On the Use of Bronchial Breath Sounds for Person Identification
Bronchial breath sound is the sound of turmoil flow produced by the inspiratory air through glottis, trachea or major bronchi. It cannot be only used to diagnose the respiratory tract and lung-related diseases but also used to distinguish one person from the other and thereby identifying patients si...
Saved in:
| Published in | Journal of Information Science and Engineering Vol. 37; no. 1; pp. 219 - 241 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Taipei
社團法人中華民國計算語言學學會
01.01.2021
Institute of Information Science, Academia Sinica |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1016-2364 |
| DOI | 10.6688/JISE.202101_37(1).0014 |
Cover
| Abstract | Bronchial breath sound is the sound of turmoil flow produced by the inspiratory air through glottis, trachea or major bronchi. It cannot be only used to diagnose the respiratory tract and lung-related diseases but also used to distinguish one person from the other and thereby identifying patients since it contains personal physiological characteristics. This study captures the bronchial breath sound by using a stethoscope attached on a subject's neck. For each person, the Mel Frequency Cepstral Coefficients (MFCCs) are computed for his/her bronchial breath sounds, and then represented by a stochastic model. Given an unknown breath sound recording, the proposed person identification system determines who among a set of candidate people produced the breath sound by matching the MFCCs of the sound to each of the stochastic models. Furthermore, we apply the i-vector approach in the system to boost the identification accuracy. To evaluate the generality of our experimental results, we additionally utilize other general identification schemes including support vector machine, random forest, and naive Bayes. Our experiments conducted on a dataset composed of 8 persons show that the accuracy of identifying people from their breath sounds can attain 92%. |
|---|---|
| AbstractList | Bronchial breath sound is the sound of turmoil flow produced by the inspiratory air through glottis, trachea or major bronchi. It cannot be only used to diagnose the respiratory tract and lung-related diseases but also used to distinguish one person from the other and thereby identifying patients since it contains personal physiological characteristics. This study captures the bronchial breath sound by using a stethoscope attached on a subject's neck. For each person, the Mel Frequency Cepstral Coefficients (MFCCs) are computed for his/her bronchial breath sounds, and then represented by a stochastic model. Given an unknown breath sound recording, the proposed person identification system determines who among a set of candidate people produced the breath sound by matching the MFCCs of the sound to each of the stochastic models. Furthermore, we apply the i-vector approach in the system to boost the identification accuracy. To evaluate the generality of our experimental results, we additionally utilize other general identification schemes including support vector machine, random forest, and naive Bayes. Our experiments conducted on a dataset composed of 8 persons show that the accuracy of identifying people from their breath sounds can attain 92%. |
| Author | 林勇志(YUNG-CHIH LIN) VAN-THUAN TRAN 蔡偉和(WEI-HO TSAI) |
| Author_xml | – sequence: 1 fullname: VAN-THUAN TRAN – sequence: 2 fullname: 林勇志(YUNG-CHIH LIN) – sequence: 3 fullname: 蔡偉和(WEI-HO TSAI) |
| BookMark | eNplkEFLAzEQhXOoYFv9CxLwooetmSQbk5Noae1KoULtecnuJmxKSXST_n9TWvDg6c0MH-_xZoJGPniD0B2QmRBSPn1U28WMEgoEavb8AI8zQoCP0DgfREGZ4NdoEuOeECpKzsfoZeNx6g3eRYODxW9D8G3v9CFPRqceb8PRdxHbMOBPM8TgcdUZn5x1rU4u-Bt0ZfUhmtuLTtFuufiar4r15r2av64LTblMBS21BKEpmKbhtC0tZbTplGAdSE4tkIZrxo0WLdhStR1nBtqGsUZZRSUDNkX3Z9_vIfwcTUz1PhwHnyPrHAAKhFQkU6szpd3gkvtjTvVP7evLb7IQoFAS8m8BlR2B_QJ5il5- |
| ContentType | Journal Article |
| Copyright | Copyright Institute of Information Science, Academia Sinica Jan 2021 |
| Copyright_xml | – notice: Copyright Institute of Information Science, Academia Sinica Jan 2021 |
| DBID | 188 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.6688/JISE.202101_37(1).0014 |
| DatabaseName | Chinese Electronic Periodical Services (CEPS)_2025 Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 241 |
| ExternalDocumentID | 10162364_202101_202012150001_202012150001_219_241 |
| GroupedDBID | .4S .DC 188 2UF 2WC 5GY A8Z AAKPC ACGFO ADMLS AENEX AIAGR AINHJ ALMA_UNASSIGNED_HOLDINGS ARCSS ATFKH CNMHZ CVCKV EBS EDO EJD I-F MK~ ML~ OK1 P2P TN5 TR2 TUS UZ4 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-a248t-25a816a21ebb42c5f232bd963d1842f10b4a34ea6c1f59cd43e1cb33b9f928313 |
| ISSN | 1016-2364 |
| IngestDate | Mon Jun 30 07:04:23 EDT 2025 Tue May 20 00:40:16 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 1 |
| Keywords | Gaussian mixture model (GMM) i-vector bronchial breath sound person identification MFCCs |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a248t-25a816a21ebb42c5f232bd963d1842f10b4a34ea6c1f59cd43e1cb33b9f928313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2481916890 |
| PQPubID | 2047910 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2481916890 airiti_journals_10162364_202101_202012150001_202012150001_219_241 |
| PublicationCentury | 2000 |
| PublicationDate | 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 20210101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Taipei |
| PublicationPlace_xml | – name: Taipei |
| PublicationTitle | Journal of Information Science and Engineering |
| PublicationYear | 2021 |
| Publisher | 社團法人中華民國計算語言學學會 Institute of Information Science, Academia Sinica |
| Publisher_xml | – name: 社團法人中華民國計算語言學學會 – name: Institute of Information Science, Academia Sinica |
| SSID | ssj0026544 |
| Score | 1.8323923 |
| Snippet | Bronchial breath sound is the sound of turmoil flow produced by the inspiratory air through glottis, trachea or major bronchi. It cannot be only used to... |
| SourceID | proquest airiti |
| SourceType | Aggregation Database Publisher |
| StartPage | 219 |
| SubjectTerms | Accuracy Acoustics Bronchi Glottis Sound Sound recording Stochastic models Support vector machines Trachea |
| Title | On the Use of Bronchial Breath Sounds for Person Identification |
| URI | https://www.airitilibrary.com/Article/Detail/10162364-202101-202012150001-202012150001-219-241 https://www.proquest.com/docview/2481916890 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO Food Science Source issn: 1016-2364 databaseCode: A8Z dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr omitProxy: false ssIdentifier: ssj0026544 providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1016-2364 databaseCode: ADMLS dateStart: 20071101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssj0026544 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaW5cKFN2JhQT5gCVSlxI6T2CfklpR0JVqJtrBwqfJwpJVQV4LuhV_PjJ2mD0BiEVKVuk7GGXs-2-OpZ0zICw793-JOtYLXIpClbgJQYutAxba2qixV4ZzC3k-SfCHPzuPzoxv9nV1LV-uyX_34rV_Jv0gV8kCu6CV7Dcl2hUIGpEG-cAUJw_WvZDz1exQX3h4PK-oV7lz-CilU7HozPDLJxVtwG91Bzt4tt2ntdH9QTFsPJT-UtF0fzes7oQs3YvpoJsE8X5hJb_7BdH_qsCxhOmM6ZVnM1IAplxiMMEeoz4vJu2CYj3MYOCc7hgiWKaYlM9xRcaY0JrRgaghUn7JxkE9785kZb2haW4XgB7YKlqXMSDbIHP2QaYUMDSKmY5ZBvsEPJhQzb_GtasTMyD0TMs1bKuAbbhm4q1yBvj6QY7Bu7a0QH4ZCoKhtInHk0c5wDwpvgCH0d-cDH4RmD_f7g7vXE4QP2HU4BSWJQreKs_Es62MThHyJUQ2g2YSLjCq3E2-3HRLZQC6WLQF8Yag9PKvi8AfXS4FxGm4KmMXwqBKjvnQGhiR2hxd3tfIe8cjR631-XvJXjhdQu4oLDJ71iybi1Kv5XXK7hR81HuT3yJFd3Sd3NmeO0BaHD8ib6YoC5ilgnl42tMM89ZinHvMUEEw95uk-5h-SxSibD_OgPQQkKIRU60DEheJJIWBQKaWo4gaWAGUN00bNlRQND0tZRNIWScWbWFe1jCyvyiiCUUeD6syjR-R4dbmyjwkNdaiqSFlp61LWIi1r0P9TW8dpWvCmsifE-NZYtn38-_Lakjkhp5uG3JYCFeGwDFM6fPIfXvGU3Nr2rVNyvP52ZZ-BZrwunzs4_ATFuIt4 |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Use+of+Bronchial+Breath+Sounds+for+Person+Identification&rft.jtitle=Journal+of+Information+Science+and+Engineering&rft.au=VAN-THUAN+TRAN&rft.au=%E6%9E%97%E5%8B%87%E5%BF%97%28YUNG-CHIH+LIN%29&rft.au=%E8%94%A1%E5%81%89%E5%92%8C%28WEI-HO+TSAI%29&rft.date=2021-01-01&rft.pub=%E7%A4%BE%E5%9C%98%E6%B3%95%E4%BA%BA%E4%B8%AD%E8%8F%AF%E6%B0%91%E5%9C%8B%E8%A8%88%E7%AE%97%E8%AA%9E%E8%A8%80%E5%AD%B8%E5%AD%B8%E6%9C%83&rft.issn=1016-2364&rft.volume=37&rft.issue=1&rft.spage=219&rft.epage=241&rft_id=info:doi/10.6688%2FJISE.202101_37%281%29.0014&rft.externalDocID=10162364_202101_202012150001_202012150001_219_241 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F10162364-c.jpg |