Source identification of mine water inrush based on GBDT-RS-SHAP
A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations (SHAP), has been developed to enhance safety in coal mining operations. To mitigate the impact of outliers on model accuracy during training, bo...
Saved in:
| Published in | Environmental earth sciences Vol. 84; no. 4; p. 114 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1866-6280 1866-6299 |
| DOI | 10.1007/s12665-025-12107-5 |
Cover
| Abstract | A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations (SHAP), has been developed to enhance safety in coal mining operations. To mitigate the impact of outliers on model accuracy during training, box plots and multivariate distribution matrix plots were employed to detect and subsequently remove outlier data from the sample. The processed dataset was subsequently subjected to training via GBDT, culminating in the development of a definitive classification model predicated on the gradient of residuals. The model’s hyperparameters, encompassing the number of trees, tree depth, and learning rate, were meticulously optimized through a random search algorithm to augment the model’s predictive performance. Utilizing the measured data from water samples collected in the Pingdingshan Coalfield, cross-validation was performed, yielding a maximum precision of 0.857 and an average precision of 0.602. Upon the application of the optimized GBDT model to the classification of 24 unknown water samples, the model achieved a high accuracy rate of 95.8%, with a single misclassification, and a minimal root mean square error (RMSE) of 0.183. This demonstrates that stochastic search optimization enhances the model’s stability and robustness, addressing the challenges of inefficiency and inaccuracy in coal mine water source identification, and significantly contributes to the advancement of water hazard prevention and control measures in coal mining. To make the output of the model transparent, this study employs SHAP for the elucidation of the model’s output. SHAP is a Python-based “Model Interpretation” package designed to elucidate the predictions of machine learning models. The findings reveal that fluctuations in Ca
2+
concentration exert a substantial impact on the discrimination outcomes, whereas the characteristic contribution of SO
4
2−
is negligible and can be disregarded. This offers a foundational and referential framework for the study of water sources for mine water emergencies. |
|---|---|
| AbstractList | A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations (SHAP), has been developed to enhance safety in coal mining operations. To mitigate the impact of outliers on model accuracy during training, box plots and multivariate distribution matrix plots were employed to detect and subsequently remove outlier data from the sample. The processed dataset was subsequently subjected to training via GBDT, culminating in the development of a definitive classification model predicated on the gradient of residuals. The model’s hyperparameters, encompassing the number of trees, tree depth, and learning rate, were meticulously optimized through a random search algorithm to augment the model’s predictive performance. Utilizing the measured data from water samples collected in the Pingdingshan Coalfield, cross-validation was performed, yielding a maximum precision of 0.857 and an average precision of 0.602. Upon the application of the optimized GBDT model to the classification of 24 unknown water samples, the model achieved a high accuracy rate of 95.8%, with a single misclassification, and a minimal root mean square error (RMSE) of 0.183. This demonstrates that stochastic search optimization enhances the model’s stability and robustness, addressing the challenges of inefficiency and inaccuracy in coal mine water source identification, and significantly contributes to the advancement of water hazard prevention and control measures in coal mining. To make the output of the model transparent, this study employs SHAP for the elucidation of the model’s output. SHAP is a Python-based “Model Interpretation” package designed to elucidate the predictions of machine learning models. The findings reveal that fluctuations in Ca2+ concentration exert a substantial impact on the discrimination outcomes, whereas the characteristic contribution of SO42− is negligible and can be disregarded. This offers a foundational and referential framework for the study of water sources for mine water emergencies. A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations (SHAP), has been developed to enhance safety in coal mining operations. To mitigate the impact of outliers on model accuracy during training, box plots and multivariate distribution matrix plots were employed to detect and subsequently remove outlier data from the sample. The processed dataset was subsequently subjected to training via GBDT, culminating in the development of a definitive classification model predicated on the gradient of residuals. The model’s hyperparameters, encompassing the number of trees, tree depth, and learning rate, were meticulously optimized through a random search algorithm to augment the model’s predictive performance. Utilizing the measured data from water samples collected in the Pingdingshan Coalfield, cross-validation was performed, yielding a maximum precision of 0.857 and an average precision of 0.602. Upon the application of the optimized GBDT model to the classification of 24 unknown water samples, the model achieved a high accuracy rate of 95.8%, with a single misclassification, and a minimal root mean square error (RMSE) of 0.183. This demonstrates that stochastic search optimization enhances the model’s stability and robustness, addressing the challenges of inefficiency and inaccuracy in coal mine water source identification, and significantly contributes to the advancement of water hazard prevention and control measures in coal mining. To make the output of the model transparent, this study employs SHAP for the elucidation of the model’s output. SHAP is a Python-based “Model Interpretation” package designed to elucidate the predictions of machine learning models. The findings reveal that fluctuations in Ca²⁺ concentration exert a substantial impact on the discrimination outcomes, whereas the characteristic contribution of SO₄²⁻ is negligible and can be disregarded. This offers a foundational and referential framework for the study of water sources for mine water emergencies. A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations (SHAP), has been developed to enhance safety in coal mining operations. To mitigate the impact of outliers on model accuracy during training, box plots and multivariate distribution matrix plots were employed to detect and subsequently remove outlier data from the sample. The processed dataset was subsequently subjected to training via GBDT, culminating in the development of a definitive classification model predicated on the gradient of residuals. The model’s hyperparameters, encompassing the number of trees, tree depth, and learning rate, were meticulously optimized through a random search algorithm to augment the model’s predictive performance. Utilizing the measured data from water samples collected in the Pingdingshan Coalfield, cross-validation was performed, yielding a maximum precision of 0.857 and an average precision of 0.602. Upon the application of the optimized GBDT model to the classification of 24 unknown water samples, the model achieved a high accuracy rate of 95.8%, with a single misclassification, and a minimal root mean square error (RMSE) of 0.183. This demonstrates that stochastic search optimization enhances the model’s stability and robustness, addressing the challenges of inefficiency and inaccuracy in coal mine water source identification, and significantly contributes to the advancement of water hazard prevention and control measures in coal mining. To make the output of the model transparent, this study employs SHAP for the elucidation of the model’s output. SHAP is a Python-based “Model Interpretation” package designed to elucidate the predictions of machine learning models. The findings reveal that fluctuations in Ca 2+ concentration exert a substantial impact on the discrimination outcomes, whereas the characteristic contribution of SO 4 2− is negligible and can be disregarded. This offers a foundational and referential framework for the study of water sources for mine water emergencies. |
| ArticleNumber | 114 |
| Author | Wang, Xinyi Meng, Hongwei Xi, Tong Yang, Zhenwei Li, Han Hou, Zhenhuan |
| Author_xml | – sequence: 1 givenname: Zhenwei surname: Yang fullname: Yang, Zhenwei organization: Institute of Resources & Environment, Henan Polytechnic University – sequence: 2 givenname: Han surname: Li fullname: Li, Han organization: Institute of Resources & Environment, Henan Polytechnic University – sequence: 3 givenname: Xinyi surname: Wang fullname: Wang, Xinyi email: wxy20240701@163.com organization: Institute of Resources & Environment, Henan Polytechnic University – sequence: 4 givenname: Hongwei surname: Meng fullname: Meng, Hongwei organization: The Second Institute of Resources and Environment Investigation of Henan Province Co., LTD, The Coal Mine Disaster Drilling Prevention and Control Engineering Technology Research Center of Henan Province – sequence: 5 givenname: Tong surname: Xi fullname: Xi, Tong organization: The Second Institute of Resources and Environment Investigation of Henan Province Co., LTD, The Coal Mine Disaster Drilling Prevention and Control Engineering Technology Research Center of Henan Province – sequence: 6 givenname: Zhenhuan surname: Hou fullname: Hou, Zhenhuan organization: The Second Institute of Resources and Environment Investigation of Henan Province Co., LTD, The Coal Mine Disaster Drilling Prevention and Control Engineering Technology Research Center of Henan Province |
| BookMark | eNp9kEFLAzEQhYNUsNb-AU8LXrxEM0mTTW7Wqq1QUGw9h-wmq1vabE12Ef-9qRUFD85lBuabx7x3jHq-8Q6hUyAXQEh-GYEKwTGhHAMFkmN-gPoghcCCKtX7mSU5QsMYVyQVA6aI6KOrRdOF0mW1db6tq7o0bd34rKmyTe1d9m5aF7Lahy6-ZoWJzmZpO72-WeKnBV7Mxo8n6LAy6-iG332Anu9ul5MZnj9M7yfjOTaUixYroCq3toTCSW4LOgLBZC7lCDinpRBVJawgXOYFV9bmBQEOFTOicAxGtMzZAJ3vdbeheetcbPWmjqVbr413TRc1o8kUk1TxhJ79QVfJpE_faQZCSMWYoomie6oMTYzBVXob6o0JHxqI3uWq97nqlKv-ylXvpNn-KCbYv7jwK_3P1Sc0x3jp |
| Cites_doi | 10.1155/2022/2630953 10.1016/j.aei.2023.102023 10.1007/s12665-019-8624-2 10.1155/2018/9205025 10.1016/j.cageo.2022.105140 10.1109/LGRS.2020.2968356 10.3390/su142417011 10.1016/j.aei.2022.101666 10.1007/s12517-021-09100-0 10.1016/j.aei.2022.101736 10.1155/2020/2584094 10.1016/j.jclepro.2020.120008 10.1007/s12040-019-1232-4 10.1007/s10230-022-00884-5 10.1109/TFUZZ.2022.3215725 10.1111/gwmr.12507 10.1007/s12517-019-4500-3 10.1155/2021/8516525 10.1111/1755-6724.14299 10.1016/j.aei.2023.102016 10.1016/j.chemosphere.2019.04.022 10.1016/j.aei.2013.12.003 10.1016/j.gsd.2024.101312 10.3389/fgene.2023.1165765 10.1016/j.aei.2022.101789 10.1007/s00521-020-05006-2 10.1007/BF02478259 10.1016/j.aei.2019.101027 10.1016/j.aei.2018.09.005 10.1016/j.aei.2019.100977 10.3390/en15031064 10.1038/s41598-022-05473-8 10.1016/j.aei.2020.101126 10.1016/j.aei.2022.101727 10.1007/s12665-014-3938-6 10.1007/s12665-021-09450-8 10.1016/j.jhydrol.2015.06.007 10.1016/j.aei.2022.101525 10.1016/j.aei.2018.11.005 10.2166/hydro.2013.008 10.1007/s10064-021-02535-5 10.1016/j.aei.2023.101955 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | AAYXX CITATION 7ST 7TG 7UA C1K F1W H96 KL. L.G SOI 7S9 L.6 |
| DOI | 10.1007/s12665-025-12107-5 |
| DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1866-6299 |
| EndPage | 114 |
| ExternalDocumentID | 10_1007_s12665_025_12107_5 |
| GrantInformation_xml | – fundername: State Key Laboratory of Development and Comprehensive Utilization of Coking Coal Resources grantid: 41040220201308 – fundername: Fundamental Research Funds for the Universities of Henan Province grantid: NSFRF200337, NSFRF200103 – fundername: National Natural Science Foundation of China grantid: 41972254 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2019M662494 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: Key Scientific Research Projects of Higher Education Institutions of Henan Province grantid: 19A170005 – fundername: Natural Science Foundation of Henan Province grantid: 202300410179 funderid: http://dx.doi.org/10.13039/501100006407 |
| GroupedDBID | -5A -5G -BR -DZ -EM -Y2 -~C .4S .DC 06D 0R~ 0VY 199 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40D 40E 4P2 5VS 67M 67Z 6NX 7XC 88I 8FE 8FH 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IKXTQ ITM IWAJR J-C J0Z JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- ML. MQGED N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J PATMY PCBAR PF- PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I ROL RSV S16 S1Z S27 S3B SAP SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7V Z7W Z7Y Z7Z Z81 Z83 Z85 ZCG ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PUEGO 7ST 7TG 7UA C1K F1W H96 KL. L.G SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-a256t-91297ddc1be85db24163878841552c66ff6d60587b59dd7b0151f3a6be3142c73 |
| IEDL.DBID | U2A |
| ISSN | 1866-6280 |
| IngestDate | Fri Sep 05 17:29:29 EDT 2025 Fri Jul 25 21:55:07 EDT 2025 Wed Oct 01 06:53:40 EDT 2025 Fri Feb 21 04:10:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | SHAP Cross validation Mine water source Gradient boosting decision tree Pingdingshan coalfield |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a256t-91297ddc1be85db24163878841552c66ff6d60587b59dd7b0151f3a6be3142c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 3166893392 |
| PQPubID | 54063 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3200338295 proquest_journals_3166893392 crossref_primary_10_1007_s12665_025_12107_5 springer_journals_10_1007_s12665_025_12107_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250200 2025-02-00 20250201 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Environmental earth sciences |
| PublicationTitleAbbrev | Environ Earth Sci |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | JC Cheng (12107_CR5) 2022 F Li (12107_CR18) 2021; 2021 S Mazhar (12107_CR33) 2019 Y Ren (12107_CR32) 2022 H Zhang (12107_CR42) 2019; 93 Y Ding (12107_CR8) 2019 B Li (12107_CR22) 2020 N Chitsazan (12107_CR6) 2015 C Jiang (12107_CR17) 2022 DC Feng (12107_CR10) 2020 A Mahmoodzadeh (12107_CR26) 2021; 33 Z Herui (12107_CR13) 2022; 14 L Liu (12107_CR24) 2022 M Moazamnia (12107_CR31) 2024 P Huang (12107_CR15) 2018; 2018 J Li (12107_CR19) 2019; 39 S Petrov (12107_CR30) 2022 DT Bui (12107_CR4) 2018 Q Hao (12107_CR12) 2022 Y Bi (12107_CR3) 2021; 80 B Yan (12107_CR38) 2020 P Huang (12107_CR16) 2019; 12 H Yan (12107_CR39) 2022 Y Zhang (12107_CR43) 2022; 12 Y Li (12107_CR23) 2022 B Liu (12107_CR25) 2023 Z Wei (12107_CR37) 2022 AA Nadiri (12107_CR28) 2013 J Li (12107_CR20) 2022 L Zha (12107_CR40) 2022 J Bergstra (12107_CR2) 2012; 13 Z Guan (12107_CR11) 2019; 128 AJ Trappey (12107_CR34) 2020 X Wang (12107_CR35) 2023 Y Hu (12107_CR14) 2022; 42 K Peng (12107_CR29) 2015; 73 R Feng (12107_CR9) 2020; 18 WS McCulloch (12107_CR27) 1943; 5 H Zhang (12107_CR41) 2019; 78 Y Wang (12107_CR36) 2023 M Abbaszadeh (12107_CR1) 2022 Y Li (12107_CR21) 2023 J Clarke (12107_CR7) 2014; 28 |
| References_xml | – year: 2022 ident: 12107_CR23 publication-title: Scient Prog doi: 10.1155/2022/2630953 – year: 2023 ident: 12107_CR35 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102023 – volume: 78 start-page: 1 year: 2019 ident: 12107_CR41 publication-title: Environ Earth Sci doi: 10.1007/s12665-019-8624-2 – volume: 2018 start-page: 1 year: 2018 ident: 12107_CR15 publication-title: Geofluids doi: 10.1155/2018/9205025 – volume: 13 start-page: 281 issue: 2 year: 2012 ident: 12107_CR2 publication-title: J Mach Lear Res – year: 2022 ident: 12107_CR1 publication-title: Comput Geosci doi: 10.1016/j.cageo.2022.105140 – volume: 18 start-page: 18 issue: 1 year: 2020 ident: 12107_CR9 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2020.2968356 – volume: 14 start-page: 17011 issue: 24 year: 2022 ident: 12107_CR13 publication-title: Sustainability doi: 10.3390/su142417011 – year: 2022 ident: 12107_CR24 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101666 – year: 2022 ident: 12107_CR12 publication-title: Arab J Geosci doi: 10.1007/s12517-021-09100-0 – year: 2022 ident: 12107_CR40 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101736 – year: 2020 ident: 12107_CR22 publication-title: Geofluids doi: 10.1155/2020/2584094 – year: 2020 ident: 12107_CR38 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120008 – volume: 128 start-page: 1 year: 2019 ident: 12107_CR11 publication-title: China J Earth Sys Sci doi: 10.1007/s12040-019-1232-4 – year: 2022 ident: 12107_CR37 publication-title: Mine Water Environ doi: 10.1007/s10230-022-00884-5 – year: 2022 ident: 12107_CR32 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2022.3215725 – volume: 42 start-page: 67 issue: 2 year: 2022 ident: 12107_CR14 publication-title: Groundwater Monit Remed doi: 10.1111/gwmr.12507 – volume: 12 start-page: 1 year: 2019 ident: 12107_CR16 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4500-3 – volume: 2021 start-page: 1 year: 2021 ident: 12107_CR18 publication-title: Complexity doi: 10.1155/2021/8516525 – volume: 93 start-page: 1922 issue: 6 year: 2019 ident: 12107_CR42 publication-title: Acta Geologica Sinica-Engl Edit doi: 10.1111/1755-6724.14299 – year: 2023 ident: 12107_CR25 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102016 – year: 2019 ident: 12107_CR33 publication-title: Chemos doi: 10.1016/j.chemosphere.2019.04.022 – volume: 28 start-page: 81 issue: 1 year: 2014 ident: 12107_CR7 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2013.12.003 – year: 2024 ident: 12107_CR31 publication-title: Groundwat Sustain Devel doi: 10.1016/j.gsd.2024.101312 – year: 2023 ident: 12107_CR21 publication-title: Front Genet doi: 10.3389/fgene.2023.1165765 – year: 2022 ident: 12107_CR39 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101789 – volume: 33 start-page: 321 year: 2021 ident: 12107_CR26 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05006-2 – volume: 5 start-page: 115 year: 1943 ident: 12107_CR27 publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – year: 2020 ident: 12107_CR34 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2019.101027 – year: 2018 ident: 12107_CR4 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2018.09.005 – year: 2019 ident: 12107_CR8 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2019.100977 – year: 2022 ident: 12107_CR30 publication-title: Energies doi: 10.3390/en15031064 – volume: 12 start-page: 1370 issue: 1 year: 2022 ident: 12107_CR43 publication-title: Sci Rep doi: 10.1038/s41598-022-05473-8 – year: 2020 ident: 12107_CR10 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2020.101126 – year: 2022 ident: 12107_CR5 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101727 – volume: 73 start-page: 7873 year: 2015 ident: 12107_CR29 publication-title: Environ Earth Sci doi: 10.1007/s12665-014-3938-6 – volume: 80 start-page: 1 year: 2021 ident: 12107_CR3 publication-title: Environ Earth Sci doi: 10.1007/s12665-021-09450-8 – year: 2015 ident: 12107_CR6 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.06.007 – year: 2022 ident: 12107_CR20 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101525 – volume: 39 start-page: 25 year: 2019 ident: 12107_CR19 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2018.11.005 – year: 2013 ident: 12107_CR28 publication-title: J Hydroinf doi: 10.2166/hydro.2013.008 – year: 2022 ident: 12107_CR17 publication-title: Bullet Eng Geol Env doi: 10.1007/s10064-021-02535-5 – year: 2023 ident: 12107_CR36 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.101955 |
| SSID | ssj0000313906 |
| Score | 2.4273098 |
| Snippet | A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 114 |
| SubjectTerms | Accuracy algorithms Aquifers Artificial intelligence Biogeosciences calcium Calcium ions Classification Coal Coal mines Coal mining Data analysis data collection Decision trees Earth and Environmental Science Earth science Earth Sciences Environmental Science and Engineering Geochemistry Geology Hydrology/Water Resources Identification Machine learning Mine drainage Mine waters Mining accidents & safety Multivariate analysis Neural networks Occupational safety Original Article Outliers (statistics) Principal components analysis Robust control Root-mean-square errors Search algorithms Support vector machines Terrestrial Pollution Training trees Water analysis Water damage Water inrush Water sampling Water sources |
| Title | Source identification of mine water inrush based on GBDT-RS-SHAP |
| URI | https://link.springer.com/article/10.1007/s12665-025-12107-5 https://www.proquest.com/docview/3166893392 https://www.proquest.com/docview/3200338295 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-6299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000313906 issn: 1866-6280 databaseCode: AFBBN dateStart: 20091101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-6299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000313906 issn: 1866-6280 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-6299 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000313906 issn: 1866-6280 databaseCode: U2A dateStart: 20091101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66IXgRf-J0jgjeNNCkTZrerDo3FEXcBvNUmibFHexkPxD_e1-ydkPRg-eEV_iS5n3Je-97CJ3RLMhlZiLipblHAp4KojyVEppR7UtJBc9scfLDo-gOgrshH5ZFYdMq270KSbqTelXsBr7EVhNzYkWvQsLXUZ1bOS_YxQMWL19WrBph5JpqWjE3Ipj0ymqZ381890grmvkjMuoczu022iqZIo4XS7uD1kyxizY6rhPv5x667LlndzzSZb6PgxiPc_wGxBF_AIec4FExmU9fsXVVGsNo5-qmT557pNeNn_bR4Lbdv-6Ssh0CSYGXzOBYYlGodUaVkVwr5qgU3GAtJWCZEHkutA1yhopHWocKHD3N_VQo49OAZaF_gGrFuDCHCCsRRDr1bK8wuH6FgQTWpiUPrEpomBu_gc4rSJL3hepFstI3tgAmAGDiAEx4AzUr1JLyD5gmPhUCuBDQrwY6XQ7D3rUBibQw4znMsZlxvmQRmLio0F6Z-PuLR_-bfow2mV1wl2zdRLXZZG5OgEvMVAvV487LfbvlttAXsZW8-A |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgE4ILb8RgQJC4QVBfSdsb47GNxybENglOVdO0YkJ0aA8h-PU4WUsFgsPOiZLWTuIvsf0Z4MiMnMSLYp8aYWJQh4WcCkOE1IxMaXueyVmkkpNbbd7sOTeP7DFLChvl0e65S1Kf1EWyG9oSlU3MqCK9cimbh7KDFxSrBOVa4-m2eFtRfIS-Lqup6Nwotzwjy5f5e6CfNqkAmr98o9rk1Fegl3_sNNLk5XQyFqfR5y8ex1n_ZhWWMwxKatNFswZzcboOCw1d4_djA846-kGf9GUWSaSVRwYJeUVISt4RnQ5JPx1ORs9EGUFJsLVxftmlDx3aadbuN6FXv-peNGlWaIGGiHjGeOBZvitlZIrYY1JYGqTh3ViBDSviPEm4VO5TVzBfSlcghDATO-Qitk3Hilx7C0rpII23gQju-DI0VBUyvNi5jod4UHrMUfyjbhLbFTjORR28Tfk0goI5WckkQJkEWiYBq0A110aQ7a1RYJucI8pCYFeBw-9m3BXK1RGm8WCCfVTMne1ZPg5xkiugGOL_GXdm634Ai81u6y64u27f7sKSpfSpQ7qrUBoPJ_EeIpax2M8W6BdhI9tD |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4Uo_FifEYUtSbetGEfbbd7E0XAFyECCbfNdrsbObgQWGL8907LLqjRg-c2s8nXdudrZ-YbhC7siCYiin1ihYlFKAs5kZYMiR3ZyhXC5izSxcnPbd7q04cBG3yp4jfZ7kVIcl7ToFWa0qw6Vkl1WfgGfkVXFjOiBbA8wlbRGtVCCbCj-05t8cqilQl902BTC7sR7ggrr5z53cx377SknD-ipMb5NLbRVs4acW2-zDtoJU530XrTdOX92EPXXfMEj4cqz_0xcONRgt-AROJ34JMTPEwns-kr1m5LYRht3tR75KVLuq1aZx_1G3e92xbJWyOQEDhKBr8ox_eUimwZC6akY2gV3GY1PXAizpOEKx3w9CTzlfIkOH07cUMuY9emTuS5B6iUjtL4EGHJqa9CS_cNg6uYRwUwOCUY1YqhXhK7ZXRZQBKM5woYwVLrWAMYAICBATBgZVQpUAvy0zANXJtz4EVAxcrofDEM-1gHJ8I0Hs1gjs6Sc4Xjg4mrAu2lib-_ePS_6Wdoo1NvBE_37cdjtOnotTc52BVUyiaz-AQoRiZPzS76BFaNwow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source+identification+of+mine+water+inrush+based+on+GBDT-RS-SHAP&rft.jtitle=Environmental+earth+sciences&rft.au=Yang%2C+Zhenwei&rft.au=Li%2C+Han&rft.au=Wang%2C+Xinyi&rft.au=Meng%2C+Hongwei&rft.date=2025-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1866-6280&rft.eissn=1866-6299&rft.volume=84&rft.issue=4&rft_id=info:doi/10.1007%2Fs12665-025-12107-5&rft.externalDocID=10_1007_s12665_025_12107_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon |