SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement
State-of-the-art hypergraph partitioners follow the multilevel paradigm that constructs multiple levels of progressively coarser hypergraphs that are used to drive cut refinements on each level of the hierarchy. Multilevel partitioners are subject to two limitations: (i) Hypergraph coarsening proces...
Saved in:
| Published in | 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) pp. 1 - 9 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
ACM
29.10.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1558-2434 |
| DOI | 10.1145/3508352.3549390 |
Cover
| Abstract | State-of-the-art hypergraph partitioners follow the multilevel paradigm that constructs multiple levels of progressively coarser hypergraphs that are used to drive cut refinements on each level of the hierarchy. Multilevel partitioners are subject to two limitations: (i) Hypergraph coarsening processes rely on local neighborhood structure without fully considering the global structure of the hypergraph. (ii) Refinement heuristics can stagnate on local minima. In this paper, we describe SpecPart, the first supervised spectral framework that directly tackles these two limitations. SpecPart solves a generalized eigenvalue problem that captures the balanced partitioning objective and global hypergraph structure in a low-dimensional vertex embedding while leveraging initial high-quality solutions from multilevel partitioners as hints. SpecPart further constructs a family of trees from the vertex embedding and partitions them with a tree-sweeping algorithm. Then, a novel overlay of multiple tree-based partitioning solutions, followed by lifting to a coarsened hypergraph, where an ILP partitioning instance is solved to alleviate local stagnation. We have validated SpecPart on multiple sets of benchmarks. Experimental results show that for some benchmarks, our SpecPart can substantially improve the cutsize by more than 50% with respect to the best published solutions obtained with leading partitioners hMETIS and KaHyPar. |
|---|---|
| AbstractList | State-of-the-art hypergraph partitioners follow the multilevel paradigm that constructs multiple levels of progressively coarser hypergraphs that are used to drive cut refinements on each level of the hierarchy. Multilevel partitioners are subject to two limitations: (i) Hypergraph coarsening processes rely on local neighborhood structure without fully considering the global structure of the hypergraph. (ii) Refinement heuristics can stagnate on local minima. In this paper, we describe SpecPart, the first supervised spectral framework that directly tackles these two limitations. SpecPart solves a generalized eigenvalue problem that captures the balanced partitioning objective and global hypergraph structure in a low-dimensional vertex embedding while leveraging initial high-quality solutions from multilevel partitioners as hints. SpecPart further constructs a family of trees from the vertex embedding and partitions them with a tree-sweeping algorithm. Then, a novel overlay of multiple tree-based partitioning solutions, followed by lifting to a coarsened hypergraph, where an ILP partitioning instance is solved to alleviate local stagnation. We have validated SpecPart on multiple sets of benchmarks. Experimental results show that for some benchmarks, our SpecPart can substantially improve the cutsize by more than 50% with respect to the best published solutions obtained with leading partitioners hMETIS and KaHyPar. |
| Author | Bustany, Ismail Kahng, Andrew B. Koutis, Ioannis Wang, Zhiang Pramanik, Bodhisatta |
| Author_xml | – sequence: 1 givenname: Ismail surname: Bustany fullname: Bustany, Ismail email: ismail.bustany@gmail.com organization: Advanced Micro Devices,San Jose,CA,USA – sequence: 2 givenname: Andrew B. surname: Kahng fullname: Kahng, Andrew B. email: abk@ucsd.edu organization: University of California,San Diego La Jolla,CA,USA – sequence: 3 givenname: Ioannis surname: Koutis fullname: Koutis, Ioannis email: ikoutis@njit.edu organization: New Jersey Institute of Technology,Newark,NJ,USA – sequence: 4 givenname: Bodhisatta surname: Pramanik fullname: Pramanik, Bodhisatta email: bodhi91@iastate.edu organization: Iowa State University,Ames,IA,USA – sequence: 5 givenname: Zhiang surname: Wang fullname: Wang, Zhiang email: zhw033@ucsd.edu organization: University of California,San Diego La Jolla,CA,USA |
| BookMark | eNotjMtOAkEURFujiYis3bjoHxi93bef7ggRISHRBN24IT3MbRxlHukZMPy9EF1VpU5VXbOLuqmJsVsB90Io_YAaHGp5j1p59HDGRt66IwD0Ulh1zgZCa5dJheqKjbruCwCks8JaGLCPZUvr15D6Rz7my11LaV92VPBT3Kew5dMUKvpp0jePTeKzw7GxSaH95KdR2ZdNXdYbvmy2u5Pn86pNzZ4qqvsbdhnDtqPRvw7Z-_TpbTLLFi_P88l4kQWpXJ-tJbgYKUb01uSmMNpIozCCdiCc8IWKRMromEdJQRUOrVqDAIOYW5UHHLK7v9-SiFZtKquQDisBYLwSiL-rPVVP |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1145/3508352.3549390 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781450392174 1450392172 |
| EISSN | 1558-2434 |
| EndPage | 9 |
| ExternalDocumentID | 10069413 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO FEDTE IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-a248t-c208ffeff3976b6d6562643f05801819d4fee465fbf2ea4d8374c010633b74ba3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:46:16 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a248t-c208ffeff3976b6d6562643f05801819d4fee465fbf2ea4d8374c010633b74ba3 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_10069413 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Oct.-29 |
| PublicationDateYYYYMMDD | 2022-10-29 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) |
| PublicationTitleAbbrev | ICCAD |
| PublicationYear | 2022 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssj0002871770 ssj0020286 |
| Score | 2.3484747 |
| Snippet | State-of-the-art hypergraph partitioners follow the multilevel paradigm that constructs multiple levels of progressively coarser hypergraphs that are used to... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Benchmark testing Design automation Eigenvalues and eigenfunctions Hypergraph Partitioning Partitioning algorithms Supervised Spectral Partitioning |
| Title | SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement |
| URI | https://ieeexplore.ieee.org/document/10069413 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J734qvhmD14TY3azSbyJWIqHUtBC8VL2MQsitKUmF399ZzZJK4LgLQxkWSazO_N9mQdjt4V3idDSRwXgcSPEEJW6SCJp0ZwcqDKFkCA7UsOJfJlm07ZYPdTCAEBIPoOYHsO_fLewNVFleMKpTJNm1O7mhWqKtTaECoX-ORlfi7ZQoNpePvcyuxNZCDZigYBIhBt4O0wl-JLBARt1u2hSSD7jujKx_f7VoPHf2zxk_W3ZHh9vHNIR24H5Mdv_0XHwhL3TvPkxmssDf-Sv9ZJuii9wnMTEefBBl6zFMZrlQ0Spq9DTmtNLHy17yzsyjTecRKAY-2wyeH57GkbteIVIp7KoIpsmhffgPYUkRjmM7DA6Ej7JCuriVTrpAaTKvPEpaOkQykpLEFIIk0ujxSnrzRdzOGNc5QS9aFyMsahep531pU014GrGCn_O-qSm2bLpoDHrNHTxh_yS7aVUZoA-Ii2vWK9a1XCNzr8yN-GjrwGmXa40 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHtSLr4pv9-A1MWY3aeJNxBK1loItFC8luzsLUmhLTS7-emc2SSuC4C0MJCzL7M73fZkHY9eJNYHIpfUSwONGjMFL8yTwpEZ3MhCnIbgE2X6cjeTzOBrXxequFgYAXPIZ-PTo_uWbuS5JKsMTTmWaNKN2M5JSRlW51kpSIfDfIfer-RYa4rqbz62MbkTk4IYvkBIJdwevx6m4aNLdZf1mHVUSydQvC-Xrr18tGv-90D3WXhfu8cEqJO2zDZgdsJ0fPQcP2TtNnB-gw9zxe_5WLuiu-ATDyUyqB-826Voc8SzPkKcuXVdrTi991Potb-Q0XqkSTmRss1H3cfiQefWABS8PZVJ4OgwSa8FaAiUqNojtEB8JG0QJ9fFKjbQAMo6ssiHk0iCZlZpIpBCqI1UujlhrNp_BMeNxh8gXDYxRGrfX5EbbVIc54NeUFvaEtWmbJouqh8ak2aHTP-xXbCsbvvYmvaf-yxnbDqnoACNGmJ6zVrEs4QKhQKEunQN8A_QisYE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+On+Computer+Aided+Design+%28ICCAD%29&rft.atitle=SpecPart%3A+A+Supervised+Spectral+Framework+for+Hypergraph+Partitioning+Solution+Improvement&rft.au=Bustany%2C+Ismail&rft.au=Kahng%2C+Andrew+B.&rft.au=Koutis%2C+Ioannis&rft.au=Pramanik%2C+Bodhisatta&rft.date=2022-10-29&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3508352.3549390&rft.externalDocID=10069413 |