International compendium of coastal engineering

The aim of this book is to provide a comprehensive overview of Coastal Engineering from basic theory to engineering practice. The authors of this book are worldwide authorities in the field. Each chapter deals with an important topic in the field of coastal engineering. The topics are of recent deep...

Full description

Saved in:
Bibliographic Details
Main Authors Sato, Shinji, Isobe, Masahiko
Format eBook Book
LanguageEnglish
Published Singapore World Scientific Publishing Co. Pte. Ltd 2015
World Scientific
World Scientific Publishing Company
WORLD SCIENTIFIC
World Scientific Publishing
Edition1
Subjects
Online AccessGet full text
ISBN9789814449427
9814449423
DOI10.1142/8706

Cover

Table of Contents:
  • International compendium of coastal engineering -- Preface -- Contents -- Chapter 1: Introduction -- Chapter 2: Random Waves in the Sea -- Chapter 3: Tsunamis — Their Coastal Effects and Defense Works -- Chapter 4: Basic Coastal Sediment Transport Mechanisms -- Chapter 5: Morphology of Erosional and Accretionary Coasts -- Chapter 6: Numerical Modeling of Nearshore Wave Transformation -- Chapter 7: Physical Modeling — Renewed Importance -- Chapter 8: Field Observations and Data Management -- Chapter 9: Beach Nourishment -- Chapter 10: Dredging of Navigational Channels -- Chapter 11: Enhancement of Marine Habitats -- Chapter 12: Hydro-Environmental Assessment of Coastal and Estuarine Systems -- Chapter 13: Coastal Zone Management (1) — U.S. Perspective -- Chapter 14: Coastal Zone Management (2) — The European Perspective -- Chapter 15: Coastal Zone Management (3) Sediment Movement and Beach Transformation Due to Port Construction in Japan -- Chapter 16: Coastal Zone Management (4) — Downcoast Erosion Triggered by Exhaustion of Sand Supply from Sea Cliffs with Northern Kujukuri Beach in Japan Taken as Example -- Chapter 17: View on Future Prospects of Coastal Engineering.
  • Title Page Preface Table of Contents 1. Introduction 2. Random Waves in the Sea 3. Tsunamis - Their Coastal Effects and Defense Works 4. Basic Coastal Sediment Transport Mechanisms 5. Morphology of Erosional and Accretionary Coasts 6. Numerical Modeling of Nearshore Wave Transformation 7. Physical Modeling - Renewed Importance 8. Field Observations and Data Management 9. Beach Nourishment 10. Dredging of Navigational Channels 11. Enhancement of Marine Habitats 12. Hydro-Environmental Assessment of Coastal and Estuarine Systems 13. Coastal Zone Management (1) - U.S. Perspective 14. Coastal Zone Management (2) - The European Perspective 15. Coastal Zone Management (3) - Sediment Movement and Beach Transformation due to Port Construction in Japan 16. Coastal Zone Management (4) - Downcoast Erosion Triggered by Exhaustion of Sand Supply from Sea Cliffs with Northern Kujukuri Beach in Japan Taken as Example 17. View on Future Prospects of Coastal Engineering
  • 3.6 Coastal topography/bathymetry and sediment characteristics -- 3.6.1 Introduction -- 3.6.2 Direct leveling -- 3.6.3 Acoustic sounding -- 3.7 Remote sensing -- 3.7.1 Aerial photographs -- 3.7.2 Satellite imagery -- 3.7.3 Lidar -- 3.7.4 Synthetic aperture radar and radar altimetry -- 3.7.5 High frequency radar -- 3.7.6 Digital videoimagery -- 4. Execution -- 4.1 Introduction -- 4.2 Large-scale field experiments -- 4.2.1 Introduction -- 4.2.2 NERC, Japan -- 4.2.3 Duck, USA (DUCK94, SUPERDUCK, DELILAH, SANDYDUCK97) -- 4.2.4 C2S2 and C-Coast, Canada -- 4.2.5 Walker Bay, South Africa -- 4.2.6 Egmond and NOURTEC, the Netherlands -- 4.2.7 ECMAST-III -- 4.2.8 Sand engine -- 4.2.9 Other coastal experiments -- 4.3 Coastal monitoring programmes -- 4.3.1 Introduction -- 4.3.2 Field research facility -- 4.3.3 Dutch coast - JARKUS -- 4.3.4 Dubai coastal zone monitoring programme -- 4.3.5 Other coastal monitoring programmes -- 4.4 Dealing with the unexpected (or when instruments go "walkabout") -- 4.5 Engineering project designmonitoring -- 5. Data Reduction and Management -- 5.1 General -- 5.2 Data processing and analysis -- 5.3 Data management and transfer -- 6. Perspectives for the Future -- 6.1.1 Validation of theoretical concepts -- 6.1.2 Comprehensive, large-scale field experiments -- 6.1.3 Coherent field observation protocols -- 6.1.4 Open access central data repositories -- 6.1.5 Field observation in developing countries -- Acknowledgment -- References -- 9. Beach Nourishment -- 1. Abstract -- 2. Introduction -- 3. General Discussion -- 3.1 Beach nourishment justification -- 3.2 Beach nourishment placement -- 3.3 Important performance measures -- 3.4 Role of stabilizing structures -- 3.5 Examples ofmajor projects -- 4. Simplified Methodology for Representing Project Evolution -- 4.1 General -- 4.2 Cross-shore considerations
  • 5. Detailed Methodology for Representing Project Evolution
  • 2.1 Episodic and localized nature of cliff recession -- 2.2 Mechanisms of toe erosion -- 2.3 Factors controlling toe erosion -- 2.4 Slope instabilities and mass movement -- 3. Accretionary Coastal Landforms -- 3.1 The two-dimensional profiles of sand beaches: Form and variation -- 3.2 Three-dimensional sand beaches -- 3.3 Mixed sand and gravel beaches -- 4. Summary and Conclusions -- References -- 6. Numerical Modeling of Nearshore Wave Transformation -- 1. Introduction -- 2. Wave Refraction -- 2.1 Law of wave refraction -- 2.2 Karlsson's energy conservation equation -- 2.3 Effect of current -- 3. Wave Diffraction -- 3.1 Helmholtz equation -- 3.2 Analytical solutions -- 3.3 Green-function method -- 4. Combined Refraction and Diffraction -- 4.1 Mild-slope equation -- 4.2 Time-dependentmild-slope equations -- 4.3 Parabolic equation -- 4.4 Nonlinear shallow-water equations -- 4.5 Boussinesq equations -- 4.6 Nonlinearmild-slope equations -- 5. Assumptions and Applicabilities of Wave Equations -- 6. Concluding Remarks -- References -- 7. Physical Modeling - Renewed Importance -- 1. Introduction -- 2. Historical Development of Physical Modeling -- 3. The Decline Of Physical Modeling -- 4. Physical Models that Work -- 5. Scaling and Scale Effects -- 5.1 Scaling from equations -- 5.2 Scaling with dimensional analysis -- 5.3 Scaling sediment transport -- 6. Implications for Physical Modeling -- 7. Example -- 8. Conclusions -- References -- Notation -- Summary -- Keywords -- 8. Field Observations and Data Management -- 1. Introduction -- 2. Objectives and Planning -- 3. Measurement Techniques -- 3.1 Introduction -- 3.2 Waves and water levels -- 3.2.1 Wave gauges -- 3.3 Water levels -- 3.4 Currents -- 3.4.1 Lagrangian measurements -- 3.4.2 Eulerian measurements -- 3.4.3 Turbulence -- 3.5 Sediment transport -- 3.5.1 Cohesive sediments -- 3.5.2 Aeolian transport
  • Intro -- Contents -- Preface -- 1. Introduction -- 1. Introduction -- 2. Origin and Needs of Coastal Engineering -- 3. A Bit of History of Modern Coastal Engineering: Yesterday and Today -- 4. Present and Future Requirements -- References -- 2. Random Waves in the Sea -- 1. Introduction -- 2. Description of RandomSeaWaves -- 2.1 Linear model of random sea surface -- 2.2 Spectral representation of sea waves -- 2.3 Statistical representation by wave-by-wave analysis -- 3. Standard Functional Forms of Wave Spectrum -- 3.1 Single-peaked frequency spectrum -- 3.2 Directional spreading function -- 3.3 Multi-peaked wave spectrum -- 4. Statistical Distributions of Wave Heights and Periods -- 4.1 Distribution of wave heights -- 4.2 Joint distribution of wave heights and periods -- 4.3 Spectral effects on wave heights and periods -- 4.4 Wave grouping -- 5. Properties of Weakly Nonlinear Waves -- 5.1 Parameters of wave nonlinearity -- 5.2 Wave nonlinearity effects on wave heights and periods -- 5.3 Nonlinear spectral components and infragravity waves -- 6. Incorporation of Wave Randomness in Engineering Practice -- 6.1 Spectral transformation of refraction, diffraction, and reflection -- 6.2 Wave breaking and generation of longshore currents -- 6.3 Wave actions on structures -- 7. Summary -- References -- 3. Tsunamis - Their Coastal Effects and Defense Works -- 1. Introduction -- 1.1 Causes of tsunamis -- 1.2 Far- and near-field tsunamis -- 1.3 Major amplification mechanisms -- 2. Tsunamis, Observed and Experienced -- 2.1 The 1983 Nihonkai-Chubu earthquake Tsunami -- 2.2 The 1933 showa great Sanriku tsunami -- 3. Initial Profile,An Enigma At The Start Line -- 3.1 Method of determination -- 3.2 The 1993 Hokkaido Nansei-Oki earthquake tsunami -- 4. Numerical Simulation, A PowerfulMeans -- 4.1 Equations -- 4.2 Numerical error control
  • 4.5.2.2 The continuity equation applied to bedforms -- 4.5.2.3 Bedforms migrating with constant form -- 4.5.2.4 Migration and growth of sinusoidal bedforms -- 4.5.2.5 Numerical issues with bed updating -- 4.5.3 Vortex ripples -- 4.5.4 Megaripples -- 4.5.5 Bedforms in combined wave current flows -- 4.5.6 Hydraulic roughness -- 4.6. TheMotion of Suspended Particles -- 4.6.1 Sediment velocities and sediment orbits -- 4.6.2 Equation of motion for a suspended particle or bubble -- 4.6.3 The time scale of particle acceleration -- 4.6.4 Suspended particles in wave flows -- 4.6.5 Particles or bubbles suspended in vortices -- 4.6.6 Turbulence effects on settling of particles or the rise of bubbles -- 4.6.7 Reduced particle velocity variance due to selective sampling -- 4.7. Sediment Suspensions -- 4.7.1 What is suspended load? -- 4.7.2 The modeling framework for sediment suspensions -- 4.7.3 Near-bed reference concentrations -- 4.7.4 Sediment pickup functions -- 4.7.5 Sediment distribution modeling -- 4.7.5.1 The mixing length approach -- 4.7.5.2 Mixing length model of u(z) and c(z) for lm = λz and wm = γu -- 4.7.5.3 Suspension under waves -- 4.7.6 Suspensions of cohesive sediments -- 4.8. Basic Sediment TransportModel Building -- 4.8.1 Introduction -- 4.8.2 Two different families of transport models -- 4.9. Sediment Transport Outside the Surf Zone -- 4.9.1 Shorenormal transport -- 4.9.2 Shoreparallel transport outside the surf zone -- 4.10. Surf Zone Sediment Transport -- 4.10.1 Shorenormal transport -- 4.10.2 Shoreparallel transport -- 4.11. Swash Zone Sediment Transport -- 4.11.1 Swash sediment transport and the beach watertable -- 4.12. Concluding Remarks on Sediment Transport Modeling -- References -- 5. Morphology of Erosional and Accretionary Coasts -- 1. Introduction -- 2. Sea Cliff Erosion - Processes and Morphology
  • 4.3 Credibility of bathymetry data -- 4.4 Verification of computed results -- 5. Measurements -- 5.1 Tide gauge -- 5.2 Ultrasonic wave gauge -- 5.3 Post-tsunami field survey aided by numerical simulation -- 5.4 Tsunami measurement in deep sea -- 6. Disasters and Countermeasures -- 6.1 Disasters -- 6.2 Countermeasures -- 7. Forecasting and Evacuation -- 7.1 Tsunami forecasting and warning -- 7.2 Evacuation -- 8. Research Needs In The Near Future -- 8.1 Reduction of false alarm -- 8.2 Offshore tsunami measurement -- 8.3 New theories -- 8.4 CG animation for a better understanding of tsunami movement -- 8.5 Public education aided by "virtual-reality" graphics -- References -- 4. Basic Coastal Sediment Transport Mechanisms -- 4.1. Introduction -- 4.2. Boundary Layers and Bed Shear Stresses -- 4.2.1 Coastal bottom boundary layers -- 4.2.2 Shear stresses on rippled beds -- 4.2.3 Shear stresses over flat movable beds -- 4.2.4 The log law for steady flow -- 4.2.5 The wave friction factor -- 4.2.6 Time dependent bed shear stresses -- 4.3. Sediment Parameters and Sediment Mobility -- 4.3.1 Introduction -- 4.3.2 Sediment characteristics -- 4.3.3 Forces on sediment particles -- 4.3.4 The mobility number -- 4.3.5 The Shields parameter -- 4.3.6 Sleath's acceleration parameter -- 4.3.7 Infiltration effects -- 4.3.8 Initiation of sediment motion -- 4.4. Bedload and Sheet Flow -- 4.4.1 Introduction -- 4.4.2 What is bedload? -- 4.4.3 Dispersive stress and the amount of bedload -- 4.4.4 Meyer-Peter and M¨uller type bedload formulae -- 4.4.5 The average speed of the bedload -- 4.4.6 Energy dissipation and bedload -- 4.4.7 Velocity moment formulae for sediment flux -- 4.4.8 Bedload and sheetflow transport in arbitrary flows -- 4.5. Bedforms and Hydraulic Roughness -- 4.5.1 Introduction -- 4.5.2 Bedform growth and migration -- 4.5.2.1 Migration of natural bedforms