Automatic identification of seismic faults via integrating Residual Network-50 residual blocks and convolutional block attention modules
Traditional fault identification involves manual marking by geological interpreters, which is time consuming, inefficient, and prone to human error. To address these issues and increase the accuracy of fault identification, a deep-learning-based fault identification method is proposed that uses an a...
Saved in:
Published in | Applied geophysics Vol. 20; no. 1; pp. 20 - 35 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1672-7975 1993-0658 |
DOI | 10.1007/s11770-023-1014-2 |
Cover
Abstract | Traditional fault identification involves manual marking by geological interpreters, which is time consuming, inefficient, and prone to human error. To address these issues and increase the accuracy of fault identification, a deep-learning-based fault identification method is proposed that uses an attention mechanism to focus on target features. A convolutional block attention module (CBAM) is used in the decoding layer of the U-Net network, and a ResNet-50 residual block is used in the encoding layer. Consequently, a fault identification method based on convolutional neural networks is established and referred to as Res-CBAM-UNet. To enhance the generalization ability of the network model, data augmentation on synthetic seismic data and their corresponding fault labels was performed, and the model was trained using the newly generated training dataset as the input. Subsequently, the model was compared and analyzed with CBAM-UNet, ResNet34-UNet, and ResNet50-UNet networks and tested using the seismic data from actual working areas. Results reveal that the designed Res-CBAM-UNet network has good fault identification performance with high continuity of identified faults and computational efficiency. |
---|---|
AbstractList | Traditional fault identification involves manual marking by geological interpreters, which is time consuming, inefficient, and prone to human error. To address these issues and increase the accuracy of fault identification, a deep-learning-based fault identification method is proposed that uses an attention mechanism to focus on target features. A convolutional block attention module (CBAM) is used in the decoding layer of the U-Net network, and a ResNet-50 residual block is used in the encoding layer. Consequently, a fault identification method based on convolutional neural networks is established and referred to as Res-CBAM-UNet. To enhance the generalization ability of the network model, data augmentation on synthetic seismic data and their corresponding fault labels was performed, and the model was trained using the newly generated training dataset as the input. Subsequently, the model was compared and analyzed with CBAM-UNet, ResNet34-UNet, and ResNet50-UNet networks and tested using the seismic data from actual working areas. Results reveal that the designed Res-CBAM-UNet network has good fault identification performance with high continuity of identified faults and computational efficiency. |
Author | Shi, Su-Zhen Yao, Xu-Jun Wang, Xin-Wei Wang, Yi-Fan Yang, Han-Bo Pei, Jin-Bo Liu, Dan-Qing |
Author_xml | – sequence: 1 givenname: Xin-Wei surname: Wang fullname: Wang, Xin-Wei organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing – sequence: 2 givenname: Su-Zhen surname: Shi fullname: Shi, Su-Zhen email: ssz@cumtb.edu.cn organization: State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing – sequence: 3 givenname: Xu-Jun surname: Yao fullname: Yao, Xu-Jun organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing – sequence: 4 givenname: Jin-Bo surname: Pei fullname: Pei, Jin-Bo organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing – sequence: 5 givenname: Yi-Fan surname: Wang fullname: Wang, Yi-Fan organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing – sequence: 6 givenname: Han-Bo surname: Yang fullname: Yang, Han-Bo organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing – sequence: 7 givenname: Dan-Qing surname: Liu fullname: Liu, Dan-Qing organization: School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing |
BookMark | eNp9kM1KQzEQhYMoWKsP4C7gOpqf3qRZFvEPREF0HWLu3BK9TWqSq_gGPraptQiCrpLMnDNn8u2h7RADIHTI6DGjVJ1kxpSihHJBGGUTwrfQiGktCJXNdLvepeJEadXsor2cnyiVgsvJCH3MhhIXtniHfQuh-M67-ooBxw5n8HlRO50d-pLxq7fYhwLzVBVhju8g-3awPb6B8hbTM2koTpvaYx_dc8Y2tNjF8Br7YTV108C2lFVazVnEdugh76OdzvYZDr7PMXo4P7s_vSTXtxdXp7NrYnkz4QQetQTROq1VS7VgqgNJm6kGIcFp0bimlZxaCVq3Err6SeBT2TnGGdeUKzFGR-u5yxRfBsjFPMUh1cWy4ZoxJiopUVVsrXIp5pygM8vkFza9G0bNCrhZAzcVuFkBN7x61C-P8-WLZUnW9_86-dqZa0qYQ_rZ6W_TJ1y3mNM |
CitedBy_id | crossref_primary_10_1007_s12145_024_01319_1 |
Cites_doi | 10.1016/j.cageo.2014.07.011 10.1190/1.1444415 10.1190/1.1437077 10.1007/s11770-021-0894-2 10.1007/s11263-017-1004-z 10.1109/TPAMI.2019.2913372 10.1190/INT-2018-0161.1 10.1190/geo2017-0666.1 10.1007/s41095-022-0271-y 10.1109/4235.585892 10.1109/ICME46284.2020.9102906 10.1007/978-3-030-01234-2_1 10.1109/CVPR.2019.00060 10.1007/978-3-319-46493-0_38 10.1109/ICCV.2015.123 10.1190/segam2018-2996921.1 10.1007/978-3-030-00889-5_1 10.1109/CVPR.2016.90 10.1007/978-3-319-46976-8_19 10.1007/978-3-319-24574-4_28 |
ContentType | Journal Article |
Copyright | The Editorial Department of APPLIED GEOPHYSICS 2023 The Editorial Department of APPLIED GEOPHYSICS 2023. |
Copyright_xml | – notice: The Editorial Department of APPLIED GEOPHYSICS 2023 – notice: The Editorial Department of APPLIED GEOPHYSICS 2023. |
DBID | AAYXX CITATION 7TG 7UA 8FD C1K F1W H8D H96 KL. L.G L7M |
DOI | 10.1007/s11770-023-1014-2 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1993-0658 |
EndPage | 35 |
ExternalDocumentID | 10_1007_s11770_023_1014_2 |
GroupedDBID | -01 -0A -5A -5G -BR -EM -SA -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5VR 5VS 67M 6NX 88I 8FE 8FG 8FH 8TC 92E 92I 92M 92Q 93N 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ AXYYD AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CAJEA CCEZO CCPQU CCVFK CHBEP COF CS3 CSCUP CW9 D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JUIAU JZLTJ K6- KOV LK5 LLZTM M2P M4Y M7R MA- MM- N9A NPVJJ NQJWS NU0 O9- O9J P2P P62 PCBAR PF0 PQQKQ PROAC PT4 Q-- Q-0 Q2X QOS R-A R89 R9I RNS ROL RPX RSV RT1 S.. S16 S1Z S27 S3B SAP SCL SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T8Q TCJ TGP TSG TUC TUS U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z5O Z7Y ZMTXR ~02 ~A9 ~LI ~LJ AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7TG 7UA 8FD C1K F1W H8D H96 KL. L.G L7M |
ID | FETCH-LOGICAL-a2542-eb96e3dc997d09317fe60589e36ec935c5d620a6e99d6ef326e286fc121290273 |
IEDL.DBID | AGYKE |
ISSN | 1672-7975 |
IngestDate | Wed Sep 17 23:57:23 EDT 2025 Wed Oct 01 04:21:35 EDT 2025 Thu Apr 24 22:53:43 EDT 2025 Fri Feb 21 02:40:43 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | deep learning residual network attention mechanism convolutional neural network fault identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a2542-eb96e3dc997d09317fe60589e36ec935c5d620a6e99d6ef326e286fc121290273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2911131673 |
PQPubID | 54455 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2911131673 crossref_primary_10_1007_s11770_023_1014_2 crossref_citationtrail_10_1007_s11770_023_1014_2 springer_journals_10_1007_s11770_023_1014_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230300 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Applied geophysics |
PublicationTitleAbbrev | Appl. Geophys |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Cai (CR3) 2008; 205 CR19 CR16 CR13 CR12 Liu, He, Zhang, Zhou, Zhang (CR18) 2021; 36 CR11 Hu, Shen, Samuel, Sun, Wu (CR14) 2019; 42 CR33 Wu, Shi, Fomel, Liang (CR27) 2018; 37 Wang, Zhang, Zhang, Lu, Meng, Wang (CR28) 2021; 18 Dorigo, Gambardella (CR5) 1997; 1 Marfurt, Kirlin, Farmer, Bahorich (CR20) 1998; 63 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR23) 2014; 15 Wang, Wang (CR25) 2016; 13 Liu, He, Tian, Wu, Gao, Xu (CR17) 2020; 8 CR2 CR4 Li, Bai, Cui, Wan, Yuan, Chu (CR15) 2019; 47 CR8 Pedersen, Skov, Randen, Sønneland (CR21) 2002; 21 CR7 CR9 CR26 Wang, Zhang, Lu, Meng, Wang, Chang (CR29) 2021; 56 CR22 Teng, Shi, Qiu (CR24) 2016; 35 Xie, Tu (CR30) 2017; 125 Yang, Yang, Chen, Kuang, Wang, Zhou (CR32) 2021; 56 Bahorich, Farmer (CR1) 1995; 14 Guo, Xu, Liu (CR10) 2022; 8 Xiong, Ji, Ma, Wang, AlBinHassan, Ali, Luo (CR31) 2018; 83 Di, Gao (CR6) 2014; 72 1014_CR7 S Xie (1014_CR30) 2017; 125 1014_CR4 N Srivastava (1014_CR23) 2014; 15 1014_CR9 1014_CR8 1014_CR16 H W Li (1014_CR15) 2019; 47 1014_CR2 1014_CR19 J Wang (1014_CR28) 2021; 18 J Wang (1014_CR29) 2021; 56 H B Di (1014_CR6) 2014; 72 M H Guo (1014_CR10) 2022; 8 H P Cai (1014_CR3) 2008; 205 1014_CR12 1014_CR11 1014_CR33 M Dorigo (1014_CR5) 1997; 1 1014_CR13 S I Pedersen (1014_CR21) 2002; 21 X M Wu (1014_CR27) 2018; 37 M Bahorich (1014_CR1) 1995; 14 1014_CR26 W Xiong (1014_CR31) 2018; 83 J Wang (1014_CR25) 2016; 13 J Hu (1014_CR14) 2019; 42 Z J Liu (1014_CR18) 2021; 36 K J Marfurt (1014_CR20) 1998; 63 1014_CR22 W Y Yang (1014_CR32) 2021; 56 C Teng (1014_CR24) 2016; 35 N Liu (1014_CR17) 2020; 8 |
References_xml | – volume: 72 start-page: 192 issue: 1 year: 2014 end-page: 200 ident: CR6 article-title: Gray-level transformation and Canny edge detection for 3D seismic discontinuity enhancement publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2014.07.011 – ident: CR22 – volume: 21 start-page: 512 year: 2002 end-page: 515 ident: CR21 article-title: Automatic fault extraction using artificial ants publication-title: SEG Technical Program Expanded Abstracts – ident: CR4 – volume: 63 start-page: 1150 issue: 4 year: 1998 end-page: 1165 ident: CR20 article-title: 3-D seismic attributes using a semblance-based coherency algorithm publication-title: Geophysics doi: 10.1190/1.1444415 – ident: CR2 – ident: CR16 – ident: CR12 – volume: 14 start-page: 1053 issue: 10 year: 1995 end-page: 1058 ident: CR1 article-title: 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube publication-title: The Leading Edge doi: 10.1190/1.1437077 – volume: 36 start-page: 2519 issue: 06 year: 2021 end-page: 2530 ident: CR18 article-title: Low-order fault identification technique based on 3D U-NET full Convolutional Neural Network (CNN) publication-title: Progress in Geophysics – ident: CR33 – volume: 47 start-page: 174 issue: 06 year: 2019 end-page: 179 ident: CR15 article-title: Fault identification technology of ant attribute optimization publication-title: Coal Geology & Exploration – volume: 37 start-page: 1946 year: 2018 end-page: 1950 ident: CR27 article-title: Convolutional neural networks for fault interpretation in seismic images publication-title: SEG Technical Program Expanded Abstracts – ident: CR8 – volume: 56 start-page: 688 issue: 04 year: 2021 end-page: 697 ident: CR32 article-title: Seismic data fault detection based on U-Net deep learning network publication-title: Oil Geophysical Prospecting – volume: 18 start-page: 199 year: 2021 end-page: 212 ident: CR28 article-title: Research on fault recognition method combining 3D Res-UNet and knowledge distillation publication-title: Applied Geophysics doi: 10.1007/s11770-021-0894-2 – ident: CR19 – volume: 125 start-page: 3 year: 2017 end-page: 18 ident: CR30 article-title: Holistically-nested edge detection publication-title: International Journal of Computer Vision doi: 10.1007/s11263-017-1004-z – volume: 205 start-page: 74 issue: 01 year: 2008 end-page: 76 ident: CR3 article-title: Improved algorithm of variance cubes and its application in seismic interpretation publication-title: Coalfield Geology and Exploration – volume: 42 start-page: 2011 issue: 8 year: 2019 end-page: 2023 ident: CR14 article-title: Squeeze-and-excitation networks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2019.2913372 – volume: 8 start-page: 1 issue: 3 year: 2020 end-page: 41 ident: CR17 article-title: Common-azimuth seismic data fault analysis using residual UNet publication-title: Interpretation doi: 10.1190/INT-2018-0161.1 – volume: 83 start-page: O97 issue: 5 year: 2018 end-page: O103 ident: CR31 article-title: Seismic fault detection with convolutional neural network publication-title: Geophysics doi: 10.1190/geo2017-0666.1 – volume: 8 start-page: 331 issue: 03 year: 2022 end-page: 368 ident: CR10 article-title: Attention mechanisms in computer vision: A survey publication-title: Computational Visual Media doi: 10.1007/s41095-022-0271-y – ident: CR13 – ident: CR11 – ident: CR9 – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 ident: CR23 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: The Journal of Machine Learning Research – volume: 56 start-page: 947 issue: 05 year: 2021 end-page: 957 ident: CR29 article-title: Research on fault detection method based on 3D deeply supervised network publication-title: Oil Geophysical Prospecting – ident: CR7 – volume: 1 start-page: 53 issue: 1 year: 1997 end-page: 66 ident: CR5 article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585892 – ident: CR26 – volume: 35 start-page: 125 issue: 05 year: 2016 end-page: 127 ident: CR24 article-title: Forecast of small fault based on SVM in Zhaizhen Mine publication-title: Coal Technology – volume: 13 start-page: 46 issue: 01 year: 2016 end-page: 51 ident: CR25 article-title: Fault identification method based on variance-coherence cubes publication-title: Chinese Journal of Engineering Geophysics – volume: 56 start-page: 688 issue: 04 year: 2021 ident: 1014_CR32 publication-title: Oil Geophysical Prospecting – ident: 1014_CR9 doi: 10.1109/ICME46284.2020.9102906 – volume: 14 start-page: 1053 issue: 10 year: 1995 ident: 1014_CR1 publication-title: The Leading Edge doi: 10.1190/1.1437077 – ident: 1014_CR26 doi: 10.1007/978-3-030-01234-2_1 – ident: 1014_CR16 doi: 10.1109/CVPR.2019.00060 – volume: 72 start-page: 192 issue: 1 year: 2014 ident: 1014_CR6 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2014.07.011 – volume: 125 start-page: 3 year: 2017 ident: 1014_CR30 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-017-1004-z – ident: 1014_CR4 – volume: 37 start-page: 1946 year: 2018 ident: 1014_CR27 publication-title: SEG Technical Program Expanded Abstracts – ident: 1014_CR13 doi: 10.1007/978-3-319-46493-0_38 – ident: 1014_CR2 – volume: 1 start-page: 53 issue: 1 year: 1997 ident: 1014_CR5 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585892 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 1014_CR23 publication-title: The Journal of Machine Learning Research – volume: 36 start-page: 2519 issue: 06 year: 2021 ident: 1014_CR18 publication-title: Progress in Geophysics – volume: 205 start-page: 74 issue: 01 year: 2008 ident: 1014_CR3 publication-title: Coalfield Geology and Exploration – ident: 1014_CR11 doi: 10.1109/ICCV.2015.123 – volume: 18 start-page: 199 year: 2021 ident: 1014_CR28 publication-title: Applied Geophysics doi: 10.1007/s11770-021-0894-2 – volume: 63 start-page: 1150 issue: 4 year: 1998 ident: 1014_CR20 publication-title: Geophysics doi: 10.1190/1.1444415 – volume: 21 start-page: 512 year: 2002 ident: 1014_CR21 publication-title: SEG Technical Program Expanded Abstracts – volume: 35 start-page: 125 issue: 05 year: 2016 ident: 1014_CR24 publication-title: Coal Technology – volume: 8 start-page: 1 issue: 3 year: 2020 ident: 1014_CR17 publication-title: Interpretation doi: 10.1190/INT-2018-0161.1 – volume: 13 start-page: 46 issue: 01 year: 2016 ident: 1014_CR25 publication-title: Chinese Journal of Engineering Geophysics – volume: 56 start-page: 947 issue: 05 year: 2021 ident: 1014_CR29 publication-title: Oil Geophysical Prospecting – ident: 1014_CR8 doi: 10.1190/segam2018-2996921.1 – ident: 1014_CR33 doi: 10.1007/978-3-030-00889-5_1 – volume: 83 start-page: O97 issue: 5 year: 2018 ident: 1014_CR31 publication-title: Geophysics doi: 10.1190/geo2017-0666.1 – ident: 1014_CR12 doi: 10.1109/CVPR.2016.90 – ident: 1014_CR19 – ident: 1014_CR7 doi: 10.1007/978-3-319-46976-8_19 – volume: 8 start-page: 331 issue: 03 year: 2022 ident: 1014_CR10 publication-title: Computational Visual Media doi: 10.1007/s41095-022-0271-y – volume: 47 start-page: 174 issue: 06 year: 2019 ident: 1014_CR15 publication-title: Coal Geology & Exploration – ident: 1014_CR22 doi: 10.1007/978-3-319-24574-4_28 – volume: 42 start-page: 2011 issue: 8 year: 2019 ident: 1014_CR14 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2019.2913372 |
SSID | ssj0063264 |
Score | 2.258292 |
Snippet | Traditional fault identification involves manual marking by geological interpreters, which is time consuming, inefficient, and prone to human error. To address... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 20 |
SubjectTerms | Artificial neural networks Data augmentation Earth and Environmental Science Earth Sciences Fault detection Fault lines Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Human error Identification Identification methods Machine learning Modules Neural networks Seismic data Seismic Interpretation Seismological data |
Title | Automatic identification of seismic faults via integrating Residual Network-50 residual blocks and convolutional block attention modules |
URI | https://link.springer.com/article/10.1007/s11770-023-1014-2 https://www.proquest.com/docview/2911131673 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1993-0658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063264 issn: 1672-7975 databaseCode: AFBBN dateStart: 20040701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1993-0658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063264 issn: 1672-7975 databaseCode: AGYKE dateStart: 20040101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1993-0658 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063264 issn: 1672-7975 databaseCode: U2A dateStart: 20040701 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50RfDiW1wfSw6elMo2bdLNcZFVUfQgLuiptOkEFvchpvXgL_Bnm6SNi6KCxzZp2iaTzCTzzTcAR7GZMlFidqpMIQ0s-0uQK5UEqKIsNJdKujPdm1t-OYyvHthDE8etPdrduyTdSj0PdgsTmySFWixVGAdm3V1idn_SgqX-xeP1wC_A3FgkzpnME2M8ioR5Z-ZPjXxVR3Mb85tb1Gmb8zW4999Zg0yeTqsyP5Vv3ygc__kj67DaWJ-kX4vLBizgdBOWHQpU6i1471flzHG4klHRwIjcyJGZIhpHemJKVFaNS01eRxnxXBPm7eQOtYvrIrc1sDxgXfLi7-VGZT5pkk0LYmHujbj7AmI5Ph3qkkxmRTVGvQ3D88H92WXQpGoIMrPDpAHmgmNUSCGSoiuMTaLQ-lsFRhyliJhkBafdjKMQBTdyQDnSHlcypPYczJhQO9Cazqa4CyTrhbHpoKQnChUzaQNtUTnme9aLMozb0PUjlsqGx9ym0xincwZm28Gp6WALYItT2objz0eeaxKPvyofeDFIm_msU2p1giUNiNpw4kd1XvxrY3v_qr0PKzabfQ1xO4BW-VLhobF5yrzTyHgHFoe0_wHYJviB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH5CRWhc2GBDFNjwgdOmoMZxnPhYTbCOlh5QK3WnKHGepYrSIpxw4Bfws7GdmAq0TeKY2HES-9nv2e973wM4ZWbKRInZqcYKaWDZX4JCqSRAFeWhuVTSnelejflgyi5n8ayN49Ye7e5dkm6lXge7hYlNkkItlipkgVl3N1mYpqwDm_1ff4bnfgHmxiJxzmSeGONRJLF3Zv6tkdfqaG1jvnGLOm1z8REm_jsbkMnNWV0VZ_LxDYXjO3_kE-y01ifpN-KyCxu43IMthwKV-jM89etq5ThcybxsYURu5MhKEY1zfWtKVF4vKk0e5jnxXBPm7eQatYvrIuMGWB7EPXLv7xVGZd5oki9LYmHurbj7AmI5Ph3qktyuynqB-gtML84nPwdBm6ohyM0OkwZYCI5RKYVIyp4wNolC628VGHGUIoplXHLayzkKUXIjB5QjTbmSIbXnYMaE2ofOcrXEAyB5GjLTQUkqSsViaQNtUTnm-ziNcmRd6PkRy2TLY27TaSyyNQOz7eDMdLAFsLGMduH7yyN3DYnH_yofezHI2vmsM2p1giUNiLrww4_quvifjR2-q_YJfBhMrkbZ6Pd4eATbNrN9A3c7hk51X-NXY_9UxbdW3p8B2En6iQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iKL6InzidmgeflLI1bdPlcahjfg0RB3srXXOB4daNpfNv8M_2kjYORQUf26Qp3CW5S-53vyPkPMQlE8R4Uo0UMM-wv3hDpWIPVJD6-Kgye6f72OPdfng3iAZVnVPt0O4uJFnmNBiWprxozKRqLBPf_NgUTGEGV-WHHu7BayGaanP66rO224o5-iY2rMxjdCNFHLmw5k9DfDVMS2_zW4DU2p3ONtmqHEbaLjW8Q1Yg3yXrFriZ6T3y3l4UU0u7SkeyQv5YYdOpohpGeoItKl2MC03fRil19BD4L_oM2qZi0V6JBfeiJp27d0O0cq-aprmkBplezVDXQA0tpwVK0slULsag90m_c_Ny1fWq6gpeiodC5sFQcAhkJkQsmwLdCAUmRCog4JCJIMoiyVkz5SCE5Kg6xoG1uMp8Zq6u0Os5IKv5NIdDQtOWH6I045aQKowykxsLypLVR60ghbBGmk60SVZRj5sKGONkSZpstJGgNgzmLExYjVx8fjIreTf-6lx3-kqqJagTZrZxk-cf1Mil0-Gy-dfBjv7V-4xsPF13kofb3v0x2TS16EuAWp2sFvMFnKDHUgxP7az8AM0G4hE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+seismic+faults+via+integrating+Residual+Network-50+residual+blocks+and+convolutional+block+attention+modules&rft.jtitle=Applied+geophysics&rft.au=Wang%2C+Xin-Wei&rft.au=Shi%2C+Su-Zhen&rft.au=Yao%2C+Xu-Jun&rft.au=Pei%2C+Jin-Bo&rft.date=2023-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1672-7975&rft.eissn=1993-0658&rft.volume=20&rft.issue=1&rft.spage=20&rft.epage=35&rft_id=info:doi/10.1007%2Fs11770-023-1014-2&rft.externalDocID=10_1007_s11770_023_1014_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-7975&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-7975&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-7975&client=summon |