Parf: Adaptive Parameter Refining for Abstract Interpretation

Abstract interpretation is a key formal method for the static analysis of programs. The core challenge in applying abstract interpretation lies in the configuration of abstraction and analysis strategies encoded by a large number of external parameters of static analysis tools. To attain low false-p...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM International Conference on Automated Software Engineering : [proceedings] pp. 1082 - 1093
Main Authors Wang, Zhongyi, Yang, Linyu, Chen, Mingshuai, Bu, Yixuan, Li, Zhiyang, Wang, Qiuye, Qin, Shengchao, Yi, Xiao, Yin, Jianwei
Format Conference Proceeding
LanguageEnglish
Published ACM 27.10.2024
Subjects
Online AccessGet full text
ISSN2643-1572
DOI10.1145/3691620.3695487

Cover

Abstract Abstract interpretation is a key formal method for the static analysis of programs. The core challenge in applying abstract interpretation lies in the configuration of abstraction and analysis strategies encoded by a large number of external parameters of static analysis tools. To attain low false-positive rates (i.e., accuracy) while preserving analysis efficiency, tuning the parameters heavily relies on expert knowledge and is thus difficult to automate. In this paper, we present a fully automated framework called Parf to adaptively tune the external parameters of abstract interpretation-based static analyzers. Parf models various types of parameters as random variables subject to probability distributions over latticed parameter spaces. It incrementally refines the probability distributions based on accumulated intermediate results generated by repeatedly sampling and analyzing, thereby ultimately yielding a set of highly accurate parameter settings within a given time budget. We have implemented Parf on top of Frama-C/Eva - an off-the-shelf opensource static analyzer for C programs - and compared it against the expert refinement strategy and Frama-C/Eva's official configurations over the Frama-C OSCS benchmark. Experimental results indicate that Parf achieves the lowest number of false positives on 34/37 (91.9%) program repositories with exclusively best results on 12/37 (32.4%) cases. In particular, Parf exhibits promising performance for analyzing complex, large-scale real-world programs.CCS CONCEPTS* Software and its engineering → Automated static analysis.
AbstractList Abstract interpretation is a key formal method for the static analysis of programs. The core challenge in applying abstract interpretation lies in the configuration of abstraction and analysis strategies encoded by a large number of external parameters of static analysis tools. To attain low false-positive rates (i.e., accuracy) while preserving analysis efficiency, tuning the parameters heavily relies on expert knowledge and is thus difficult to automate. In this paper, we present a fully automated framework called Parf to adaptively tune the external parameters of abstract interpretation-based static analyzers. Parf models various types of parameters as random variables subject to probability distributions over latticed parameter spaces. It incrementally refines the probability distributions based on accumulated intermediate results generated by repeatedly sampling and analyzing, thereby ultimately yielding a set of highly accurate parameter settings within a given time budget. We have implemented Parf on top of Frama-C/Eva - an off-the-shelf opensource static analyzer for C programs - and compared it against the expert refinement strategy and Frama-C/Eva's official configurations over the Frama-C OSCS benchmark. Experimental results indicate that Parf achieves the lowest number of false positives on 34/37 (91.9%) program repositories with exclusively best results on 12/37 (32.4%) cases. In particular, Parf exhibits promising performance for analyzing complex, large-scale real-world programs.CCS CONCEPTS* Software and its engineering → Automated static analysis.
Author Chen, Mingshuai
Bu, Yixuan
Wang, Qiuye
Yin, Jianwei
Qin, Shengchao
Wang, Zhongyi
Yi, Xiao
Yang, Linyu
Li, Zhiyang
Author_xml – sequence: 1
  givenname: Zhongyi
  surname: Wang
  fullname: Wang, Zhongyi
  email: wzygomboc@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 2
  givenname: Linyu
  surname: Yang
  fullname: Yang, Linyu
  email: linyu.yang@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 3
  givenname: Mingshuai
  surname: Chen
  fullname: Chen, Mingshuai
  email: m.chen@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 4
  givenname: Yixuan
  surname: Bu
  fullname: Bu, Yixuan
  email: yixuanbu@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 5
  givenname: Zhiyang
  surname: Li
  fullname: Li, Zhiyang
  email: misakalzy@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 6
  givenname: Qiuye
  surname: Wang
  fullname: Wang, Qiuye
  email: wangqiuye2@huawei.com
  organization: Huawei Inc.,Fermat Labs,Dongguan,China
– sequence: 7
  givenname: Shengchao
  surname: Qin
  fullname: Qin, Shengchao
  email: shengchao.qin@gmail.com
  organization: Xidian University,Xi'an,China
– sequence: 8
  givenname: Xiao
  surname: Yi
  fullname: Yi, Xiao
  email: yi.xiao1@huawei.com
  organization: Huawei Inc.,Fermat Labs,Hong Kong,China
– sequence: 9
  givenname: Jianwei
  surname: Yin
  fullname: Yin, Jianwei
  email: zjuyjw@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
BookMark eNotjktLxDAUhaMoOI5du3GRP9Ax74fgogw-BgYU0fVw295IwElLGgT_vQFdfefjwOFckrM0JSTkmrMN50rfSuO5EWxTqZWzJ6Tx1jvFmOWi-ilZCaNky7UVF6RZltizGrXh3KzI_SvkcEe7EeYSv5FWhSMWzPQNQ0wxfdIwZdr1S8kwFLpLtZszFihxSlfkPMDXgs0_1-Tj8eF9-9zuX552227fQn1QWsu8VUEbAI7BgkAHQYIfPRjRG5SBoUNmmekFG4cxjAKDk16OmgfBBynX5OZvNyLiYc7xCPnnwJk1yjkhfwEkmUsc
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3691620.3695487
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798400712487
EISSN 2643-1572
EndPage 1093
ExternalDocumentID 10764882
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
AAWTH
ABLEC
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a248t-70974f56aa1ef7a2e8af3a9d9a62b6e3f0e8e0706b20dcdfd2ef8393d51f21c33
IEDL.DBID RIE
IngestDate Wed Aug 27 01:51:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-70974f56aa1ef7a2e8af3a9d9a62b6e3f0e8e0706b20dcdfd2ef8393d51f21c33
PageCount 12
ParticipantIDs ieee_primary_10764882
PublicationCentury 2000
PublicationDate 2024-Oct.-27
PublicationDateYYYYMMDD 2024-10-27
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-27
  day: 27
PublicationDecade 2020
PublicationTitle IEEE/ACM International Conference on Automated Software Engineering : [proceedings]
PublicationTitleAbbrev ASE
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib057256116
ssj0051577
Score 2.2885497
Snippet Abstract interpretation is a key formal method for the static analysis of programs. The core challenge in applying abstract interpretation lies in the...
SourceID ieee
SourceType Publisher
StartPage 1082
SubjectTerms Accuracy
Automatic parameter tuning
Benchmark testing
Probability distribution
Program verification
Refining
Software
Software algorithms
Software engineering
Static analysis
Tuning
Title Parf: Adaptive Parameter Refining for Abstract Interpretation
URI https://ieeexplore.ieee.org/document/10764882
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7ak6f6qPgmB69bm3fWWxFL8VBELPRW8phcxLbI9uKvd7IPpYLgbbOnkGTm-yb5ZoaQ28S8VsJ4DEtCLKRLCm0uhkJZr623waBfzmqLmZ7O5dNCLdpk9ToXBgBq8RkM82f9lh_XYZuvytDCjcYDhx5331jdJGt1h0cZBG-WuU7jhhGnjWlr-TCp7oRGIsQxRtW5xNluM5UaSyZ9Mutm0UhI3obbyg_D568Cjf-e5iEZ_KTt0edvQDoie7A6Jv2ubwNtzfiE5FTndE_H0W2ys6M4dO9ZFkNfINUNIyhSWTr2-RokVHRXmDgg88nj68O0aNsoFI5LWxVmhDFDUto5Bsk4DtYl4cpYOs29BpFGYAEtX3s-iiGmyCEhbRJRscRZEOKU9FbrFZwRGoXyEniJuwtSM2c1KDAxOR-0E5Kfk0FejuWmqZSx7Fbi4o__l-SAI0nIWMDNFelVH1u4RpCv_E29uV9IDabG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5SD3qqj4pvc_C6tZvnrrcilqq1iLTQW8ljchHbItuLv97JPpQKgrfNnkKSme-b5JsZQq5DapXk2mJY4nwiTJBoc94lMrMqs5nT6Jej2mKshlPxOJOzOlm9zIUBgFJ8Bt34Wb7l-6Vbx6sytHCt8MChx92WQghZpWs1x0dqhO80sp3KESNSa11X80mFvOEKqRDDKFXFImeb7VRKNBm0ybiZRyUieeuuC9t1n79KNP57onuk85O4R1--IWmfbMHigLSbzg20NuRDEpOdwy3te7OK7o7i0LxHYQx9hVC2jKBIZmnfxosQV9BNaWKHTAf3k7thUjdSSAwTWZHoHkYNQSpjUgjaMMhM4Cb3uVHMKuChBxmg7SvLet754BkEJE7cyzSw1HF-RFqL5QKOCfVcWgEsx_0FoVKTKZCgfTDWKcMFOyGduBzzVVUrY96sxOkf_6_IznDyPJqPHsZPZ2SXIWWIyMD0OWkVH2u4QMgv7GW50V81dKoT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Parf%3A+Adaptive+Parameter+Refining+for+Abstract+Interpretation&rft.au=Wang%2C+Zhongyi&rft.au=Yang%2C+Linyu&rft.au=Chen%2C+Mingshuai&rft.au=Bu%2C+Yixuan&rft.date=2024-10-27&rft.pub=ACM&rft.eissn=2643-1572&rft.spage=1082&rft.epage=1093&rft_id=info:doi/10.1145%2F3691620.3695487&rft.externalDocID=10764882