Numeric Computation and Statistical Data Analysis on the Java Platform

Numericalcomputation, knowledge discovery and statistical data analysis integrated withpowerful 2D and 3D graphics for visualization are the key topics of this book. ThePython code examples powered by the Java platform can easily be transformed toother programming languages, such as Java, Groovy, Ru...

Full description

Saved in:
Bibliographic Details
Main Author Chekanov, Sergei V
Format eBook
LanguageEnglish
Published Cham Springer Nature 2016
Springer International Publishing AG
Springer International Publishing
Springer
Edition1
SeriesAdvanced Information and Knowledge Processing
Subjects
Online AccessGet full text
ISBN3319285319
9783319285313
3319285297
9783319285290
ISSN1610-3947
2197-8441
DOI10.1007/978-3-319-28531-3

Cover

Abstract Numericalcomputation, knowledge discovery and statistical data analysis integrated withpowerful 2D and 3D graphics for visualization are the key topics of this book. ThePython code examples powered by the Java platform can easily be transformed toother programming languages, such as Java, Groovy, Ruby and BeanShell. Thisbook equips the reader with acomputational platform which, unlike other statistical programs, is not limitedby a single programming language.The authorfocuses on practical programming aspects and covers a broad range of topics,from basic introduction to the Python language on the Java platform (Jython),to descriptive statistics, symbolic calculations, neural networks, non-linearregression analysis and many other data-mining topics. He discusses how to findregularities in real-world data, how to classify data, and how to process datafor knowledge discoveries. The code snippets are so short that they easily fit intosingle pages.Numeric Computation and Statistical DataAnalysis on the Java Platform is a great choice for those who want to learn how statisticaldata analysis can be done using popular programming languages, who want tointegrate data analysis algorithms in full-scale applications, and deploy suchcalculations on the web pages or computational servers regardlessof their operating system. It is an excellent reference for scientific computations to solvereal-world problems using a comprehensive stack of open-source Javalibraries included in the DataMelt (DMelt) project and will beappreciated by many data-analysis scientists, engineers and students.
AbstractList Numericalcomputation, knowledge discovery and statistical data analysis integrated withpowerful 2D and 3D graphics for visualization are the key topics of this book. ThePython code examples powered by the Java platform can easily be transformed toother programming languages, such as Java, Groovy, Ruby and BeanShell. Thisbook equips the reader with acomputational platform which, unlike other statistical programs, is not limitedby a single programming language.The authorfocuses on practical programming aspects and covers a broad range of topics,from basic introduction to the Python language on the Java platform (Jython),to descriptive statistics, symbolic calculations, neural networks, non-linearregression analysis and many other data-mining topics. He discusses how to findregularities in real-world data, how to classify data, and how to process datafor knowledge discoveries. The code snippets are so short that they easily fit intosingle pages.Numeric Computation and Statistical DataAnalysis on the Java Platform is a great choice for those who want to learn how statisticaldata analysis can be done using popular programming languages, who want tointegrate data analysis algorithms in full-scale applications, and deploy suchcalculations on the web pages or computational servers regardlessof their operating system. It is an excellent reference for scientific computations to solvereal-world problems using a comprehensive stack of open-source Javalibraries included in the DataMelt (DMelt) project and will beappreciated by many data-analysis scientists, engineers and students.
Covering a broad range of topics with numerous examples throughout, this comprehensive book presents practical approaches to numerical computations, data analysis, and knowledge discovery, focusing on programming techniques. --
Author Chekanov, Sergei V
Author_xml – sequence: 1
  fullname: Chekanov, Sergei V
BookMark eNqN0c9vFCEUB3C01XRb-wd4m_TSeBgLPH4Mx7ptraZRE41X8maG6Y7LwjqwVf972d1GPXog8MKHb-BxTA5DDI6Ql4y-ZpTqC6ObGmpgpuaNBFbDE3IMpdxV5imZcWZ03QjBDv7dOCQzphitwQj9nMyMkMpAGUfkNKVvlFKmpGqYmZGbD5uVm8aumsfVepMxjzFUGPrq83ad8tihr64wY3UZ0P9KY6oKyAtXvccHrD55zEOcVi_IswF9cqeP8wn5enP9ZX5b3318-25-eVcjV1xAbaRsTYe0a6lsac-QtlJpzUDSjkGjpJGil23fDQ3T3HAqRN9Qzp1xg-C6hxNyvg9Oy9H7FIds2xiXiYuf2rbLtH0b00BZka_2EtPS_UiL6HOyD97tuC2N_dMuKPbiMXU9jeHeTftQy6jdfsNWW7DF290BC3_vsZ7i941L2e6COxfyhN5ev5krYJxr9R9SSkMbaYo828sOE_oxjHYVQ7yfcL1IVoIsvwjwGzKvmDw
ContentType eBook
Copyright Springer International Publishing Switzerland 2016
Copyright_xml – notice: Springer International Publishing Switzerland 2016
DBID I4C
DEWEY 519.502855133
DOI 10.1007/978-3-319-28531-3
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
Statistics
EISBN 3319285319
9783319285313
EISSN 2197-8441
Edition 1
ExternalDocumentID bks000117301
9783319285313
347075
EBC6312276
EBC5590859
5354563
Genre Electronic books
GroupedDBID 0D6
0DA
38.
AABBV
AALIM
AAMCO
AAQZU
ABMNI
ABOWU
ACLMJ
ADCXD
ADPGQ
AEIBC
AEJGN
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
AORVH
AWFBM
AZZ
BBABE
CZZ
I4C
IEZ
SBO
SWNTM
TPJZQ
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z87
Z88
NUC
SAO
WZT
ID FETCH-LOGICAL-a26243-955b9ca0cb05b0d1a0b56771350c13865954d5bdcf817292044d8022e9ef427d3
ISBN 3319285319
9783319285313
3319285297
9783319285290
ISSN 1610-3947
IngestDate Sun Aug 27 04:37:17 EDT 2023
Wed Jun 18 05:32:05 EDT 2025
Wed Sep 17 02:32:45 EDT 2025
Fri May 30 22:56:05 EDT 2025
Fri May 30 12:02:19 EDT 2025
Thu Apr 03 03:45:29 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum QA276.4 .C44 2016
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a26243-955b9ca0cb05b0d1a0b56771350c13865954d5bdcf817292044d8022e9ef427d3
OCLC 945693569
PQID EBC5590859
PageCount 635
ParticipantIDs skillsoft_books24x7_bks000117301
askewsholts_vlebooks_9783319285313
springer_books_10_1007_978_3_319_28531_3
proquest_ebookcentral_EBC6312276
proquest_ebookcentral_EBC5590859
casalini_monographs_5354563
PublicationCentury 2000
PublicationDate 2016
20160324
2016-03-23
2016.
PublicationDateYYYYMMDD 2016-01-01
2016-03-24
2016-03-23
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Netherlands
– name: Cham
– name: Place of publication not identified
PublicationSeriesTitle Advanced Information and Knowledge Processing
PublicationSeriesTitleAlternate Adv. Informat. Knowledge Processing (formerly: KIM-Knowled. Inform. Manag.)
PublicationYear 2016
Publisher Springer Nature
Springer International Publishing AG
Springer International Publishing
Springer
Publisher_xml – name: Springer Nature
– name: Springer International Publishing AG
– name: Springer International Publishing
– name: Springer
RelatedPersons Domingo-Ferrer, Josep
Brahnam, Sheryl
Cook, Diane J
Jain, Lakhmi C.
Gabryś, Bogdan
Mamitsuka, Hiroshi
de Wilde, Philippe
Herrera, Francisco
Siebes, Arno
Wu, Xindong
Phoha, Vir V.
RelatedPersons_xml – sequence: 1
  givenname: Lakhmi C.
  surname: Jain
  fullname: Jain, Lakhmi C.
  organization: Faculty of Education, Sci, Tech & Maths, University of Cambera, Adelaide, Australia
– sequence: 2
  givenname: Xindong
  surname: Wu
  fullname: Wu, Xindong
  organization: Burlington, USA
– sequence: 3
  givenname: Sheryl
  surname: Brahnam
  fullname: Brahnam, Sheryl
  organization: Missouri State University, Springfield, USA
– sequence: 4
  givenname: Diane J
  surname: Cook
  fullname: Cook, Diane J
  organization: Washington State University, Pullman, USA
– sequence: 5
  givenname: Josep
  surname: Domingo-Ferrer
  fullname: Domingo-Ferrer, Josep
  organization: Dept. of Computer Engineering and Mathem, Universitat Rovira i Virgili, Tarragona, Spain
– sequence: 6
  givenname: Bogdan
  surname: Gabryś
  fullname: Gabryś, Bogdan
  organization: School of Design, Bournemouth University, Poole, United Kingdom
– sequence: 7
  givenname: Francisco
  surname: Herrera
  fullname: Herrera, Francisco
  organization: ETS de Ingenierias Infoy de Telecom, University of Granada, Granada, Spain
– sequence: 8
  givenname: Hiroshi
  surname: Mamitsuka
  fullname: Mamitsuka, Hiroshi
  organization: School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
– sequence: 9
  givenname: Vir V.
  surname: Phoha
  fullname: Phoha, Vir V.
  organization: Room 245, Ruston, USA
– sequence: 10
  givenname: Arno
  surname: Siebes
  fullname: Siebes, Arno
  organization: Utrecht, The Netherlands
– sequence: 11
  givenname: Philippe
  surname: de Wilde
  fullname: de Wilde, Philippe
  organization: School of Mathematical &, Heriot Watt University, Edinburgh, United Kingdom
SSID ssj0001656819
Score 1.9730902
Snippet Numericalcomputation, knowledge discovery and statistical data analysis integrated withpowerful 2D and 3D graphics for visualization are the key topics of this...
Covering a broad range of topics with numerous examples throughout, this comprehensive book presents practical approaches to numerical computations, data...
SourceID skillsoft
askewsholts
springer
proquest
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Computer programming, programs, data
Computer Science
Data Mining and Knowledge Discovery
Data processing
Information visualization
Java (Computer program language)
Mathematical statistics
Numerical analysis
Programming Languages, Compilers, Interpreters
Statistics
SubjectTermsDisplay Electronic books.
Mathematical statistics -- Data processing.
TableOfContents 4.1.1 P0D Data Container -- 4.1.2 P0D Transformations -- 4.1.3 Statistical Summary -- 4.1.4 Displaying P0D Data -- 4.1.5 File Input and Output -- 4.2 Arrays for Two Dimensions -- 4.2.1 Data with Errors -- 4.2.2 Viewing P1D Data -- 4.2.3 Plotting P1D Data -- 4.2.4 Contour Plots -- 4.2.5 Manipulations with P1D Data -- 4.2.6 Advanced P1D Operations -- 4.2.7 Weighted Average and Systematical Uncertainties -- 4.2.8 File Input and Output -- 4.2.9 Example I: Henon Attractor -- 4.2.10 Example II. Weighted Average -- 4.3 Other Arrays -- 4.3.1 P2D Data Container -- 4.3.2 P3D Data Container -- 4.3.3 PND Data Container -- 4.3.4 File Input and Output -- 4.4 Third-Party Data Containers -- 4.4.1 Math Arrays -- 4.4.2 Jaida Data Containers -- 4.4.3 jMathTools Arrays -- 4.4.4 Colt Data Containers -- 4.4.5 Lorentz Vector -- 4.5 Multidimensional Arrays -- References -- 5 Linear Algebra and Equations -- 5.1 Vector and Matrix Packages -- 5.1.1 Basic Matrix Arithmetic -- 5.1.2 Elements of Linear Algebra -- 5.1.3 Jampack Matrix Computations -- 5.1.4 La4J Library -- 5.1.5 EJML Matrix Library -- 5.1.6 Multithreaded Matrix Computations -- 5.1.7 JBlas and Other Matrix Packages -- 5.1.8 Python Vector and Matrix Operations -- 5.1.9 Matrix Operations in SymPy -- 5.2 Algebraic Manipulations with Tensors -- 5.3 Equations -- 5.3.1 Polynomial Equations -- 5.3.2 Linear Systems of Equations -- References -- 6 Symbolic Computations -- 6.1 Using the Octave Language -- 6.2 Java Symbolic Computing Library -- 6.2.1 Conversion to Elementary Functions -- 6.2.2 Numeric Calculations -- 6.2.3 Simplify -- 6.2.4 Substitutions -- 6.2.5 Differentiate -- 6.2.6 Integration -- 6.2.7 Factorization -- 6.2.8 MathML Output -- 6.2.9 Integration with DMelt Plotting Canvases -- 6.3 Using SymPy -- References -- 7 Histograms -- 7.1 One-Dimensional Histogram
9.5 HBook XML Data Output -- 9.6 Text File Formats -- 9.6.1 Working with ASCII Files -- 9.6.2 CSV File Format -- 9.6.3 EDN File Format -- 9.6.4 DIF File Format -- 9.7 Reading ROOT and AIDA Files -- 9.7.1 ROOT Files -- 9.7.2 AIDA Files -- 9.8 Google's Protocol Buffer Format -- 9.8.1 Prototyping Data Records -- 9.8.2 Dealing with Data Using Java -- 9.8.3 Switching to Jython -- 9.8.4 Adding New Data Records -- 9.8.5 Using C++ with the Protocol Buffers -- 9.8.6 Some Remarks -- 9.9 Creating Excel Files -- 9.10 Non-SQL Object Databases -- 9.10.1 Nonsequential Input and Output -- 9.10.2 Persistent Map -- 9.10.3 MapDB Database -- 9.10.4 NeoDatis Database -- 9.11 Relational SQL Databases -- 9.11.1 Derby SQL Database -- 9.11.2 HyperSQL Database -- 9.11.3 SQLite Database -- 9.12 Miscellaneous Input--Output Topics -- 9.12.1 Building List of Files -- 9.12.2 Reading Configuration Files -- 9.13 Summary -- 9.13.1 Dealing with Single Objects -- 9.13.2 Dealing with Object Collections -- 9.13.3 Text Files -- 9.13.4 Databases -- References -- 10 Probability and Statistics -- 10.1 Descriptive Statistics -- 10.1.1 Comparing Data -- 10.2 Statistical Analysis Using Python -- 10.3 Random Numbers -- 10.3.1 Using Random Numbers -- 10.3.2 Random Numbers in Colt -- 10.3.3 Other Packages with Random Numbers -- 10.4 Random Sampling -- 10.4.1 Methods of 1D Arrays -- 10.4.2 Methods of 2D Arrays -- 10.4.3 Sampling Using the Colt Package -- 10.5 Statistical Significance and Confidence Levels -- 10.5.1 Statistical Significance -- 10.5.2 Discovery Sensitivity -- 10.5.3 Confidence Interval -- 10.5.4 Confidence Levels for Small Statistics -- 10.5.5 Statistical Tests -- 10.5.6 Confidence Levels for Distributions -- 10.6 Error Propagation -- 10.6.1 Propagation Using Monte Carlo Technique -- References -- 11 Linear Regression and Curve Fitting -- 11.1 Linear Regression
7.1.1 Probability Distribution and Probability Density -- 7.1.2 Histogram Characteristics -- 7.1.3 Initialization and Filling Methods -- 7.1.4 Accessing Histogram Values -- 7.1.5 Integration -- 7.1.6 Histogram Operations -- 7.1.7 Accessing Low-Level Jaida Classes -- 7.1.8 Graphical Attributes -- 7.2 Histogram in 2D -- 7.2.1 Histogram Operations -- 7.2.2 Graphical Representation -- 7.3 Histograms in Jaida -- 7.4 Histogram in 3D -- 7.5 Profile Histograms -- 7.6 Histogram Input and Output -- 7.6.1 External Programs for Histograms -- 7.7 Analyzing Histograms from Multiple Files -- References -- 8 Scientific visualization -- 8.1 Graphical Canvases -- 8.2 HPlot Canvas -- 8.2.1 Working with the HPlot Canvas -- 8.2.2 Saving Plots -- 8.2.3 Reading Data -- 8.2.4 Axes -- 8.2.5 Summary of the HPlot Methods -- 8.2.6 Exporting to Image Files -- 8.2.7 Labels and Keys -- 8.2.8 Geometrical Primitives -- 8.2.9 Text Strings and Symbols -- 8.3 Interconnected Objects -- 8.4 Showing Charts -- 8.5 Lightweight Canvases -- 8.5.1 Henon Attractor Again -- 8.6 Canvas for Interactive Drawing -- 8.6.1 Drawing Diagrams -- 8.6.2 SHPlotJa Class -- 8.7 Custom Plotting in XY -- 8.7.1 HPlotXY Canvas -- 8.7.2 WPlot Canvas -- 8.7.3 HPlotJas Canvas -- 8.8 HPlot2D Canvas -- 8.9 Visualization in 3D -- 8.9.1 HPlot3D Canvas -- 8.9.2 HPlot3DP Canvas -- 8.9.3 Mathematical Objects in 3D -- 8.10 Plotting Real-Time Data -- 8.10.1 Real-Time Data Using SPlot -- 8.10.2 Real-Time Data Using HPlotRT -- 8.11 Graphs and Java GUI Components -- References -- 9 File Input and Output -- 9.1 Nonpersistent Data: Memory-Based Data -- 9.2 Object Serialization -- 9.3 Persistent Event Records -- 9.3.1 Sequential Input and Output -- 9.3.2 Opening Data in a Browser -- 9.3.3 Saving Event Records Persistently -- 9.3.4 Buffer Sizes -- 9.3.5 XML File Format -- 9.4 PFile Data Format -- 9.4.1 Browser for PFile File Data
Intro -- Preface -- Who Is This Book for -- Books You May Read Before -- Acknowledgements -- Contents -- Conventions and Acronyms -- 1 Java Computational Platform -- 1.1 Introduction -- 1.1.1 Programming in Java -- 1.1.2 The DMelt Software Platform -- 1.1.3 Some Warnings -- 1.1.4 Errors -- 1.2 Scripting with DMelt -- 1.2.1 Learning by Example -- 1.2.2 Using Jython for Code Examples -- 1.2.3 Differences with Other Math Software -- 1.3 Installation -- 1.4 DMelt Workbench -- 1.4.1 Source Code Editor -- 1.4.2 DMelt Libraries -- 1.4.3 Jython and BeanShell Consoles -- 1.4.4 Accessing Methods of Instances -- 1.4.5 Editing Jython Scripts -- 1.4.6 Running Jython Scripts -- 1.4.7 Macro Files of the DMelt IDE -- 1.4.8 Running BeanShell Scripts -- 1.4.9 Compiling and Running Java Code -- 1.4.10 DMelt Code Assist -- 1.4.11 Other Features -- 1.4.12 Working with Images -- 1.4.13 DMelt License -- References -- 2 Introduction to Jython -- 2.1 Code Structure and Jython Objects -- 2.1.1 Numbers as Objects -- 2.1.2 Formatted Output -- 2.1.3 Mathematical Functions -- 2.2 Complex Numbers -- 2.3 Strings as Objects -- 2.4 Import Statements -- 2.4.1 Executing Native Applications -- 2.5 Comparison Tests and Loops -- 2.5.1 The ``if-else'' Statement -- 2.5.2 Loops. The ``for'' Statement -- 2.5.3 The ``continue'' and ``break'' Statements -- 2.5.4 Loops. The ``while'' Statement -- 2.6 Collections -- 2.6.1 Lists -- 2.6.2 Tuples -- 2.6.3 Dictionaries -- 2.6.4 Functional Programming -- 2.7 Java Collections in Jython -- 2.7.1 List. An Ordered Collection -- 2.7.2 Set. A Collection Without Duplicate Elements -- 2.7.3 SortedSet. Sorted Unique Elements -- 2.7.4 Map. Mapping Keys to Values -- 2.7.5 Java Map with Sorted Elements -- 2.7.6 Real-Life Example: Sorting and Removing Duplicates -- 2.8 Random Numbers -- 2.9 Time Module -- 2.9.1 Benchmarking -- 2.10 Python Functions and Modules
2.11 Python Classes -- 2.11.1 Initializing a Class -- 2.11.2 Classes Inherited from Other Classes -- 2.11.3 Java Classes in Jython -- 2.11.4 Not Covered Topics -- 2.12 Parallel Computing and Threads -- 2.13 Arrays in Jython -- 2.13.1 Array Conversion and Transformations -- 2.13.2 Performance Issues -- 2.13.3 Used Memory -- 2.14 Exceptions in Python -- 2.15 Input and Output -- 2.15.1 User Interaction -- 2.15.2 Reading and Writing Files -- 2.15.3 Input and Output for Arrays -- 2.15.4 Working with CSV Python Module -- 2.15.5 Saving Objects in a Serialized File -- 2.15.6 Storing Multiple Objects -- 2.15.7 Using Java for I/O -- 2.15.8 Reading Data from the Network -- 2.16 Real-Life Example. Collecting Data Files -- 2.17 Using Java for GUI Programming -- 2.18 Concluding Remarks -- References -- 3 Mathematical Functions -- 3.1 Python Functions -- 3.2 Functions in DMelt -- 3.2.1 Java Implementation of F1D -- 3.2.2 Manipulations with 1D Functions -- 3.3 Plotting 1D Functions -- 3.3.1 Building a Graphical Canvas -- 3.3.2 Drawing 1D Functions -- 3.3.3 Plotting Functions on Different Pads -- 3.3.4 Short Summary of HPlot Methods -- 3.3.5 Example -- 3.4 2D Functions -- 3.4.1 Functions in Two Dimensions -- 3.4.2 Displaying 2D Functions -- 3.4.3 Using a Contour Plot -- 3.5 3D Functions -- 3.5.1 Functions in Three Dimensions -- 3.6 Functions in Many Dimensions -- 3.6.1 FND Functions -- 3.6.2 Drawing FND Functions -- 3.7 Custom Functions -- 3.7.1 Custom Functions and Their Methods -- 3.7.2 Custom Functions Using Expression Builder -- 3.7.3 Custom Functions in Jython -- 3.8 Parametric Surfaces in 3D -- 3.8.1 FPR Functions -- 3.8.2 3D Mathematical Objects -- 3.9 Function Minimization -- 3.9.1 Minimization of Multidimensional Functions -- 3.9.2 Calling Migrad Directly -- 3.10 File Input and Output -- References -- 4 Data Arrays -- 4.1 1D Arrays
11.1.1 Creating Input Data
Title Numeric Computation and Statistical Data Analysis on the Java Platform
URI http://digital.casalini.it/9783319285313
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5590859
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6312276
http://link.springer.com/10.1007/978-3-319-28531-3
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319285313
http://www.books24x7.com/marc.asp?bookid=117301
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYdoBegAFaGSALIcQlKLGdODmO0TFVjNOYdrOcxJGmVh3MWYX463nPsZO0QyC4RKnruk_-2X4ffh-EvBGJ0IxpFmHukEhUjYzKhrNIpJhMyyQ8q9EOefYlO_0q5pfp5ZDZw0WXtOX76udv40r-B1VoA1wxSvYfkO0HhQZ4B3zhCQjDc0v47T-GaNnOBb6rydBh6Hww8d125umPutWjnCOdO-NcrzUWKmpRVh2u9s1Cr67XzhKK0ZhX3vXVWwOSbWtAsAZu2RNHJq2jTxsaJIctyPKUdTU775ynYxcKDHeCrjyJ-MA8epe-2YfjjCeMyeztt-8RVvXC229f4mSH7EgJ58_e0Wz--WKwgWWY_qzAkJtAhuySIg1khZtonwx4g4wJmWi7AGYAjKK1KFloqzGgdENduG8XV8ulBa5257bbCRHnj8iewciSx-SeWe2Th17-p_50tdAUSmyEtn0yOevT6ton5MTjTke4U8CdjnCniDsNuFPoAANQxJ0G3J-Si5PZ-fFp5AthRJplDN0j0rQsKh1XZZyWcZ3ouEwzidUV4yrBqq1FKuq0rKsmB4G0YLEQNcZQm8I0gsmaPyO7q-uVOSAU1GsODE5mVW4EjKhB4da6kJXhTV7nxZS8Hs2pWi_dpb1VAyg84VNyGKZaAbxdcnWrYLuDPA7f0jD7yv3a-xkrWCOgwGJKvT918csIuvTAKUcDEz-kKhfW6THImabkXcCz66FCEm6gVnEF9CpHsOLP__6Hh-TBsKNekN325ta8BImzLV_5hfsLVq941w
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Numeric+Computation+and+Statistical+Data+Analysis+on+the+Java+Platform&rft.au=Chekanov%2C+Sergei+V&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319285290&rft_id=info:doi/10.1007%2F978-3-319-28531-3&rft.externalDocID=EBC6312276
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833192%2F9783319285313.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-319-28531-3