Multilabel Classification : Problem Analysis, Metrics and Techniques

This book offers a comprehensive review of multilabel techniques widely used to classify and label texts, pictures, videos and music in the Internet. A deep review of the specialized literature on the field includes the available software needed to work with this kind of data. It provides the user w...

Full description

Saved in:
Bibliographic Details
Main Authors Herrera, Francisco, Charte, Francisco, Rivera, Antonio J., del Jesus, María J.
Format eBook Book
LanguageEnglish
Published Cham Springer 2016
Springer International Publishing AG
Springer International Publishing
Edition1
Subjects
Online AccessGet full text
ISBN9783319411101
3319411101
DOI10.1007/978-3-319-41111-8

Cover

Abstract This book offers a comprehensive review of multilabel techniques widely used to classify and label texts, pictures, videos and music in the Internet. A deep review of the specialized literature on the field includes the available software needed to work with this kind of data. It provides the user with the software tools needed to deal with multilabel data, as well as step by step instruction on how to use them. The main topics covered are:- The special characteristics of multi-labeled data and the metrics available to measure them.- The importance of taking advantage of label correlations to improve the results.- The different approaches followed to face multi-label classification.- The preprocessing techniques applicable to multi-label datasets.- The available software tools to work with multi-label data.This book is beneficial for professionals and researchers in a variety of fields because of the wide range of potential applications for multilabel classification. Besides its multiple applications to classify different types of online information, it is also useful in many other areas, such as genomics and biology. No previous knowledge about the subject is required. The book introduces all the needed concepts to understand multilabel data characterization, treatment and evaluation.
AbstractList This book offers a comprehensive review of multilabel techniques widely used to classify and label texts, pictures, videos and music in the Internet. A deep review of the specialized literature on the field includes the available software needed to work with this kind of data. It provides the user with the software tools needed to deal with multilabel data, as well as step by step instruction on how to use them. The main topics covered are:- The special characteristics of multi-labeled data and the metrics available to measure them.- The importance of taking advantage of label correlations to improve the results.- The different approaches followed to face multi-label classification.- The preprocessing techniques applicable to multi-label datasets.- The available software tools to work with multi-label data.This book is beneficial for professionals and researchers in a variety of fields because of the wide range of potential applications for multilabel classification. Besides its multiple applications to classify different types of online information, it is also useful in many other areas, such as genomics and biology. No previous knowledge about the subject is required. The book introduces all the needed concepts to understand multilabel data characterization, treatment and evaluation.
Author Herrera, Francisco
del Jesus, María J.
Rivera, Antonio J.
Charte, Francisco
Author_xml – sequence: 1
  fullname: Herrera, Francisco
– sequence: 2
  fullname: Charte, Francisco
– sequence: 3
  fullname: Rivera, Antonio J.
– sequence: 4
  fullname: del Jesus, María J.
BackLink https://cir.nii.ac.jp/crid/1130282273190562432$$DView record in CiNii
BookMark eNpNkM1O3TAQhV0VEFx6H4BdFpUqJAIeTxzb3dHLrwRqF6jqznIcBwyuQ-MA4u1xbkDqLGZ0NN850syCbMQ-OkL2gB4CpeJICVliiaDKCnKV8hNZYJZr9eczWWbgQ1PYJAtGoVYVopRbZEdxUWGNqt4my5TuKaUgQCmgO-Tk-imMPpjGhWIVTEq-89aMvo_F9-LX0DfB_S2OowmvyaeD4tqNg7epMLEtbpy9i_7fk0tfyGZnQnLL97lLfp-d3qwuyquf55er46vSMF5TWTLRAq-ZsaIWzqGsQHW8aTmarrMtyk5Z01kuQOYlB8caSyvO0AjHWCtr3CX7c7BJD-4l3fVhTPo5uKbvH5L-7wcgM3s0s-lx8PHWDXqmgOrppROtUWderw16cnybHY9DP5016nWwdXEcTNCnP1ZVjZwJkcmvMxm919ZPHQApk4yJnEjzkRUyfAM04Ht_
ContentType eBook
Book
Copyright Springer International Publishing Switzerland 2016
Copyright_xml – notice: Springer International Publishing Switzerland 2016
DBID RYH
DOI 10.1007/978-3-319-41111-8
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 331941111X
9783319411118
Edition 1
1st ed. 2016 edition.
ExternalDocumentID 9783319411118
371385
EBC4635277
BB26918932
GroupedDBID 0D6
0DA
38.
AABBV
AAMCO
AAQZU
ABMNI
ABOWU
ACBPT
ACLMJ
ADCXD
ADPGQ
AEIBC
AEJGN
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
AORVH
AWFBM
AZZ
BBABE
CZZ
IEZ
JJU
MYL
RYH
SBO
SWNTM
TPJZQ
Z5O
Z7R
Z7U
Z7W
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
SAO
Z7Y
ID FETCH-LOGICAL-a25608-27d1562ac767ee38419f5bd53affcd38f9cafc5718e3851e2bc04523a7e22d863
ISBN 9783319411101
3319411101
IngestDate Fri Nov 08 05:49:25 EST 2024
Wed Sep 17 03:02:15 EDT 2025
Fri May 30 22:56:42 EDT 2025
Thu Jun 26 22:30:12 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2016943388
LCCallNum_Ident QA76.9.D343
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a25608-27d1562ac767ee38419f5bd53affcd38f9cafc5718e3851e2bc04523a7e22d863
Notes Includes bibliographical references
Other authors: Francisco Charte, Antonio J. Rivera, María J. del Jesus
OCLC 957436396
PQID EBC4635277
PageCount 200
ParticipantIDs askewsholts_vlebooks_9783319411118
springer_books_10_1007_978_3_319_41111_8
proquest_ebookcentral_EBC4635277
nii_cinii_1130282273190562432
PublicationCentury 2000
PublicationDate c2016
2016
20160810
2016-08-09
PublicationDateYYYYMMDD 2016-01-01
2016-08-10
2016-08-09
PublicationDate_xml – year: 2016
  text: c2016
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationYear 2016
Publisher Springer
Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer
– name: Springer International Publishing AG
– name: Springer International Publishing
SSID ssj0001719910
Score 2.468068
Snippet This book offers a comprehensive review of multilabel techniques widely used to classify and label texts, pictures, videos and music in the Internet. A deep...
SourceID askewsholts
springer
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Artificial Intelligence
Computer Science
Data Mining and Knowledge Discovery
TableOfContents 4.3 Binary Classification Based Methods -- 4.3.1 OVO Versus OVA Approaches -- 4.3.2 Ensembles of Binary Classifiers -- 4.4 Multiclass Classification-Based Methods -- 4.4.1 Labelsets and Pruned Labesets -- 4.4.2 Ensembles of Multiclass Classifiers -- 4.5 Data Transformation Methods in Practice -- 4.5.1 Experimental Configuration -- 4.5.2 Classification Results -- 4.6 Summarizing Comments -- References -- 5 Adaptation-Based Classifiers -- 5.1 Overview -- 5.2 Tree-Based Methods -- 5.2.1 Multilabel C4.5, ML-C4.5 -- 5.2.2 Multilabel Alternate Decision Trees, ADTBoost.MH -- 5.2.3 Other Tree-Based Proposals -- 5.3 Neuronal Network-Based Methods -- 5.3.1 Multilabel Back-Propagation, BP-MLL -- 5.3.2 Multilabel Radial Basis Function Network, ML-RBF -- 5.3.3 Canonical Correlation Analysis and Extreme Learning Machine, CCA-ELM -- 5.4 Vector Support Machine-Based Methods -- 5.4.1 MODEL-x -- 5.4.2 Multilabel SVMs Based on Ranking, Rank-SVM and SCRank-SVM -- 5.5 Instance-Based Methods -- 5.5.1 Multilabel kNN, ML-kNN -- 5.5.2 Instance-Based and Logistic Regression, IBLR-ML -- 5.5.3 Other Instance-Based Classifiers -- 5.6 Probabilistic Methods -- 5.6.1 Collectible Multilabel Classifiers, CML and CMLF -- 5.6.2 Probabilistic Generic Models, PMM1 and PMM2 -- 5.6.3 Probabilistic Classifier Chains, PCC -- 5.6.4 Bayesian and Tree Naïve Bayes Classifier Chains, BCC and TNBCC -- 5.6.5 Conditional Restricted Boltzmann Machines, CRBM -- 5.7 Other MLC Adaptation-Based Methods -- 5.8 Adapted Methods in Practice -- 5.8.1 Experimental Configuration -- 5.8.2 Classification Results -- 5.9 Summarizing Comments -- References -- 6 Ensemble-Based Classifiers -- 6.1 Introduction -- 6.2 Ensembles of Binary Classifiers -- 6.2.1 Ensemble of Classifier Chains, ECC -- 6.2.2 Ranking by Pairwise Comparison, RPC -- 6.2.3 Calibrated Label Ranking, CLR -- 6.3 Ensembles of Multiclass Classifiers
6.3.1 Ensemble of Pruned Sets, EPS -- 6.3.2 Random k-Labelsets, RAkEL -- 6.3.3 Hierarchy of Multilabel Classifiers, HOMER -- 6.4 Other Ensembles -- 6.5 Ensemble Methods in Practice -- 6.5.1 Experimental Configuration -- 6.5.2 Classification Results -- 6.5.3 Training and Testing Times -- 6.6 Summarizing Comments -- References -- 7 Dimensionality Reduction -- 7.1 Overview -- 7.1.1 High-Dimensional Input Space -- 7.1.2 High-Dimensional Output Space -- 7.2 Feature Space Reduction -- 7.2.1 Feature Engineering Approaches -- 7.2.2 Multilabel Supervised Feature Selection -- 7.2.3 Experimentation -- 7.3 Label Space Reduction -- 7.3.1 Sparseness and Dependencies Among Labels -- 7.3.2 Proposals for Reducing Label Space Dimensionality -- 7.3.3 Experimentation -- 7.4 Summarizing Comments -- References -- 8 Imbalance in Multilabel Datasets -- 8.1 Introduction -- 8.2 Imbalanced MLD Specificities -- 8.2.1 How to Measure the Imbalance Level -- 8.2.2 Concurrence Among Imbalanced Labels -- 8.3 Facing Imbalanced Multilabel Classification -- 8.3.1 Classifier Adaptation -- 8.3.2 Resampling Techniques -- 8.3.3 The Ensemble Approach -- 8.4 Multilabel Imbalanced Learning in Practice -- 8.4.1 Experimental Configuration -- 8.4.2 Classification Results -- 8.5 Summarizing Comments -- References -- 9 Multilabel Software -- 9.1 Overview -- 9.2 Working with Multilabel Data -- 9.2.1 Multilabel Data File Formats -- 9.2.2 Multilabel Data Repositories -- 9.2.3 The mldr.datasets Package -- 9.2.4 Generating Synthetic MLDs -- 9.3 Exploratory Analysis of MLDs -- 9.3.1 MEKA -- 9.3.2 The mldr Package -- 9.4 Conducting Multilabel Experiments -- 9.4.1 MEKA -- 9.4.2 MULAN -- 9.4.3 The RunMLClassifier Utility -- 9.5 Summarizing Comments -- References -- Glossary
Intro -- Preface -- Contents -- Acronyms -- 1 Introduction -- 1.1 Overview -- 1.2 The Knowledge Discovery in Databases Process -- 1.3 Data Preprocessing -- 1.4 Data Mining -- 1.4.1 DM Methods Attending to Available Data -- 1.4.2 DM Methods Attending to Target Objective -- 1.4.3 DM Methods Attending to Knowledge Representation -- 1.5 Classification -- 1.5.1 Binary Classification -- 1.5.2 Multiclass Classification -- 1.5.3 Multilabel Classification -- 1.5.4 Multidimensional Classification -- 1.5.5 Multiple Instance Learning -- References -- 2 Multilabel Classification -- 2.1 Introduction -- 2.2 Problem Formal Definition -- 2.2.1 Definitions -- 2.2.2 Symbols -- 2.2.3 Terminology -- 2.3 Applications of Multilabel Classification -- 2.3.1 Text Categorization -- 2.3.2 Labeling of Multimedia Resources -- 2.3.3 Genetics/Biology -- 2.3.4 Other Application Fields -- 2.3.5 MLDs Repositories -- 2.4 Learning from Multilabel Data -- 2.4.1 The Data Transformation Approach -- 2.4.2 The Method Adaptation Approach -- 2.4.3 Ensembles of Classifiers -- 2.4.4 Label Correlation Information -- 2.4.5 High Dimensionality -- 2.4.6 Label Imbalance -- 2.5 Multilabel Data Tools -- References -- 3 Case Studies and Metrics -- 3.1 Overview -- 3.2 Case Studies -- 3.2.1 Text Categorization -- 3.2.2 Labeling of Multimedia Resources -- 3.2.3 Genetics/Biology -- 3.2.4 Synthetic MLDs -- 3.3 MLD Characteristics -- 3.3.1 Basic Metrics -- 3.3.2 Imbalance Metrics -- 3.3.3 Other Metrics -- 3.3.4 Summary of Characterization Metrics -- 3.4 Multilabel Classification by Example -- 3.4.1 The ML-kNN Algorithm -- 3.4.2 Experimental Configuration and Results -- 3.5 Assessing Classifiers Performance -- 3.5.1 Example-Based Metrics -- 3.5.2 Label-based Metrics -- References -- 4 Transformation-Based Classifiers -- 4.1 Introduction -- 4.2 Multilabel Data Transformation Approaches
Title Multilabel Classification : Problem Analysis, Metrics and Techniques
URI https://cir.nii.ac.jp/crid/1130282273190562432
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4635277
http://link.springer.com/10.1007/978-3-319-41111-8
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319411118&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9swGBdddlkve3Rj2doiyg6DzqWyZEvZrWlTQuhGKVnpTehlCCsJxOkO--v7SZbsJB2M7SJiS5GMfnp80vf4IfTJauWMtiZzWhUZUzAVtc1JpirClCqdEYGS5dv3cvyDTe6Ku44KMniXrPSJ-f1Hv5L_QRXeAa7eS_YfkG0rhRfwG_CFFBCGdEv4bR8j95I3AwT83H3DauntfSKScMK_bkhi2oAj4dLTM2fFgMzTFLe1lafHbrl0gXEoMW2YxZrif9lw6D3JuvFGHSrGIIDFYXE8OUl5Fr5t4uqHOnoEBY38hUol4kUD2b5oSBeNGwdQCjOYwXLZlHuyHK9bYHhvKV-UZKLbe1qLwOEwLwcEhCfYTp9xftpDz89Gk6vb7r6MeyOtU--e07bZBFDqnpPWOgYO3mhzF-2q-idsHLCprGqQJOaz2capYksRHuSL6SvU8z4nr9GOm79BLxPTBo4L7x666ADHm4DjrzjCjRPcX3AEGwPYuAP7Lbq9HE3Px1nkv8iUF0RhrHMLx-tcGV5y56hgZFAV2hZUVZWxVFQDoypTgHgBmQVxuTY-Qj5V3OW5FSV9h3rzxdy9R9gIbZkdCOYo8SQCMA9LKABVMq-sV310tNY98td90NXXcq1_ieijA-g1aWY-JV7lDeIlh2wvRTOa9xFO_SnD_6OBsRwNzxlItjnnffQ59bNsWkhxs6ElSSVUJkNjUnz4S2sf0YtumO6j3mr54A5AQlzpwzh4HgHAIlfC
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Multilabel+Classification+%3A+Problem+Analysis%2C+Metrics+and+Techniques&rft.au=Herrera%2C+Francisco&rft.au=Charte%2C+Francisco&rft.au=Rivera%2C+Antonio+J.&rft.au=del+Jesus%2C+Mar%C3%ADa+J.&rft.date=2016-01-01&rft.pub=Springer&rft.isbn=9783319411101&rft_id=info:doi/10.1007%2F978-3-319-41111-8&rft.externalDocID=BB26918932
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833194%2F9783319411118.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-319-41111-8