents include multi-domain signal processing and feature extraction, intelligent diagnosis models, clustering algorithms, hybrid intelligent diagnosis strategies, and RUL prediction approaches, etc. This book presents fundamental theories and advanced methods of identifying the occurrence, locations, and degrees of faults, and also includes information on how to predict the RUL of rotating machinery.
Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group.
Author Lei, Yaguo
Author_xml – sequence: 1
  fullname: Lei, Yaguo
BookMark eNpNkFtLAzEUhCNesK39D3kTHwq57Wb3UWurhYpStK_L2ezZNjYmukkV_73VKggDw8DHwEyfHPng8YD0GRcF55nM-CEZlrr4y0qekF6ZC8UlV_KUDGN8ZoxxrXVe8B5ZznxC5-wKfaJT2LpEry2sfIg2UvANXeALWG_9ij5FbLeOzm2L9KHDxppkg6ehpYuQIH0jd2DW1mP3eUaOW3ARh78-IMvp5HF8O5rf38zGl_MRiFxpPmprpUTRQCsZawpdGia10tCg1FBLBKZ0ntWsrPVODHIQRmGJzNQGRSa1HJCLfTHEDX7EdXApVu8O6xA2sfp3RMZ27Pmefe3C2xZjqn4ws5vegasmV2OlpRB5Jr8Aix9i7Q
ContentType eBook
DEWEY 621.31042
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 0128115351
9780128115350
Edition 1
ExternalDocumentID 9780128115350
EBC4732265
GroupedDBID 20A
38.
AAAAS
AABBV
AAFKH
AAJFB
AAJIE
AAKZG
AALRI
AANYM
AAORS
AAXUO
AAZNM
ABGWT
ABIWA
ABLXK
ABMAC
ABMSR
ABNGK
ABQNV
ABQQC
ABRSK
ACHUA
ACKCA
ACRMW
ACXMD
ADCEY
ADRYN
AECLD
AEGGQ
AEHLA
AEIUV
AEPKO
AGAMA
AJMPQ
ALMA_UNASSIGNED_HOLDINGS
APVFW
ATDNW
AZZ
BBABE
BECES
BGHEG
BIOBC
BIQZX
BLMTO
CDLGT
CZZ
HGY
JJU
L7C
MYL
O7H
SDK
SRW
UE6
6XM
AAGAK
ADVEM
BJTYN
DRU
GEOUK
OODEK
ID FETCH-LOGICAL-a26471-fb4428daf300d879c03747ade37ab3ea04765b09b79b70a6a2c4e9e0cbce25373
ISBN 9780128115343
0128115343
IngestDate Fri Nov 08 05:46:34 EST 2024
Wed Sep 03 01:28:15 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TJ170L45 2017
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a26471-fb4428daf300d879c03747ade37ab3ea04765b09b79b70a6a2c4e9e0cbce25373
OCLC 962413143
PQID EBC4732265
PageCount 378
ParticipantIDs askewsholts_vlebooks_9780128115350
proquest_ebookcentral_EBC4732265
PublicationCentury 2000
PublicationDate 2016
2016-11-02
PublicationDateYYYYMMDD 2016-01-01
2016-11-02
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Chantilly
PublicationPlace_xml – name: Chantilly
PublicationYear 2016
Publisher Elsevier Science & Technology
Butterworth-Heinemann
Publisher_xml – name: Elsevier Science & Technology
– name: Butterworth-Heinemann
SSID ssj0001777681
Score 2.5015454
Snippet Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and...
Provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The...
SourceID askewsholts
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Machinery
TableOfContents Cover -- Title page -- Copyright page -- Table of Contents -- Preface -- About the Author -- 1 - Introduction and background -- 1.1 - Introduction -- 1.2 - Overview of PHM -- 1.2.1 - Data Acquisition -- 1.2.2 - Signal Processing -- 1.2.3 - Diagnostics -- 1.2.4 - Prognostics -- 1.2.5 - Maintenance Decision -- 1.3 - Preface to Book Chapters -- References -- 2 - Signal processing and feature extraction -- 2.1 - Introduction -- 2.2 - Signal Preprocessing -- 2.2.1 - Trend Removal -- 2.2.2 - Signal Filtering -- 2.3 - Signal Processing in the Time Domain -- 2.3.1 - Correlation Analysis -- 2.3.1.1 - Autocorrelation Analysis -- 2.3.1.2 - Cross-Correlation Analysis -- 2.3.2 - Common Statistical Features in the Time Domain -- 2.4 - Signal Processing in the Frequency Domain -- 2.4.1 - Fourier Transform -- 2.4.1.1 - Fourier Series -- 2.4.1.2 - Fourier Integral Transform -- 2.4.1.3 - Discrete Fourier Transform -- 2.4.1.4 - Fast Fourier Transform -- 2.4.2 - Common Statistical Features in the Frequency Domain -- 2.5 - Signal Processing in the Time-Frequency Domain -- 2.5.1 - Short-Time Fourier Transform -- 2.5.2 - Wigner-Ville Distribution -- 2.5.3 - Wavelet Analysis -- 2.5.3.1 - Wavelet Transform -- 2.5.3.2 - Wavelet Basis and Fast Pyramidal Algorithm -- 2.5.3.3 - Wavelet Packet Transform -- 2.5.4 - Hilbert-Huang Transform -- 2.5.4.1 - Empirical Mode Decomposition -- 2.5.4.2 - Ensemble Empirical Mode Decomposition -- 2.5.4.3 - Hilbert Transform -- 2.5.5 - Common Feature Extraction in the Time-Frequency Domain -- 2.6 - Conclusions -- References -- 3 - Individual intelligent method-based fault diagnosis -- 3.1 - Introduction to Intelligent Diagnosis Methods -- 3.2 - Artificial Neural Networks -- 3.2.1 - Introduction to Artificial Neural Networks -- 3.2.1.1 - Architecture of Neural Networks -- 3.2.1.2 - Backpropagation Algorithm
6.3.4 - Paris-Erdogan Model-Based Methods -- 6.3.4.1 - Motivation -- 6.3.4.2 - Health Indicator Construction -- 6.3.4.3 - RUL Prediction -- 6.3.4.4 - RUL Prediction of Rolling Element Bearings: a Case Study -- 6.3.5 - Epilog -- 6.4 - Conclusions -- References -- Glossary -- Index -- Back cover
3.4.2 - Stacked Tied-Weight Autoencoder-Based Fault Diagnosis -- 3.4.2.1 - Introduction -- 3.4.2.2 - Tied-Weight Autoencoder -- 3.4.2.3 - Deep Neural Network Using Stacked Tied-Weight Autoencoders -- 3.4.2.4 - Fault Diagnosis Method Based on Deep Neural Networks -- 3.4.2.5 - Intelligent Fault Diagnosis of Bearings Under Various Loads: A Case Study -- 3.4.2.6 - Epilog -- 3.4.3 - Sparse Coding-Based Fault Diagnosis -- 3.4.3.1 - Introduction -- 3.4.3.2 - Sparse Coding -- 3.4.3.3 - Softmax Regression -- 3.4.3.4 - Diagnosis Method Based on Sparse Coding -- 3.4.3.5 - Intelligent Fault Diagnosis of Bearings: A Locomotive Bearing Case Study -- 3.4.3.6 - Epilog -- 3.5 - Conclusions -- References -- 4 - Clustering algorithm-based fault diagnosis -- 4.1 - Introduction to Clustering Algorithm -- 4.2 - Weighted K Nearest Neighbor-Based Fault Diagnosis -- 4.2.1 - Introduction -- 4.2.2 - K Nearest Neighbor Algorithm -- 4.2.3 - Weighted K Nearest Neighbor Algorithm -- 4.2.4 - Diagnosis Method Based on WKNN -- 4.2.5 - Intelligent Diagnosis of Gear Crack Level: A Case Study -- 4.2.6 - Epilog -- 4.3 - Weighted Fuzzy c-Means-Based Fault Diagnosis -- 4.3.1 - Introduction -- 4.3.2 - K-Means Algorithm -- 4.3.3 - FCM Algorithm -- 4.3.4 - Weighted FCM Algorithm -- 4.3.5 - Diagnosis Method Based on WFCM -- 4.3.6 - Intelligent Diagnosis of Incipient Faults: A Rolling Element Bearing Case Study -- 4.3.7 - Epilog -- 4.4 - Hybrid Clustering Algorithm-Based Fault Diagnosis -- 4.4.1 - Introduction -- 4.4.2 - Feature Weight Calculation Based on ANNs -- 4.4.3 - Sample Weight Computation With a Distribution Density Function -- 4.4.4 - Cluster Number Determination -- 4.4.5 - Diagnosis Method Using the Hybrid Clustering Algorithm -- 4.4.6 - Intelligent Diagnosis of Compound Faults: A Locomotive Bearing Case Study -- 4.4.7 - Epilog -- 4.5 - Conclusions -- References
5 - Hybrid intelligent fault diagnosis methods -- 5.1 - Introduction -- 5.2 - Multiple WKNN Combination-Based Fault Diagnosis -- 5.2.1 - Motivation -- 5.2.2 - Multiple WKNN Combination -- 5.2.3 - Diagnosis Method Based on Multiple WKNN Combination -- 5.2.4 - Intelligent Diagnosis of Fault Categories: A Rolling Element Bearing Case Study -- 5.2.5 - Epilog -- 5.3 - Multiple ANFIS Hybrid Intelligent Fault Diagnosis -- 5.3.1 - Motivation -- 5.3.2 - Multiple ANFIS Combination with GAs -- 5.3.3 - Fault Diagnosis Method Based on Multiple ANFIS Combination -- 5.3.4 - Intelligent Diagnosis of Fault Severities: A Rolling Element Bearing Case Study -- 5.3.5 - Epilog -- 5.4 - A Multidimensional Hybrid Intelligent Method -- 5.4.1 - Motivation -- 5.4.2 - Multiple Classifier Combination -- 5.4.3 - Diagnosis Method Based on Multiple Classifier Combination -- 5.4.4 - Intelligent Diagnosis of Damage Categories: A Gearbox Case Study -- 5.4.5 - Epilog -- 5.5 - Conclusions -- References -- 6 - Remaining useful life prediction -- 6.1 - Background -- 6.2 - Data-driven Prediction Methods -- 6.2.1 - Introduction -- 6.2.2 - RVM-Based Prediction Methods -- 6.2.2.1 - RVM-Based Predictors -- 6.2.2.2 - Particle Filtering Algorithms -- 6.2.2.3 - Multikernel RVM-Based Prediction Method -- 6.2.2.4 - RUL Prediction of Gears: a Case Study -- 6.2.3 - Epilog -- 6.3 - Model-Based Prediction Methods -- 6.3.1 - Introduction -- 6.3.2 - Exponential Model-Based Methods -- 6.3.2.1 - Motivation -- 6.3.2.2 - Exponential Models -- 6.3.2.3 - An Improved Exponential Model-Based RUL Prediction Method -- 6.3.2.4 - RUL Prediction of Rolling Element Bearings: a Case Study -- 6.3.3 - Polynomial Model-Based Methods -- 6.3.3.1 - Motivation -- 6.3.3.2 - A Polynomial Model-Based RUL Prediction Method -- 6.3.3.3 - Simulation Verification -- 6.3.3.4 - RUL Prediction of Gearboxes: a Case Study
3.2.1.3 - Speeding up the Backpropagation -- 3.2.1.4 - Epilog -- 3.2.2 - Radial Basis Function Network-Based Fault Diagnosis -- 3.2.2.1 - Introduction -- 3.2.2.2 - Radial Basis Function Network -- 3.2.2.3 - Fault Diagnosis Method Based on RBF Network -- 3.2.2.4 - Intelligent Diagnosis of Bearing Faults: An Experimental Case Study -- 3.2.2.5 - Intelligent Diagnosis of Rub Faults: A Heavy Oil Catalytic Cracking Unit Case Study -- 3.2.2.6 - Epilog -- 3.2.3 - Wavelet Neural Network-Based Fault Diagnosis -- 3.2.3.1 - Introduction -- 3.2.3.2 - Wavelet Neural Network -- 3.2.3.3 - Sensitive IMF Selection and Feature Extraction -- 3.2.3.4 - WNN-Based Fault Diagnosis Method -- 3.2.3.5 - Intelligent Diagnosis of the Compound Faults: A Bearing Case Study -- 3.2.3.6 - Epilog -- 3.2.4 - Adaptive Neuro-Fuzzy Inference System-Based Fault Diagnosis -- 3.2.4.1 - Introduction -- 3.2.4.2 - Adaptive Neuro-Fuzzy Inference System -- 3.2.4.3 - Diagnosis Method With Multisensor Data Fusion -- 3.2.4.4 - Intelligent Diagnosis of Gear Faults: A Planetary Gearbox Case Study -- 3.2.4.5 - Epilog -- 3.3 - Statistical Learning Theory -- 3.3.1 - Introduction to Statistical Learning Theory -- 3.3.2 - Support Vector Machine-Based Fault Diagnosis Method -- 3.3.2.1 - Introduction -- 3.3.2.2 - Support Vector Machine -- 3.3.2.3 - Multiclass SVM -- 3.3.2.4 - Fault Diagnosis Method Based on SVM -- 3.3.2.5 - Intelligent Diagnosis of Bearing Faults: A Motor Bearing Case Study -- 3.3.2.6 - Epilog -- 3.3.3 - Relevant Vector Machine-Based Intelligent Fault Diagnosis -- 3.3.3.1 - Introduction -- 3.3.3.2 - Relevance Vector Machine -- 3.3.3.3 - Multiclass Relevance Vector Machine -- 3.3.3.4 - Intelligent Diagnosis Based on MRVM -- 3.3.3.5 - Intelligent Diagnosis of Planetary Gearboxes: A Case Study -- 3.3.3.6 - Epilog -- 3.4 - Deep Learning -- 3.4.1 - Introduction to Deep Learning
Title Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4732265
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780128115350&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uF-fkijtB9CSVtEmT6dVlHEQ9iIqehqR9lcFxRm3Hg7_el3S6MAqiUEKThhy-l768vJWQfV8ApCFLPA5B5Ak8Y73I-JHXBmmMRAGCaxucfHUtu3fi4iF8qEtLuuiS3BzFnz_GlfyHqjiGdLVRsn-gbLUoDuA70hdbpDC2U8Jv1a0dz4tEmvlhR48HObIu5zLXzyYRhy9F5YfDuwysF_JlPwXrbpH041JEvBlZKzxOuXL-lFD7A1-CM_E_6qfxqKkV8Ke1AlW4Sskh7D6aUtaXl0hnTEPGV6RLmso-fXZ8IhT-9DI84J3XN8-W67Jm7QN-WuA5S2aVsqyle_5YK7cUjrV9l8KoXHyS7ajqt0hLZ8_IyZHL59m3o9Cd77eLZB5s0McSmYHhMmk1kjSukPsG2NSBTSuwKYJNK7BpATa1YNMabDpKaQk2rcBeJfeds9uTrjepRuFpFBqV76VG4F0t0SlnLGmrKLape5ROgCttOGgmlAwNi4zCh2mpg1hABCw2MQQhV3yNzA1HQ1gnlPN2GgSR4UIjElIavPUKHjCQKU_B8A2y18Cm9zFwlvOs1wAwZBuElpD13PeJO2-vptnm71O2yEK9f7bJXP4-hh2Us3Kz62j6BWf0Kx8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Intelligent+Fault+Diagnosis+and+Remaining+Useful+Life+Prediction+of+Rotating+Machinery&rft.au=Lei%2C+Yaguo&rft.date=2016-01-01&rft.pub=Elsevier+Science+%26+Technology&rft.isbn=9780128115343&rft.externalDocID=EBC4732265
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801281%2F9780128115350.jpg