Parf: Adaptive Parameter Refining for Abstract Interpretation
Abstract interpretation is a key formal method for the static analysis of programs. The core challenge in applying abstract interpretation lies in the configuration of abstraction and analysis strategies encoded by a large number of external parameters of static analysis tools. To attain low false-p...
        Saved in:
      
    
          | Published in | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] pp. 1082 - 1093 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            ACM
    
        27.10.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2643-1572 | 
| DOI | 10.1145/3691620.3695487 | 
Cover
| Abstract | Abstract interpretation is a key formal method for the static analysis of programs. The core challenge in applying abstract interpretation lies in the configuration of abstraction and analysis strategies encoded by a large number of external parameters of static analysis tools. To attain low false-positive rates (i.e., accuracy) while preserving analysis efficiency, tuning the parameters heavily relies on expert knowledge and is thus difficult to automate. In this paper, we present a fully automated framework called Parf to adaptively tune the external parameters of abstract interpretation-based static analyzers. Parf models various types of parameters as random variables subject to probability distributions over latticed parameter spaces. It incrementally refines the probability distributions based on accumulated intermediate results generated by repeatedly sampling and analyzing, thereby ultimately yielding a set of highly accurate parameter settings within a given time budget. We have implemented Parf on top of Frama-C/Eva - an off-the-shelf opensource static analyzer for C programs - and compared it against the expert refinement strategy and Frama-C/Eva's official configurations over the Frama-C OSCS benchmark. Experimental results indicate that Parf achieves the lowest number of false positives on 34/37 (91.9%) program repositories with exclusively best results on 12/37 (32.4%) cases. In particular, Parf exhibits promising performance for analyzing complex, large-scale real-world programs.CCS CONCEPTS* Software and its engineering → Automated static analysis. | 
    
|---|---|
| AbstractList | Abstract interpretation is a key formal method for the static analysis of programs. The core challenge in applying abstract interpretation lies in the configuration of abstraction and analysis strategies encoded by a large number of external parameters of static analysis tools. To attain low false-positive rates (i.e., accuracy) while preserving analysis efficiency, tuning the parameters heavily relies on expert knowledge and is thus difficult to automate. In this paper, we present a fully automated framework called Parf to adaptively tune the external parameters of abstract interpretation-based static analyzers. Parf models various types of parameters as random variables subject to probability distributions over latticed parameter spaces. It incrementally refines the probability distributions based on accumulated intermediate results generated by repeatedly sampling and analyzing, thereby ultimately yielding a set of highly accurate parameter settings within a given time budget. We have implemented Parf on top of Frama-C/Eva - an off-the-shelf opensource static analyzer for C programs - and compared it against the expert refinement strategy and Frama-C/Eva's official configurations over the Frama-C OSCS benchmark. Experimental results indicate that Parf achieves the lowest number of false positives on 34/37 (91.9%) program repositories with exclusively best results on 12/37 (32.4%) cases. In particular, Parf exhibits promising performance for analyzing complex, large-scale real-world programs.CCS CONCEPTS* Software and its engineering → Automated static analysis. | 
    
| Author | Chen, Mingshuai Bu, Yixuan Wang, Qiuye Yin, Jianwei Qin, Shengchao Wang, Zhongyi Yi, Xiao Yang, Linyu Li, Zhiyang  | 
    
| Author_xml | – sequence: 1 givenname: Zhongyi surname: Wang fullname: Wang, Zhongyi email: wzygomboc@zju.edu.cn organization: Zhejiang University,Hangzhou,China – sequence: 2 givenname: Linyu surname: Yang fullname: Yang, Linyu email: linyu.yang@zju.edu.cn organization: Zhejiang University,Hangzhou,China – sequence: 3 givenname: Mingshuai surname: Chen fullname: Chen, Mingshuai email: m.chen@zju.edu.cn organization: Zhejiang University,Hangzhou,China – sequence: 4 givenname: Yixuan surname: Bu fullname: Bu, Yixuan email: yixuanbu@zju.edu.cn organization: Zhejiang University,Hangzhou,China – sequence: 5 givenname: Zhiyang surname: Li fullname: Li, Zhiyang email: misakalzy@zju.edu.cn organization: Zhejiang University,Hangzhou,China – sequence: 6 givenname: Qiuye surname: Wang fullname: Wang, Qiuye email: wangqiuye2@huawei.com organization: Huawei Inc.,Fermat Labs,Dongguan,China – sequence: 7 givenname: Shengchao surname: Qin fullname: Qin, Shengchao email: shengchao.qin@gmail.com organization: Xidian University,Xi'an,China – sequence: 8 givenname: Xiao surname: Yi fullname: Yi, Xiao email: yi.xiao1@huawei.com organization: Huawei Inc.,Fermat Labs,Hong Kong,China – sequence: 9 givenname: Jianwei surname: Yin fullname: Yin, Jianwei email: zjuyjw@zju.edu.cn organization: Zhejiang University,Hangzhou,China  | 
    
| BookMark | eNotjktLxDAUhaMoOI5du3GRP9Ax74fgogw-BgYU0fVw295IwElLGgT_vQFdfefjwOFckrM0JSTkmrMN50rfSuO5EWxTqZWzJ6Tx1jvFmOWi-ilZCaNky7UVF6RZltizGrXh3KzI_SvkcEe7EeYSv5FWhSMWzPQNQ0wxfdIwZdr1S8kwFLpLtZszFihxSlfkPMDXgs0_1-Tj8eF9-9zuX552227fQn1QWsu8VUEbAI7BgkAHQYIfPRjRG5SBoUNmmekFG4cxjAKDk16OmgfBBynX5OZvNyLiYc7xCPnnwJk1yjkhfwEkmUsc | 
    
| CODEN | IEEPAD | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1145/3691620.3695487 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 9798400712487 | 
    
| EISSN | 2643-1572 | 
    
| EndPage | 1093 | 
    
| ExternalDocumentID | 10764882 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN 6J9 AAJGR AAWTH ABLEC ACREN ADYOE ADZIZ AFYQB ALMA_UNASSIGNED_HOLDINGS AMTXH BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-a248t-70974f56aa1ef7a2e8af3a9d9a62b6e3f0e8e0706b20dcdfd2ef8393d51f21c33 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 01:51:59 EDT 2025 | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a248t-70974f56aa1ef7a2e8af3a9d9a62b6e3f0e8e0706b20dcdfd2ef8393d51f21c33 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | ieee_primary_10764882 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-Oct.-27 | 
    
| PublicationDateYYYYMMDD | 2024-10-27 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-27 day: 27  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] | 
    
| PublicationTitleAbbrev | ASE | 
    
| PublicationYear | 2024 | 
    
| Publisher | ACM | 
    
| Publisher_xml | – name: ACM | 
    
| SSID | ssib057256116 ssj0051577  | 
    
| Score | 2.2885497 | 
    
| Snippet | Abstract interpretation is a key formal method for the static analysis of programs. The core challenge in applying abstract interpretation lies in the... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1082 | 
    
| SubjectTerms | Accuracy Automatic parameter tuning Benchmark testing Probability distribution Program verification Refining Software Software algorithms Software engineering Static analysis Tuning  | 
    
| Title | Parf: Adaptive Parameter Refining for Abstract Interpretation | 
    
| URI | https://ieeexplore.ieee.org/document/10764882 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7ak6f6qPgmB69bm3fWWxFL8VBELPRW8phcxLbI9uKvd7IPpYLgbbOnkGTm-yb5ZoaQ28S8VsJ4DEtCLKRLCm0uhkJZr623waBfzmqLmZ7O5dNCLdpk9ToXBgBq8RkM82f9lh_XYZuvytDCjcYDhx5331jdJGt1h0cZBG-WuU7jhhGnjWlr-TCp7oRGIsQxRtW5xNluM5UaSyZ9Mutm0UhI3obbyg_D568Cjf-e5iEZ_KTt0edvQDoie7A6Jv2ubwNtzfiE5FTndE_H0W2ys6M4dO9ZFkNfINUNIyhSWTr2-RokVHRXmDgg88nj68O0aNsoFI5LWxVmhDFDUto5Bsk4DtYl4cpYOs29BpFGYAEtX3s-iiGmyCEhbRJRscRZEOKU9FbrFZwRGoXyEniJuwtSM2c1KDAxOR-0E5Kfk0FejuWmqZSx7Fbi4o__l-SAI0nIWMDNFelVH1u4RpCv_E29uV9IDabG | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5SD3qqj4pvc_C6tZvnrrcilqq1iLTQW8ljchHbItuLv97JPpQKgrfNnkKSme-b5JsZQq5DapXk2mJY4nwiTJBoc94lMrMqs5nT6Jej2mKshlPxOJOzOlm9zIUBgFJ8Bt34Wb7l-6Vbx6sytHCt8MChx92WQghZpWs1x0dqhO80sp3KESNSa11X80mFvOEKqRDDKFXFImeb7VRKNBm0ybiZRyUieeuuC9t1n79KNP57onuk85O4R1--IWmfbMHigLSbzg20NuRDEpOdwy3te7OK7o7i0LxHYQx9hVC2jKBIZmnfxosQV9BNaWKHTAf3k7thUjdSSAwTWZHoHkYNQSpjUgjaMMhM4Cb3uVHMKuChBxmg7SvLet754BkEJE7cyzSw1HF-RFqL5QKOCfVcWgEsx_0FoVKTKZCgfTDWKcMFOyGduBzzVVUrY96sxOkf_6_IznDyPJqPHsZPZ2SXIWWIyMD0OWkVH2u4QMgv7GW50V81dKoT | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Parf%3A+Adaptive+Parameter+Refining+for+Abstract+Interpretation&rft.au=Wang%2C+Zhongyi&rft.au=Yang%2C+Linyu&rft.au=Chen%2C+Mingshuai&rft.au=Bu%2C+Yixuan&rft.date=2024-10-27&rft.pub=ACM&rft.eissn=2643-1572&rft.spage=1082&rft.epage=1093&rft_id=info:doi/10.1145%2F3691620.3695487&rft.externalDocID=10764882 |