Automatic identification of seismic faults via integrating Residual Network-50 residual blocks and convolutional block attention modules

Traditional fault identification involves manual marking by geological interpreters, which is time consuming, inefficient, and prone to human error. To address these issues and increase the accuracy of fault identification, a deep-learning-based fault identification method is proposed that uses an a...

Full description

Saved in:
Bibliographic Details
Published inApplied geophysics Vol. 20; no. 1; pp. 20 - 35
Main Authors Wang, Xin-Wei, Shi, Su-Zhen, Yao, Xu-Jun, Pei, Jin-Bo, Wang, Yi-Fan, Yang, Han-Bo, Liu, Dan-Qing
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1672-7975
1993-0658
DOI10.1007/s11770-023-1014-2

Cover

Abstract Traditional fault identification involves manual marking by geological interpreters, which is time consuming, inefficient, and prone to human error. To address these issues and increase the accuracy of fault identification, a deep-learning-based fault identification method is proposed that uses an attention mechanism to focus on target features. A convolutional block attention module (CBAM) is used in the decoding layer of the U-Net network, and a ResNet-50 residual block is used in the encoding layer. Consequently, a fault identification method based on convolutional neural networks is established and referred to as Res-CBAM-UNet. To enhance the generalization ability of the network model, data augmentation on synthetic seismic data and their corresponding fault labels was performed, and the model was trained using the newly generated training dataset as the input. Subsequently, the model was compared and analyzed with CBAM-UNet, ResNet34-UNet, and ResNet50-UNet networks and tested using the seismic data from actual working areas. Results reveal that the designed Res-CBAM-UNet network has good fault identification performance with high continuity of identified faults and computational efficiency.
AbstractList Traditional fault identification involves manual marking by geological interpreters, which is time consuming, inefficient, and prone to human error. To address these issues and increase the accuracy of fault identification, a deep-learning-based fault identification method is proposed that uses an attention mechanism to focus on target features. A convolutional block attention module (CBAM) is used in the decoding layer of the U-Net network, and a ResNet-50 residual block is used in the encoding layer. Consequently, a fault identification method based on convolutional neural networks is established and referred to as Res-CBAM-UNet. To enhance the generalization ability of the network model, data augmentation on synthetic seismic data and their corresponding fault labels was performed, and the model was trained using the newly generated training dataset as the input. Subsequently, the model was compared and analyzed with CBAM-UNet, ResNet34-UNet, and ResNet50-UNet networks and tested using the seismic data from actual working areas. Results reveal that the designed Res-CBAM-UNet network has good fault identification performance with high continuity of identified faults and computational efficiency.
Author Shi, Su-Zhen
Yao, Xu-Jun
Wang, Xin-Wei
Wang, Yi-Fan
Yang, Han-Bo
Pei, Jin-Bo
Liu, Dan-Qing
Author_xml – sequence: 1
  givenname: Xin-Wei
  surname: Wang
  fullname: Wang, Xin-Wei
  organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing
– sequence: 2
  givenname: Su-Zhen
  surname: Shi
  fullname: Shi, Su-Zhen
  email: ssz@cumtb.edu.cn
  organization: State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing
– sequence: 3
  givenname: Xu-Jun
  surname: Yao
  fullname: Yao, Xu-Jun
  organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing
– sequence: 4
  givenname: Jin-Bo
  surname: Pei
  fullname: Pei, Jin-Bo
  organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing
– sequence: 5
  givenname: Yi-Fan
  surname: Wang
  fullname: Wang, Yi-Fan
  organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing
– sequence: 6
  givenname: Han-Bo
  surname: Yang
  fullname: Yang, Han-Bo
  organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing
– sequence: 7
  givenname: Dan-Qing
  surname: Liu
  fullname: Liu, Dan-Qing
  organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing
BookMark eNp9kM1KQzEQhYMoWKsP4C7gOpqf3qRZFvEPREF0HWLu3BK9TWqSq_gGPraptQiCrpLMnDNn8u2h7RADIHTI6DGjVJ1kxpSihHJBGGUTwrfQiGktCJXNdLvepeJEadXsor2cnyiVgsvJCH3MhhIXtniHfQuh-M67-ooBxw5n8HlRO50d-pLxq7fYhwLzVBVhju8g-3awPb6B8hbTM2koTpvaYx_dc8Y2tNjF8Br7YTV108C2lFVazVnEdugh76OdzvYZDr7PMXo4P7s_vSTXtxdXp7NrYnkz4QQetQTROq1VS7VgqgNJm6kGIcFp0bimlZxaCVq3Err6SeBT2TnGGdeUKzFGR-u5yxRfBsjFPMUh1cWy4ZoxJiopUVVsrXIp5pygM8vkFza9G0bNCrhZAzcVuFkBN7x61C-P8-WLZUnW9_86-dqZa0qYQ_rZ6W_TJ1y3mNM
CitedBy_id crossref_primary_10_1007_s12145_024_01319_1
Cites_doi 10.1016/j.cageo.2014.07.011
10.1190/1.1444415
10.1190/1.1437077
10.1007/s11770-021-0894-2
10.1007/s11263-017-1004-z
10.1109/TPAMI.2019.2913372
10.1190/INT-2018-0161.1
10.1190/geo2017-0666.1
10.1007/s41095-022-0271-y
10.1109/4235.585892
10.1109/ICME46284.2020.9102906
10.1007/978-3-030-01234-2_1
10.1109/CVPR.2019.00060
10.1007/978-3-319-46493-0_38
10.1109/ICCV.2015.123
10.1190/segam2018-2996921.1
10.1007/978-3-030-00889-5_1
10.1109/CVPR.2016.90
10.1007/978-3-319-46976-8_19
10.1007/978-3-319-24574-4_28
ContentType Journal Article
Copyright The Editorial Department of APPLIED GEOPHYSICS 2023
The Editorial Department of APPLIED GEOPHYSICS 2023.
Copyright_xml – notice: The Editorial Department of APPLIED GEOPHYSICS 2023
– notice: The Editorial Department of APPLIED GEOPHYSICS 2023.
DBID AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
H8D
H96
KL.
L.G
L7M
DOI 10.1007/s11770-023-1014-2
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1993-0658
EndPage 35
ExternalDocumentID 10_1007_s11770_023_1014_2
GroupedDBID -01
-0A
-5A
-5G
-BR
-EM
-SA
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5VR
5VS
67M
6NX
88I
8FE
8FG
8FH
8TC
92E
92I
92M
92Q
93N
95-
95.
95~
96X
9D9
9DA
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
AXYYD
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
K6-
KOV
LK5
LLZTM
M2P
M4Y
M7R
MA-
MM-
N9A
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P62
PCBAR
PF0
PQQKQ
PROAC
PT4
Q--
Q-0
Q2X
QOS
R-A
R89
R9I
RNS
ROL
RPX
RSV
RT1
S..
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T8Q
TCJ
TGP
TSG
TUC
TUS
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z5O
Z7Y
ZMTXR
~02
~A9
~LI
~LJ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7TG
7UA
8FD
C1K
F1W
H8D
H96
KL.
L.G
L7M
ID FETCH-LOGICAL-a2542-eb96e3dc997d09317fe60589e36ec935c5d620a6e99d6ef326e286fc121290273
IEDL.DBID AGYKE
ISSN 1672-7975
IngestDate Wed Sep 17 23:57:23 EDT 2025
Wed Oct 01 04:21:35 EDT 2025
Thu Apr 24 22:53:43 EDT 2025
Fri Feb 21 02:40:43 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords deep learning
residual network
attention mechanism
convolutional neural network
fault identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2542-eb96e3dc997d09317fe60589e36ec935c5d620a6e99d6ef326e286fc121290273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2911131673
PQPubID 54455
PageCount 16
ParticipantIDs proquest_journals_2911131673
crossref_primary_10_1007_s11770_023_1014_2
crossref_citationtrail_10_1007_s11770_023_1014_2
springer_journals_10_1007_s11770_023_1014_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230300
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Applied geophysics
PublicationTitleAbbrev Appl. Geophys
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Cai (CR3) 2008; 205
CR19
CR16
CR13
CR12
Liu, He, Zhang, Zhou, Zhang (CR18) 2021; 36
CR11
Hu, Shen, Samuel, Sun, Wu (CR14) 2019; 42
CR33
Wu, Shi, Fomel, Liang (CR27) 2018; 37
Wang, Zhang, Zhang, Lu, Meng, Wang (CR28) 2021; 18
Dorigo, Gambardella (CR5) 1997; 1
Marfurt, Kirlin, Farmer, Bahorich (CR20) 1998; 63
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR23) 2014; 15
Wang, Wang (CR25) 2016; 13
Liu, He, Tian, Wu, Gao, Xu (CR17) 2020; 8
CR2
CR4
Li, Bai, Cui, Wan, Yuan, Chu (CR15) 2019; 47
CR8
Pedersen, Skov, Randen, Sønneland (CR21) 2002; 21
CR7
CR9
CR26
Wang, Zhang, Lu, Meng, Wang, Chang (CR29) 2021; 56
CR22
Teng, Shi, Qiu (CR24) 2016; 35
Xie, Tu (CR30) 2017; 125
Yang, Yang, Chen, Kuang, Wang, Zhou (CR32) 2021; 56
Bahorich, Farmer (CR1) 1995; 14
Guo, Xu, Liu (CR10) 2022; 8
Xiong, Ji, Ma, Wang, AlBinHassan, Ali, Luo (CR31) 2018; 83
Di, Gao (CR6) 2014; 72
1014_CR7
S Xie (1014_CR30) 2017; 125
1014_CR4
N Srivastava (1014_CR23) 2014; 15
1014_CR9
1014_CR8
1014_CR16
H W Li (1014_CR15) 2019; 47
1014_CR2
1014_CR19
J Wang (1014_CR28) 2021; 18
J Wang (1014_CR29) 2021; 56
H B Di (1014_CR6) 2014; 72
M H Guo (1014_CR10) 2022; 8
H P Cai (1014_CR3) 2008; 205
1014_CR12
1014_CR11
1014_CR33
M Dorigo (1014_CR5) 1997; 1
1014_CR13
S I Pedersen (1014_CR21) 2002; 21
X M Wu (1014_CR27) 2018; 37
M Bahorich (1014_CR1) 1995; 14
1014_CR26
W Xiong (1014_CR31) 2018; 83
J Wang (1014_CR25) 2016; 13
J Hu (1014_CR14) 2019; 42
Z J Liu (1014_CR18) 2021; 36
K J Marfurt (1014_CR20) 1998; 63
1014_CR22
W Y Yang (1014_CR32) 2021; 56
C Teng (1014_CR24) 2016; 35
N Liu (1014_CR17) 2020; 8
References_xml – volume: 72
  start-page: 192
  issue: 1
  year: 2014
  end-page: 200
  ident: CR6
  article-title: Gray-level transformation and Canny edge detection for 3D seismic discontinuity enhancement
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2014.07.011
– ident: CR22
– volume: 21
  start-page: 512
  year: 2002
  end-page: 515
  ident: CR21
  article-title: Automatic fault extraction using artificial ants
  publication-title: SEG Technical Program Expanded Abstracts
– ident: CR4
– volume: 63
  start-page: 1150
  issue: 4
  year: 1998
  end-page: 1165
  ident: CR20
  article-title: 3-D seismic attributes using a semblance-based coherency algorithm
  publication-title: Geophysics
  doi: 10.1190/1.1444415
– ident: CR2
– ident: CR16
– ident: CR12
– volume: 14
  start-page: 1053
  issue: 10
  year: 1995
  end-page: 1058
  ident: CR1
  article-title: 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube
  publication-title: The Leading Edge
  doi: 10.1190/1.1437077
– volume: 36
  start-page: 2519
  issue: 06
  year: 2021
  end-page: 2530
  ident: CR18
  article-title: Low-order fault identification technique based on 3D U-NET full Convolutional Neural Network (CNN)
  publication-title: Progress in Geophysics
– ident: CR33
– volume: 47
  start-page: 174
  issue: 06
  year: 2019
  end-page: 179
  ident: CR15
  article-title: Fault identification technology of ant attribute optimization
  publication-title: Coal Geology & Exploration
– volume: 37
  start-page: 1946
  year: 2018
  end-page: 1950
  ident: CR27
  article-title: Convolutional neural networks for fault interpretation in seismic images
  publication-title: SEG Technical Program Expanded Abstracts
– ident: CR8
– volume: 56
  start-page: 688
  issue: 04
  year: 2021
  end-page: 697
  ident: CR32
  article-title: Seismic data fault detection based on U-Net deep learning network
  publication-title: Oil Geophysical Prospecting
– volume: 18
  start-page: 199
  year: 2021
  end-page: 212
  ident: CR28
  article-title: Research on fault recognition method combining 3D Res-UNet and knowledge distillation
  publication-title: Applied Geophysics
  doi: 10.1007/s11770-021-0894-2
– ident: CR19
– volume: 125
  start-page: 3
  year: 2017
  end-page: 18
  ident: CR30
  article-title: Holistically-nested edge detection
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-017-1004-z
– volume: 205
  start-page: 74
  issue: 01
  year: 2008
  end-page: 76
  ident: CR3
  article-title: Improved algorithm of variance cubes and its application in seismic interpretation
  publication-title: Coalfield Geology and Exploration
– volume: 42
  start-page: 2011
  issue: 8
  year: 2019
  end-page: 2023
  ident: CR14
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2913372
– volume: 8
  start-page: 1
  issue: 3
  year: 2020
  end-page: 41
  ident: CR17
  article-title: Common-azimuth seismic data fault analysis using residual UNet
  publication-title: Interpretation
  doi: 10.1190/INT-2018-0161.1
– volume: 83
  start-page: O97
  issue: 5
  year: 2018
  end-page: O103
  ident: CR31
  article-title: Seismic fault detection with convolutional neural network
  publication-title: Geophysics
  doi: 10.1190/geo2017-0666.1
– volume: 8
  start-page: 331
  issue: 03
  year: 2022
  end-page: 368
  ident: CR10
  article-title: Attention mechanisms in computer vision: A survey
  publication-title: Computational Visual Media
  doi: 10.1007/s41095-022-0271-y
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  ident: CR23
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– volume: 56
  start-page: 947
  issue: 05
  year: 2021
  end-page: 957
  ident: CR29
  article-title: Research on fault detection method based on 3D deeply supervised network
  publication-title: Oil Geophysical Prospecting
– ident: CR7
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  end-page: 66
  ident: CR5
  article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585892
– ident: CR26
– volume: 35
  start-page: 125
  issue: 05
  year: 2016
  end-page: 127
  ident: CR24
  article-title: Forecast of small fault based on SVM in Zhaizhen Mine
  publication-title: Coal Technology
– volume: 13
  start-page: 46
  issue: 01
  year: 2016
  end-page: 51
  ident: CR25
  article-title: Fault identification method based on variance-coherence cubes
  publication-title: Chinese Journal of Engineering Geophysics
– volume: 56
  start-page: 688
  issue: 04
  year: 2021
  ident: 1014_CR32
  publication-title: Oil Geophysical Prospecting
– ident: 1014_CR9
  doi: 10.1109/ICME46284.2020.9102906
– volume: 14
  start-page: 1053
  issue: 10
  year: 1995
  ident: 1014_CR1
  publication-title: The Leading Edge
  doi: 10.1190/1.1437077
– ident: 1014_CR26
  doi: 10.1007/978-3-030-01234-2_1
– ident: 1014_CR16
  doi: 10.1109/CVPR.2019.00060
– volume: 72
  start-page: 192
  issue: 1
  year: 2014
  ident: 1014_CR6
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2014.07.011
– volume: 125
  start-page: 3
  year: 2017
  ident: 1014_CR30
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-017-1004-z
– ident: 1014_CR4
– volume: 37
  start-page: 1946
  year: 2018
  ident: 1014_CR27
  publication-title: SEG Technical Program Expanded Abstracts
– ident: 1014_CR13
  doi: 10.1007/978-3-319-46493-0_38
– ident: 1014_CR2
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: 1014_CR5
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585892
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 1014_CR23
  publication-title: The Journal of Machine Learning Research
– volume: 36
  start-page: 2519
  issue: 06
  year: 2021
  ident: 1014_CR18
  publication-title: Progress in Geophysics
– volume: 205
  start-page: 74
  issue: 01
  year: 2008
  ident: 1014_CR3
  publication-title: Coalfield Geology and Exploration
– ident: 1014_CR11
  doi: 10.1109/ICCV.2015.123
– volume: 18
  start-page: 199
  year: 2021
  ident: 1014_CR28
  publication-title: Applied Geophysics
  doi: 10.1007/s11770-021-0894-2
– volume: 63
  start-page: 1150
  issue: 4
  year: 1998
  ident: 1014_CR20
  publication-title: Geophysics
  doi: 10.1190/1.1444415
– volume: 21
  start-page: 512
  year: 2002
  ident: 1014_CR21
  publication-title: SEG Technical Program Expanded Abstracts
– volume: 35
  start-page: 125
  issue: 05
  year: 2016
  ident: 1014_CR24
  publication-title: Coal Technology
– volume: 8
  start-page: 1
  issue: 3
  year: 2020
  ident: 1014_CR17
  publication-title: Interpretation
  doi: 10.1190/INT-2018-0161.1
– volume: 13
  start-page: 46
  issue: 01
  year: 2016
  ident: 1014_CR25
  publication-title: Chinese Journal of Engineering Geophysics
– volume: 56
  start-page: 947
  issue: 05
  year: 2021
  ident: 1014_CR29
  publication-title: Oil Geophysical Prospecting
– ident: 1014_CR8
  doi: 10.1190/segam2018-2996921.1
– ident: 1014_CR33
  doi: 10.1007/978-3-030-00889-5_1
– volume: 83
  start-page: O97
  issue: 5
  year: 2018
  ident: 1014_CR31
  publication-title: Geophysics
  doi: 10.1190/geo2017-0666.1
– ident: 1014_CR12
  doi: 10.1109/CVPR.2016.90
– ident: 1014_CR19
– ident: 1014_CR7
  doi: 10.1007/978-3-319-46976-8_19
– volume: 8
  start-page: 331
  issue: 03
  year: 2022
  ident: 1014_CR10
  publication-title: Computational Visual Media
  doi: 10.1007/s41095-022-0271-y
– volume: 47
  start-page: 174
  issue: 06
  year: 2019
  ident: 1014_CR15
  publication-title: Coal Geology & Exploration
– ident: 1014_CR22
  doi: 10.1007/978-3-319-24574-4_28
– volume: 42
  start-page: 2011
  issue: 8
  year: 2019
  ident: 1014_CR14
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2913372
SSID ssj0063264
Score 2.258292
Snippet Traditional fault identification involves manual marking by geological interpreters, which is time consuming, inefficient, and prone to human error. To address...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20
SubjectTerms Artificial neural networks
Data augmentation
Earth and Environmental Science
Earth Sciences
Fault detection
Fault lines
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Human error
Identification
Identification methods
Machine learning
Modules
Neural networks
Seismic data
Seismic Interpretation
Seismological data
Title Automatic identification of seismic faults via integrating Residual Network-50 residual blocks and convolutional block attention modules
URI https://link.springer.com/article/10.1007/s11770-023-1014-2
https://www.proquest.com/docview/2911131673
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1993-0658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063264
  issn: 1672-7975
  databaseCode: AFBBN
  dateStart: 20040701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1993-0658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063264
  issn: 1672-7975
  databaseCode: AGYKE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1993-0658
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063264
  issn: 1672-7975
  databaseCode: U2A
  dateStart: 20040701
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50RfDiW1wfSw6elMo2bdLNcZFVUfQgLuiptOkEFvchpvXgL_Bnm6SNi6KCxzZp2iaTzCTzzTcAR7GZMlFidqpMIQ0s-0uQK5UEqKIsNJdKujPdm1t-OYyvHthDE8etPdrduyTdSj0PdgsTmySFWixVGAdm3V1idn_SgqX-xeP1wC_A3FgkzpnME2M8ioR5Z-ZPjXxVR3Mb85tb1Gmb8zW4999Zg0yeTqsyP5Vv3ygc__kj67DaWJ-kX4vLBizgdBOWHQpU6i1471flzHG4klHRwIjcyJGZIhpHemJKVFaNS01eRxnxXBPm7eQOtYvrIrc1sDxgXfLi7-VGZT5pkk0LYmHujbj7AmI5Ph3qkkxmRTVGvQ3D88H92WXQpGoIMrPDpAHmgmNUSCGSoiuMTaLQ-lsFRhyliJhkBafdjKMQBTdyQDnSHlcypPYczJhQO9Cazqa4CyTrhbHpoKQnChUzaQNtUTnme9aLMozb0PUjlsqGx9ym0xincwZm28Gp6WALYItT2objz0eeaxKPvyofeDFIm_msU2p1giUNiNpw4kd1XvxrY3v_qr0PKzabfQ1xO4BW-VLhobF5yrzTyHgHFoe0_wHYJviB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH5CRWhc2GBDFNjwgdOmoMZxnPhYTbCOlh5QK3WnKHGepYrSIpxw4Bfws7GdmAq0TeKY2HES-9nv2e973wM4ZWbKRInZqcYKaWDZX4JCqSRAFeWhuVTSnelejflgyi5n8ayN49Ye7e5dkm6lXge7hYlNkkItlipkgVl3N1mYpqwDm_1ff4bnfgHmxiJxzmSeGONRJLF3Zv6tkdfqaG1jvnGLOm1z8REm_jsbkMnNWV0VZ_LxDYXjO3_kE-y01ifpN-KyCxu43IMthwKV-jM89etq5ThcybxsYURu5MhKEY1zfWtKVF4vKk0e5jnxXBPm7eQatYvrIuMGWB7EPXLv7xVGZd5oki9LYmHurbj7AmI5Ph3qktyuynqB-gtML84nPwdBm6ohyM0OkwZYCI5RKYVIyp4wNolC628VGHGUIoplXHLayzkKUXIjB5QjTbmSIbXnYMaE2ofOcrXEAyB5GjLTQUkqSsViaQNtUTnm-ziNcmRd6PkRy2TLY27TaSyyNQOz7eDMdLAFsLGMduH7yyN3DYnH_yofezHI2vmsM2p1giUNiLrww4_quvifjR2-q_YJfBhMrkbZ6Pd4eATbNrN9A3c7hk51X-NXY_9UxbdW3p8B2En6iQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iKL6InzidmgeflLI1bdPlcahjfg0RB3srXXOB4daNpfNv8M_2kjYORQUf26Qp3CW5S-53vyPkPMQlE8R4Uo0UMM-wv3hDpWIPVJD6-Kgye6f72OPdfng3iAZVnVPt0O4uJFnmNBiWprxozKRqLBPf_NgUTGEGV-WHHu7BayGaanP66rO224o5-iY2rMxjdCNFHLmw5k9DfDVMS2_zW4DU2p3ONtmqHEbaLjW8Q1Yg3yXrFriZ6T3y3l4UU0u7SkeyQv5YYdOpohpGeoItKl2MC03fRil19BD4L_oM2qZi0V6JBfeiJp27d0O0cq-aprmkBplezVDXQA0tpwVK0slULsag90m_c_Ny1fWq6gpeiodC5sFQcAhkJkQsmwLdCAUmRCog4JCJIMoiyVkz5SCE5Kg6xoG1uMp8Zq6u0Os5IKv5NIdDQtOWH6I045aQKowykxsLypLVR60ghbBGmk60SVZRj5sKGONkSZpstJGgNgzmLExYjVx8fjIreTf-6lx3-kqqJagTZrZxk-cf1Mil0-Gy-dfBjv7V-4xsPF13kofb3v0x2TS16EuAWp2sFvMFnKDHUgxP7az8AM0G4hE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+seismic+faults+via+integrating+Residual+Network-50+residual+blocks+and+convolutional+block+attention+modules&rft.jtitle=Applied+geophysics&rft.au=Wang%2C+Xin-Wei&rft.au=Shi%2C+Su-Zhen&rft.au=Yao%2C+Xu-Jun&rft.au=Pei%2C+Jin-Bo&rft.date=2023-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1672-7975&rft.eissn=1993-0658&rft.volume=20&rft.issue=1&rft.spage=20&rft.epage=35&rft_id=info:doi/10.1007%2Fs11770-023-1014-2&rft.externalDocID=10_1007_s11770_023_1014_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-7975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-7975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-7975&client=summon