SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement

State-of-the-art hypergraph partitioners follow the multilevel paradigm that constructs multiple levels of progressively coarser hypergraphs that are used to drive cut refinements on each level of the hierarchy. Multilevel partitioners are subject to two limitations: (i) Hypergraph coarsening proces...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) pp. 1 - 9
Main Authors Bustany, Ismail, Kahng, Andrew B., Koutis, Ioannis, Pramanik, Bodhisatta, Wang, Zhiang
Format Conference Proceeding
LanguageEnglish
Published ACM 29.10.2022
Subjects
Online AccessGet full text
ISSN1558-2434
DOI10.1145/3508352.3549390

Cover

Abstract State-of-the-art hypergraph partitioners follow the multilevel paradigm that constructs multiple levels of progressively coarser hypergraphs that are used to drive cut refinements on each level of the hierarchy. Multilevel partitioners are subject to two limitations: (i) Hypergraph coarsening processes rely on local neighborhood structure without fully considering the global structure of the hypergraph. (ii) Refinement heuristics can stagnate on local minima. In this paper, we describe SpecPart, the first supervised spectral framework that directly tackles these two limitations. SpecPart solves a generalized eigenvalue problem that captures the balanced partitioning objective and global hypergraph structure in a low-dimensional vertex embedding while leveraging initial high-quality solutions from multilevel partitioners as hints. SpecPart further constructs a family of trees from the vertex embedding and partitions them with a tree-sweeping algorithm. Then, a novel overlay of multiple tree-based partitioning solutions, followed by lifting to a coarsened hypergraph, where an ILP partitioning instance is solved to alleviate local stagnation. We have validated SpecPart on multiple sets of benchmarks. Experimental results show that for some benchmarks, our SpecPart can substantially improve the cutsize by more than 50% with respect to the best published solutions obtained with leading partitioners hMETIS and KaHyPar.
AbstractList State-of-the-art hypergraph partitioners follow the multilevel paradigm that constructs multiple levels of progressively coarser hypergraphs that are used to drive cut refinements on each level of the hierarchy. Multilevel partitioners are subject to two limitations: (i) Hypergraph coarsening processes rely on local neighborhood structure without fully considering the global structure of the hypergraph. (ii) Refinement heuristics can stagnate on local minima. In this paper, we describe SpecPart, the first supervised spectral framework that directly tackles these two limitations. SpecPart solves a generalized eigenvalue problem that captures the balanced partitioning objective and global hypergraph structure in a low-dimensional vertex embedding while leveraging initial high-quality solutions from multilevel partitioners as hints. SpecPart further constructs a family of trees from the vertex embedding and partitions them with a tree-sweeping algorithm. Then, a novel overlay of multiple tree-based partitioning solutions, followed by lifting to a coarsened hypergraph, where an ILP partitioning instance is solved to alleviate local stagnation. We have validated SpecPart on multiple sets of benchmarks. Experimental results show that for some benchmarks, our SpecPart can substantially improve the cutsize by more than 50% with respect to the best published solutions obtained with leading partitioners hMETIS and KaHyPar.
Author Bustany, Ismail
Kahng, Andrew B.
Koutis, Ioannis
Wang, Zhiang
Pramanik, Bodhisatta
Author_xml – sequence: 1
  givenname: Ismail
  surname: Bustany
  fullname: Bustany, Ismail
  email: ismail.bustany@gmail.com
  organization: Advanced Micro Devices,San Jose,CA,USA
– sequence: 2
  givenname: Andrew B.
  surname: Kahng
  fullname: Kahng, Andrew B.
  email: abk@ucsd.edu
  organization: University of California,San Diego La Jolla,CA,USA
– sequence: 3
  givenname: Ioannis
  surname: Koutis
  fullname: Koutis, Ioannis
  email: ikoutis@njit.edu
  organization: New Jersey Institute of Technology,Newark,NJ,USA
– sequence: 4
  givenname: Bodhisatta
  surname: Pramanik
  fullname: Pramanik, Bodhisatta
  email: bodhi91@iastate.edu
  organization: Iowa State University,Ames,IA,USA
– sequence: 5
  givenname: Zhiang
  surname: Wang
  fullname: Wang, Zhiang
  email: zhw033@ucsd.edu
  organization: University of California,San Diego La Jolla,CA,USA
BookMark eNotjMtOAkEURFujiYis3bjoHxi93bef7ggRISHRBN24IT3MbRxlHukZMPy9EF1VpU5VXbOLuqmJsVsB90Io_YAaHGp5j1p59HDGRt66IwD0Ulh1zgZCa5dJheqKjbruCwCks8JaGLCPZUvr15D6Rz7my11LaV92VPBT3Kew5dMUKvpp0jePTeKzw7GxSaH95KdR2ZdNXdYbvmy2u5Pn86pNzZ4qqvsbdhnDtqPRvw7Z-_TpbTLLFi_P88l4kQWpXJ-tJbgYKUb01uSmMNpIozCCdiCc8IWKRMromEdJQRUOrVqDAIOYW5UHHLK7v9-SiFZtKquQDisBYLwSiL-rPVVP
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3508352.3549390
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450392174
1450392172
EISSN 1558-2434
EndPage 9
ExternalDocumentID 10069413
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a248t-c208ffeff3976b6d6562643f05801819d4fee465fbf2ea4d8374c010633b74ba3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:46:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-c208ffeff3976b6d6562643f05801819d4fee465fbf2ea4d8374c010633b74ba3
PageCount 9
ParticipantIDs ieee_primary_10069413
PublicationCentury 2000
PublicationDate 2022-Oct.-29
PublicationDateYYYYMMDD 2022-10-29
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-29
  day: 29
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)
PublicationTitleAbbrev ICCAD
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002871770
ssj0020286
Score 2.3484747
Snippet State-of-the-art hypergraph partitioners follow the multilevel paradigm that constructs multiple levels of progressively coarser hypergraphs that are used to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
Design automation
Eigenvalues and eigenfunctions
Hypergraph Partitioning
Partitioning algorithms
Supervised Spectral Partitioning
Title SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement
URI https://ieeexplore.ieee.org/document/10069413
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J734qvhmD14TY3azSbyJWIqHUtBC8VL2MQsitKUmF399ZzZJK4LgLQxkWSazO_N9mQdjt4V3idDSRwXgcSPEEJW6SCJp0ZwcqDKFkCA7UsOJfJlm07ZYPdTCAEBIPoOYHsO_fLewNVFleMKpTJNm1O7mhWqKtTaECoX-ORlfi7ZQoNpePvcyuxNZCDZigYBIhBt4O0wl-JLBARt1u2hSSD7jujKx_f7VoPHf2zxk_W3ZHh9vHNIR24H5Mdv_0XHwhL3TvPkxmssDf-Sv9ZJuii9wnMTEefBBl6zFMZrlQ0Spq9DTmtNLHy17yzsyjTecRKAY-2wyeH57GkbteIVIp7KoIpsmhffgPYUkRjmM7DA6Ej7JCuriVTrpAaTKvPEpaOkQykpLEFIIk0ujxSnrzRdzOGNc5QS9aFyMsahep531pU014GrGCn_O-qSm2bLpoDHrNHTxh_yS7aVUZoA-Ii2vWK9a1XCNzr8yN-GjrwGmXa40
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHtSLr4pv9-A1MWY3aeJNxBK1loItFC8luzsLUmhLTS7-emc2SSuC4C0MJCzL7M73fZkHY9eJNYHIpfUSwONGjMFL8yTwpEZ3MhCnIbgE2X6cjeTzOBrXxequFgYAXPIZ-PTo_uWbuS5JKsMTTmWaNKN2M5JSRlW51kpSIfDfIfer-RYa4rqbz62MbkTk4IYvkBIJdwevx6m4aNLdZf1mHVUSydQvC-Xrr18tGv-90D3WXhfu8cEqJO2zDZgdsJ0fPQcP2TtNnB-gw9zxe_5WLuiu-ATDyUyqB-826Voc8SzPkKcuXVdrTi991Potb-Q0XqkSTmRss1H3cfiQefWABS8PZVJ4OgwSa8FaAiUqNojtEB8JG0QJ9fFKjbQAMo6ssiHk0iCZlZpIpBCqI1UujlhrNp_BMeNxh8gXDYxRGrfX5EbbVIc54NeUFvaEtWmbJouqh8ak2aHTP-xXbCsbvvYmvaf-yxnbDqnoACNGmJ6zVrEs4QKhQKEunQN8A_QisYE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+On+Computer+Aided+Design+%28ICCAD%29&rft.atitle=SpecPart%3A+A+Supervised+Spectral+Framework+for+Hypergraph+Partitioning+Solution+Improvement&rft.au=Bustany%2C+Ismail&rft.au=Kahng%2C+Andrew+B.&rft.au=Koutis%2C+Ioannis&rft.au=Pramanik%2C+Bodhisatta&rft.date=2022-10-29&rft.pub=ACM&rft.eissn=1558-2434&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1145%2F3508352.3549390&rft.externalDocID=10069413