Source identification of mine water inrush based on GBDT-RS-SHAP

A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations (SHAP), has been developed to enhance safety in coal mining operations. To mitigate the impact of outliers on model accuracy during training, bo...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental earth sciences Vol. 84; no. 4; p. 114
Main Authors Yang, Zhenwei, Li, Han, Wang, Xinyi, Meng, Hongwei, Xi, Tong, Hou, Zhenhuan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-6280
1866-6299
DOI10.1007/s12665-025-12107-5

Cover

Abstract A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations (SHAP), has been developed to enhance safety in coal mining operations. To mitigate the impact of outliers on model accuracy during training, box plots and multivariate distribution matrix plots were employed to detect and subsequently remove outlier data from the sample. The processed dataset was subsequently subjected to training via GBDT, culminating in the development of a definitive classification model predicated on the gradient of residuals. The model’s hyperparameters, encompassing the number of trees, tree depth, and learning rate, were meticulously optimized through a random search algorithm to augment the model’s predictive performance. Utilizing the measured data from water samples collected in the Pingdingshan Coalfield, cross-validation was performed, yielding a maximum precision of 0.857 and an average precision of 0.602. Upon the application of the optimized GBDT model to the classification of 24 unknown water samples, the model achieved a high accuracy rate of 95.8%, with a single misclassification, and a minimal root mean square error (RMSE) of 0.183. This demonstrates that stochastic search optimization enhances the model’s stability and robustness, addressing the challenges of inefficiency and inaccuracy in coal mine water source identification, and significantly contributes to the advancement of water hazard prevention and control measures in coal mining. To make the output of the model transparent, this study employs SHAP for the elucidation of the model’s output. SHAP is a Python-based “Model Interpretation” package designed to elucidate the predictions of machine learning models. The findings reveal that fluctuations in Ca 2+ concentration exert a substantial impact on the discrimination outcomes, whereas the characteristic contribution of SO 4 2− is negligible and can be disregarded. This offers a foundational and referential framework for the study of water sources for mine water emergencies.
AbstractList A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations (SHAP), has been developed to enhance safety in coal mining operations. To mitigate the impact of outliers on model accuracy during training, box plots and multivariate distribution matrix plots were employed to detect and subsequently remove outlier data from the sample. The processed dataset was subsequently subjected to training via GBDT, culminating in the development of a definitive classification model predicated on the gradient of residuals. The model’s hyperparameters, encompassing the number of trees, tree depth, and learning rate, were meticulously optimized through a random search algorithm to augment the model’s predictive performance. Utilizing the measured data from water samples collected in the Pingdingshan Coalfield, cross-validation was performed, yielding a maximum precision of 0.857 and an average precision of 0.602. Upon the application of the optimized GBDT model to the classification of 24 unknown water samples, the model achieved a high accuracy rate of 95.8%, with a single misclassification, and a minimal root mean square error (RMSE) of 0.183. This demonstrates that stochastic search optimization enhances the model’s stability and robustness, addressing the challenges of inefficiency and inaccuracy in coal mine water source identification, and significantly contributes to the advancement of water hazard prevention and control measures in coal mining. To make the output of the model transparent, this study employs SHAP for the elucidation of the model’s output. SHAP is a Python-based “Model Interpretation” package designed to elucidate the predictions of machine learning models. The findings reveal that fluctuations in Ca2+ concentration exert a substantial impact on the discrimination outcomes, whereas the characteristic contribution of SO42− is negligible and can be disregarded. This offers a foundational and referential framework for the study of water sources for mine water emergencies.
A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations (SHAP), has been developed to enhance safety in coal mining operations. To mitigate the impact of outliers on model accuracy during training, box plots and multivariate distribution matrix plots were employed to detect and subsequently remove outlier data from the sample. The processed dataset was subsequently subjected to training via GBDT, culminating in the development of a definitive classification model predicated on the gradient of residuals. The model’s hyperparameters, encompassing the number of trees, tree depth, and learning rate, were meticulously optimized through a random search algorithm to augment the model’s predictive performance. Utilizing the measured data from water samples collected in the Pingdingshan Coalfield, cross-validation was performed, yielding a maximum precision of 0.857 and an average precision of 0.602. Upon the application of the optimized GBDT model to the classification of 24 unknown water samples, the model achieved a high accuracy rate of 95.8%, with a single misclassification, and a minimal root mean square error (RMSE) of 0.183. This demonstrates that stochastic search optimization enhances the model’s stability and robustness, addressing the challenges of inefficiency and inaccuracy in coal mine water source identification, and significantly contributes to the advancement of water hazard prevention and control measures in coal mining. To make the output of the model transparent, this study employs SHAP for the elucidation of the model’s output. SHAP is a Python-based “Model Interpretation” package designed to elucidate the predictions of machine learning models. The findings reveal that fluctuations in Ca²⁺ concentration exert a substantial impact on the discrimination outcomes, whereas the characteristic contribution of SO₄²⁻ is negligible and can be disregarded. This offers a foundational and referential framework for the study of water sources for mine water emergencies.
A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations (SHAP), has been developed to enhance safety in coal mining operations. To mitigate the impact of outliers on model accuracy during training, box plots and multivariate distribution matrix plots were employed to detect and subsequently remove outlier data from the sample. The processed dataset was subsequently subjected to training via GBDT, culminating in the development of a definitive classification model predicated on the gradient of residuals. The model’s hyperparameters, encompassing the number of trees, tree depth, and learning rate, were meticulously optimized through a random search algorithm to augment the model’s predictive performance. Utilizing the measured data from water samples collected in the Pingdingshan Coalfield, cross-validation was performed, yielding a maximum precision of 0.857 and an average precision of 0.602. Upon the application of the optimized GBDT model to the classification of 24 unknown water samples, the model achieved a high accuracy rate of 95.8%, with a single misclassification, and a minimal root mean square error (RMSE) of 0.183. This demonstrates that stochastic search optimization enhances the model’s stability and robustness, addressing the challenges of inefficiency and inaccuracy in coal mine water source identification, and significantly contributes to the advancement of water hazard prevention and control measures in coal mining. To make the output of the model transparent, this study employs SHAP for the elucidation of the model’s output. SHAP is a Python-based “Model Interpretation” package designed to elucidate the predictions of machine learning models. The findings reveal that fluctuations in Ca 2+ concentration exert a substantial impact on the discrimination outcomes, whereas the characteristic contribution of SO 4 2− is negligible and can be disregarded. This offers a foundational and referential framework for the study of water sources for mine water emergencies.
ArticleNumber 114
Author Wang, Xinyi
Meng, Hongwei
Xi, Tong
Yang, Zhenwei
Li, Han
Hou, Zhenhuan
Author_xml – sequence: 1
  givenname: Zhenwei
  surname: Yang
  fullname: Yang, Zhenwei
  organization: Institute of Resources & Environment, Henan Polytechnic University
– sequence: 2
  givenname: Han
  surname: Li
  fullname: Li, Han
  organization: Institute of Resources & Environment, Henan Polytechnic University
– sequence: 3
  givenname: Xinyi
  surname: Wang
  fullname: Wang, Xinyi
  email: wxy20240701@163.com
  organization: Institute of Resources & Environment, Henan Polytechnic University
– sequence: 4
  givenname: Hongwei
  surname: Meng
  fullname: Meng, Hongwei
  organization: The Second Institute of Resources and Environment Investigation of Henan Province Co., LTD, The Coal Mine Disaster Drilling Prevention and Control Engineering Technology Research Center of Henan Province
– sequence: 5
  givenname: Tong
  surname: Xi
  fullname: Xi, Tong
  organization: The Second Institute of Resources and Environment Investigation of Henan Province Co., LTD, The Coal Mine Disaster Drilling Prevention and Control Engineering Technology Research Center of Henan Province
– sequence: 6
  givenname: Zhenhuan
  surname: Hou
  fullname: Hou, Zhenhuan
  organization: The Second Institute of Resources and Environment Investigation of Henan Province Co., LTD, The Coal Mine Disaster Drilling Prevention and Control Engineering Technology Research Center of Henan Province
BookMark eNp9kEFLAzEQhYNUsNb-AU8LXrxEM0mTTW7Wqq1QUGw9h-wmq1vabE12Ef-9qRUFD85lBuabx7x3jHq-8Q6hUyAXQEh-GYEKwTGhHAMFkmN-gPoghcCCKtX7mSU5QsMYVyQVA6aI6KOrRdOF0mW1db6tq7o0bd34rKmyTe1d9m5aF7Lahy6-ZoWJzmZpO72-WeKnBV7Mxo8n6LAy6-iG332Anu9ul5MZnj9M7yfjOTaUixYroCq3toTCSW4LOgLBZC7lCDinpRBVJawgXOYFV9bmBQEOFTOicAxGtMzZAJ3vdbeheetcbPWmjqVbr413TRc1o8kUk1TxhJ79QVfJpE_faQZCSMWYoomie6oMTYzBVXob6o0JHxqI3uWq97nqlKv-ylXvpNn-KCbYv7jwK_3P1Sc0x3jp
Cites_doi 10.1155/2022/2630953
10.1016/j.aei.2023.102023
10.1007/s12665-019-8624-2
10.1155/2018/9205025
10.1016/j.cageo.2022.105140
10.1109/LGRS.2020.2968356
10.3390/su142417011
10.1016/j.aei.2022.101666
10.1007/s12517-021-09100-0
10.1016/j.aei.2022.101736
10.1155/2020/2584094
10.1016/j.jclepro.2020.120008
10.1007/s12040-019-1232-4
10.1007/s10230-022-00884-5
10.1109/TFUZZ.2022.3215725
10.1111/gwmr.12507
10.1007/s12517-019-4500-3
10.1155/2021/8516525
10.1111/1755-6724.14299
10.1016/j.aei.2023.102016
10.1016/j.chemosphere.2019.04.022
10.1016/j.aei.2013.12.003
10.1016/j.gsd.2024.101312
10.3389/fgene.2023.1165765
10.1016/j.aei.2022.101789
10.1007/s00521-020-05006-2
10.1007/BF02478259
10.1016/j.aei.2019.101027
10.1016/j.aei.2018.09.005
10.1016/j.aei.2019.100977
10.3390/en15031064
10.1038/s41598-022-05473-8
10.1016/j.aei.2020.101126
10.1016/j.aei.2022.101727
10.1007/s12665-014-3938-6
10.1007/s12665-021-09450-8
10.1016/j.jhydrol.2015.06.007
10.1016/j.aei.2022.101525
10.1016/j.aei.2018.11.005
10.2166/hydro.2013.008
10.1007/s10064-021-02535-5
10.1016/j.aei.2023.101955
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
7S9
L.6
DOI 10.1007/s12665-025-12107-5
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-6299
EndPage 114
ExternalDocumentID 10_1007_s12665_025_12107_5
GrantInformation_xml – fundername: State Key Laboratory of Development and Comprehensive Utilization of Coking Coal Resources
  grantid: 41040220201308
– fundername: Fundamental Research Funds for the Universities of Henan Province
  grantid: NSFRF200337, NSFRF200103
– fundername: National Natural Science Foundation of China
  grantid: 41972254
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M662494
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: Key Scientific Research Projects of Higher Education Institutions of Henan Province
  grantid: 19A170005
– fundername: Natural Science Foundation of Henan Province
  grantid: 202300410179
  funderid: http://dx.doi.org/10.13039/501100006407
GroupedDBID -5A
-5G
-BR
-DZ
-EM
-Y2
-~C
.4S
.DC
06D
0R~
0VY
199
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40D
40E
4P2
5VS
67M
67Z
6NX
7XC
88I
8FE
8FH
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IKXTQ
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
ML.
MQGED
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PATMY
PCBAR
PF-
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7V
Z7W
Z7Y
Z7Z
Z81
Z83
Z85
ZCG
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PUEGO
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-a256t-91297ddc1be85db24163878841552c66ff6d60587b59dd7b0151f3a6be3142c73
IEDL.DBID U2A
ISSN 1866-6280
IngestDate Fri Sep 05 17:29:29 EDT 2025
Fri Jul 25 21:55:07 EDT 2025
Wed Oct 01 06:53:40 EDT 2025
Fri Feb 21 04:10:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords SHAP
Cross validation
Mine water source
Gradient boosting decision tree
Pingdingshan coalfield
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a256t-91297ddc1be85db24163878841552c66ff6d60587b59dd7b0151f3a6be3142c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3166893392
PQPubID 54063
PageCount 1
ParticipantIDs proquest_miscellaneous_3200338295
proquest_journals_3166893392
crossref_primary_10_1007_s12665_025_12107_5
springer_journals_10_1007_s12665_025_12107_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250200
2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental earth sciences
PublicationTitleAbbrev Environ Earth Sci
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References JC Cheng (12107_CR5) 2022
F Li (12107_CR18) 2021; 2021
S Mazhar (12107_CR33) 2019
Y Ren (12107_CR32) 2022
H Zhang (12107_CR42) 2019; 93
Y Ding (12107_CR8) 2019
B Li (12107_CR22) 2020
N Chitsazan (12107_CR6) 2015
C Jiang (12107_CR17) 2022
DC Feng (12107_CR10) 2020
A Mahmoodzadeh (12107_CR26) 2021; 33
Z Herui (12107_CR13) 2022; 14
L Liu (12107_CR24) 2022
M Moazamnia (12107_CR31) 2024
P Huang (12107_CR15) 2018; 2018
J Li (12107_CR19) 2019; 39
S Petrov (12107_CR30) 2022
DT Bui (12107_CR4) 2018
Q Hao (12107_CR12) 2022
Y Bi (12107_CR3) 2021; 80
B Yan (12107_CR38) 2020
P Huang (12107_CR16) 2019; 12
H Yan (12107_CR39) 2022
Y Zhang (12107_CR43) 2022; 12
Y Li (12107_CR23) 2022
B Liu (12107_CR25) 2023
Z Wei (12107_CR37) 2022
AA Nadiri (12107_CR28) 2013
J Li (12107_CR20) 2022
L Zha (12107_CR40) 2022
J Bergstra (12107_CR2) 2012; 13
Z Guan (12107_CR11) 2019; 128
AJ Trappey (12107_CR34) 2020
X Wang (12107_CR35) 2023
Y Hu (12107_CR14) 2022; 42
K Peng (12107_CR29) 2015; 73
R Feng (12107_CR9) 2020; 18
WS McCulloch (12107_CR27) 1943; 5
H Zhang (12107_CR41) 2019; 78
Y Wang (12107_CR36) 2023
M Abbaszadeh (12107_CR1) 2022
Y Li (12107_CR21) 2023
J Clarke (12107_CR7) 2014; 28
References_xml – year: 2022
  ident: 12107_CR23
  publication-title: Scient Prog
  doi: 10.1155/2022/2630953
– year: 2023
  ident: 12107_CR35
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102023
– volume: 78
  start-page: 1
  year: 2019
  ident: 12107_CR41
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-019-8624-2
– volume: 2018
  start-page: 1
  year: 2018
  ident: 12107_CR15
  publication-title: Geofluids
  doi: 10.1155/2018/9205025
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  ident: 12107_CR2
  publication-title: J Mach Lear Res
– year: 2022
  ident: 12107_CR1
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2022.105140
– volume: 18
  start-page: 18
  issue: 1
  year: 2020
  ident: 12107_CR9
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2020.2968356
– volume: 14
  start-page: 17011
  issue: 24
  year: 2022
  ident: 12107_CR13
  publication-title: Sustainability
  doi: 10.3390/su142417011
– year: 2022
  ident: 12107_CR24
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101666
– year: 2022
  ident: 12107_CR12
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-021-09100-0
– year: 2022
  ident: 12107_CR40
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101736
– year: 2020
  ident: 12107_CR22
  publication-title: Geofluids
  doi: 10.1155/2020/2584094
– year: 2020
  ident: 12107_CR38
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120008
– volume: 128
  start-page: 1
  year: 2019
  ident: 12107_CR11
  publication-title: China J Earth Sys Sci
  doi: 10.1007/s12040-019-1232-4
– year: 2022
  ident: 12107_CR37
  publication-title: Mine Water Environ
  doi: 10.1007/s10230-022-00884-5
– year: 2022
  ident: 12107_CR32
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2022.3215725
– volume: 42
  start-page: 67
  issue: 2
  year: 2022
  ident: 12107_CR14
  publication-title: Groundwater Monit Remed
  doi: 10.1111/gwmr.12507
– volume: 12
  start-page: 1
  year: 2019
  ident: 12107_CR16
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4500-3
– volume: 2021
  start-page: 1
  year: 2021
  ident: 12107_CR18
  publication-title: Complexity
  doi: 10.1155/2021/8516525
– volume: 93
  start-page: 1922
  issue: 6
  year: 2019
  ident: 12107_CR42
  publication-title: Acta Geologica Sinica-Engl Edit
  doi: 10.1111/1755-6724.14299
– year: 2023
  ident: 12107_CR25
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102016
– year: 2019
  ident: 12107_CR33
  publication-title: Chemos
  doi: 10.1016/j.chemosphere.2019.04.022
– volume: 28
  start-page: 81
  issue: 1
  year: 2014
  ident: 12107_CR7
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2013.12.003
– year: 2024
  ident: 12107_CR31
  publication-title: Groundwat Sustain Devel
  doi: 10.1016/j.gsd.2024.101312
– year: 2023
  ident: 12107_CR21
  publication-title: Front Genet
  doi: 10.3389/fgene.2023.1165765
– year: 2022
  ident: 12107_CR39
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101789
– volume: 33
  start-page: 321
  year: 2021
  ident: 12107_CR26
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05006-2
– volume: 5
  start-page: 115
  year: 1943
  ident: 12107_CR27
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– year: 2020
  ident: 12107_CR34
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2019.101027
– year: 2018
  ident: 12107_CR4
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2018.09.005
– year: 2019
  ident: 12107_CR8
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2019.100977
– year: 2022
  ident: 12107_CR30
  publication-title: Energies
  doi: 10.3390/en15031064
– volume: 12
  start-page: 1370
  issue: 1
  year: 2022
  ident: 12107_CR43
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-05473-8
– year: 2020
  ident: 12107_CR10
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2020.101126
– year: 2022
  ident: 12107_CR5
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101727
– volume: 73
  start-page: 7873
  year: 2015
  ident: 12107_CR29
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3938-6
– volume: 80
  start-page: 1
  year: 2021
  ident: 12107_CR3
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-021-09450-8
– year: 2015
  ident: 12107_CR6
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.06.007
– year: 2022
  ident: 12107_CR20
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101525
– volume: 39
  start-page: 25
  year: 2019
  ident: 12107_CR19
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2018.11.005
– year: 2013
  ident: 12107_CR28
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2013.008
– year: 2022
  ident: 12107_CR17
  publication-title: Bullet Eng Geol Env
  doi: 10.1007/s10064-021-02535-5
– year: 2023
  ident: 12107_CR36
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.101955
SSID ssj0000313906
Score 2.4273098
Snippet A novel interpretable intelligent water source identification model, integrating gradient boosting decision trees (GBDT) with SHapley Additive exPlanations...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 114
SubjectTerms Accuracy
algorithms
Aquifers
Artificial intelligence
Biogeosciences
calcium
Calcium ions
Classification
Coal
Coal mines
Coal mining
Data analysis
data collection
Decision trees
Earth and Environmental Science
Earth science
Earth Sciences
Environmental Science and Engineering
Geochemistry
Geology
Hydrology/Water Resources
Identification
Machine learning
Mine drainage
Mine waters
Mining accidents & safety
Multivariate analysis
Neural networks
Occupational safety
Original Article
Outliers (statistics)
Principal components analysis
Robust control
Root-mean-square errors
Search algorithms
Support vector machines
Terrestrial Pollution
Training
trees
Water analysis
Water damage
Water inrush
Water sampling
Water sources
Title Source identification of mine water inrush based on GBDT-RS-SHAP
URI https://link.springer.com/article/10.1007/s12665-025-12107-5
https://www.proquest.com/docview/3166893392
https://www.proquest.com/docview/3200338295
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: AFBBN
  dateStart: 20091101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: U2A
  dateStart: 20091101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66IXgRf-J0jgjeNNCkTZrerDo3FEXcBvNUmibFHexkPxD_e1-ydkPRg-eEV_iS5n3Je-97CJ3RLMhlZiLipblHAp4KojyVEppR7UtJBc9scfLDo-gOgrshH5ZFYdMq270KSbqTelXsBr7EVhNzYkWvQsLXUZ1bOS_YxQMWL19WrBph5JpqWjE3Ipj0ymqZ381890grmvkjMuoczu022iqZIo4XS7uD1kyxizY6rhPv5x667LlndzzSZb6PgxiPc_wGxBF_AIec4FExmU9fsXVVGsNo5-qmT557pNeNn_bR4Lbdv-6Ssh0CSYGXzOBYYlGodUaVkVwr5qgU3GAtJWCZEHkutA1yhopHWocKHD3N_VQo49OAZaF_gGrFuDCHCCsRRDr1bK8wuH6FgQTWpiUPrEpomBu_gc4rSJL3hepFstI3tgAmAGDiAEx4AzUr1JLyD5gmPhUCuBDQrwY6XQ7D3rUBibQw4znMsZlxvmQRmLio0F6Z-PuLR_-bfow2mV1wl2zdRLXZZG5OgEvMVAvV487LfbvlttAXsZW8-A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgE4ILb8RgQJC4QVBfSdsb47GNxybENglOVdO0YkJ0aA8h-PU4WUsFgsPOiZLWTuIvsf0Z4MiMnMSLYp8aYWJQh4WcCkOE1IxMaXueyVmkkpNbbd7sOTeP7DFLChvl0e65S1Kf1EWyG9oSlU3MqCK9cimbh7KDFxSrBOVa4-m2eFtRfIS-Lqup6Nwotzwjy5f5e6CfNqkAmr98o9rk1Fegl3_sNNLk5XQyFqfR5y8ex1n_ZhWWMwxKatNFswZzcboOCw1d4_djA846-kGf9GUWSaSVRwYJeUVISt4RnQ5JPx1ORs9EGUFJsLVxftmlDx3aadbuN6FXv-peNGlWaIGGiHjGeOBZvitlZIrYY1JYGqTh3ViBDSviPEm4VO5TVzBfSlcghDATO-Qitk3Hilx7C0rpII23gQju-DI0VBUyvNi5jod4UHrMUfyjbhLbFTjORR28Tfk0goI5WckkQJkEWiYBq0A110aQ7a1RYJucI8pCYFeBw-9m3BXK1RGm8WCCfVTMne1ZPg5xkiugGOL_GXdm634Ai81u6y64u27f7sKSpfSpQ7qrUBoPJ_EeIpax2M8W6BdhI9tD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4Uo_FifEYUtSbetGEfbbd7E0XAFyECCbfNdrsbObgQWGL8907LLqjRg-c2s8nXdudrZ-YbhC7siCYiin1ihYlFKAs5kZYMiR3ZyhXC5izSxcnPbd7q04cBG3yp4jfZ7kVIcl7ToFWa0qw6Vkl1WfgGfkVXFjOiBbA8wlbRGtVCCbCj-05t8cqilQl902BTC7sR7ggrr5z53cx377SknD-ipMb5NLbRVs4acW2-zDtoJU530XrTdOX92EPXXfMEj4cqz_0xcONRgt-AROJ34JMTPEwns-kr1m5LYRht3tR75KVLuq1aZx_1G3e92xbJWyOQEDhKBr8ox_eUimwZC6akY2gV3GY1PXAizpOEKx3w9CTzlfIkOH07cUMuY9emTuS5B6iUjtL4EGHJqa9CS_cNg6uYRwUwOCUY1YqhXhK7ZXRZQBKM5woYwVLrWAMYAICBATBgZVQpUAvy0zANXJtz4EVAxcrofDEM-1gHJ8I0Hs1gjs6Sc4Xjg4mrAu2lib-_ePS_6Wdoo1NvBE_37cdjtOnotTc52BVUyiaz-AQoRiZPzS76BFaNwow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source+identification+of+mine+water+inrush+based+on+GBDT-RS-SHAP&rft.jtitle=Environmental+earth+sciences&rft.au=Yang%2C+Zhenwei&rft.au=Li%2C+Han&rft.au=Wang%2C+Xinyi&rft.au=Meng%2C+Hongwei&rft.date=2025-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1866-6280&rft.eissn=1866-6299&rft.volume=84&rft.issue=4&rft_id=info:doi/10.1007%2Fs12665-025-12107-5&rft.externalDocID=10_1007_s12665_025_12107_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon