On the Use of Bronchial Breath Sounds for Person Identification

Bronchial breath sound is the sound of turmoil flow produced by the inspiratory air through glottis, trachea or major bronchi. It cannot be only used to diagnose the respiratory tract and lung-related diseases but also used to distinguish one person from the other and thereby identifying patients si...

Full description

Saved in:
Bibliographic Details
Published inJournal of Information Science and Engineering Vol. 37; no. 1; pp. 219 - 241
Main Authors VAN-THUAN TRAN, 林勇志(YUNG-CHIH LIN), 蔡偉和(WEI-HO TSAI)
Format Journal Article
LanguageEnglish
Published Taipei 社團法人中華民國計算語言學學會 01.01.2021
Institute of Information Science, Academia Sinica
Subjects
Online AccessGet full text
ISSN1016-2364
DOI10.6688/JISE.202101_37(1).0014

Cover

Abstract Bronchial breath sound is the sound of turmoil flow produced by the inspiratory air through glottis, trachea or major bronchi. It cannot be only used to diagnose the respiratory tract and lung-related diseases but also used to distinguish one person from the other and thereby identifying patients since it contains personal physiological characteristics. This study captures the bronchial breath sound by using a stethoscope attached on a subject's neck. For each person, the Mel Frequency Cepstral Coefficients (MFCCs) are computed for his/her bronchial breath sounds, and then represented by a stochastic model. Given an unknown breath sound recording, the proposed person identification system determines who among a set of candidate people produced the breath sound by matching the MFCCs of the sound to each of the stochastic models. Furthermore, we apply the i-vector approach in the system to boost the identification accuracy. To evaluate the generality of our experimental results, we additionally utilize other general identification schemes including support vector machine, random forest, and naive Bayes. Our experiments conducted on a dataset composed of 8 persons show that the accuracy of identifying people from their breath sounds can attain 92%.
AbstractList Bronchial breath sound is the sound of turmoil flow produced by the inspiratory air through glottis, trachea or major bronchi. It cannot be only used to diagnose the respiratory tract and lung-related diseases but also used to distinguish one person from the other and thereby identifying patients since it contains personal physiological characteristics. This study captures the bronchial breath sound by using a stethoscope attached on a subject's neck. For each person, the Mel Frequency Cepstral Coefficients (MFCCs) are computed for his/her bronchial breath sounds, and then represented by a stochastic model. Given an unknown breath sound recording, the proposed person identification system determines who among a set of candidate people produced the breath sound by matching the MFCCs of the sound to each of the stochastic models. Furthermore, we apply the i-vector approach in the system to boost the identification accuracy. To evaluate the generality of our experimental results, we additionally utilize other general identification schemes including support vector machine, random forest, and naive Bayes. Our experiments conducted on a dataset composed of 8 persons show that the accuracy of identifying people from their breath sounds can attain 92%.
Author 林勇志(YUNG-CHIH LIN)
VAN-THUAN TRAN
蔡偉和(WEI-HO TSAI)
Author_xml – sequence: 1
  fullname: VAN-THUAN TRAN
– sequence: 2
  fullname: 林勇志(YUNG-CHIH LIN)
– sequence: 3
  fullname: 蔡偉和(WEI-HO TSAI)
BookMark eNplkEFLAzEQhXOoYFv9CxLwooetmSQbk5Noae1KoULtecnuJmxKSXST_n9TWvDg6c0MH-_xZoJGPniD0B2QmRBSPn1U28WMEgoEavb8AI8zQoCP0DgfREGZ4NdoEuOeECpKzsfoZeNx6g3eRYODxW9D8G3v9CFPRqceb8PRdxHbMOBPM8TgcdUZn5x1rU4u-Bt0ZfUhmtuLTtFuufiar4r15r2av64LTblMBS21BKEpmKbhtC0tZbTplGAdSE4tkIZrxo0WLdhStR1nBtqGsUZZRSUDNkX3Z9_vIfwcTUz1PhwHnyPrHAAKhFQkU6szpd3gkvtjTvVP7evLb7IQoFAS8m8BlR2B_QJ5il5-
ContentType Journal Article
Copyright Copyright Institute of Information Science, Academia Sinica Jan 2021
Copyright_xml – notice: Copyright Institute of Information Science, Academia Sinica Jan 2021
DBID 188
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.6688/JISE.202101_37(1).0014
DatabaseName Chinese Electronic Periodical Services (CEPS)_2025
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 241
ExternalDocumentID 10162364_202101_202012150001_202012150001_219_241
GroupedDBID .4S
.DC
188
2UF
2WC
5GY
A8Z
AAKPC
ACGFO
ADMLS
AENEX
AIAGR
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATFKH
CNMHZ
CVCKV
EBS
EDO
EJD
I-F
MK~
ML~
OK1
P2P
TN5
TR2
TUS
UZ4
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-a248t-25a816a21ebb42c5f232bd963d1842f10b4a34ea6c1f59cd43e1cb33b9f928313
ISSN 1016-2364
IngestDate Mon Jun 30 07:04:23 EDT 2025
Tue May 20 00:40:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords Gaussian mixture model (GMM)
i-vector
bronchial breath sound
person identification
MFCCs
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a248t-25a816a21ebb42c5f232bd963d1842f10b4a34ea6c1f59cd43e1cb33b9f928313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2481916890
PQPubID 2047910
PageCount 23
ParticipantIDs proquest_journals_2481916890
airiti_journals_10162364_202101_202012150001_202012150001_219_241
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Taipei
PublicationPlace_xml – name: Taipei
PublicationTitle Journal of Information Science and Engineering
PublicationYear 2021
Publisher 社團法人中華民國計算語言學學會
Institute of Information Science, Academia Sinica
Publisher_xml – name: 社團法人中華民國計算語言學學會
– name: Institute of Information Science, Academia Sinica
SSID ssj0026544
Score 1.8323923
Snippet Bronchial breath sound is the sound of turmoil flow produced by the inspiratory air through glottis, trachea or major bronchi. It cannot be only used to...
SourceID proquest
airiti
SourceType Aggregation Database
Publisher
StartPage 219
SubjectTerms Accuracy
Acoustics
Bronchi
Glottis
Sound
Sound recording
Stochastic models
Support vector machines
Trachea
Title On the Use of Bronchial Breath Sounds for Person Identification
URI https://www.airitilibrary.com/Article/Detail/10162364-202101-202012150001-202012150001-219-241
https://www.proquest.com/docview/2481916890
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  issn: 1016-2364
  databaseCode: A8Z
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  omitProxy: false
  ssIdentifier: ssj0026544
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1016-2364
  databaseCode: ADMLS
  dateStart: 20071101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssj0026544
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaW5cKFN2JhQT5gCVSlxI6T2CfklpR0JVqJtrBwqfJwpJVQV4LuhV_PjJ2mD0BiEVKVuk7GGXs-2-OpZ0zICw793-JOtYLXIpClbgJQYutAxba2qixV4ZzC3k-SfCHPzuPzoxv9nV1LV-uyX_34rV_Jv0gV8kCu6CV7Dcl2hUIGpEG-cAUJw_WvZDz1exQX3h4PK-oV7lz-CilU7HozPDLJxVtwG91Bzt4tt2ntdH9QTFsPJT-UtF0fzes7oQs3YvpoJsE8X5hJb_7BdH_qsCxhOmM6ZVnM1IAplxiMMEeoz4vJu2CYj3MYOCc7hgiWKaYlM9xRcaY0JrRgaghUn7JxkE9785kZb2haW4XgB7YKlqXMSDbIHP2QaYUMDSKmY5ZBvsEPJhQzb_GtasTMyD0TMs1bKuAbbhm4q1yBvj6QY7Bu7a0QH4ZCoKhtInHk0c5wDwpvgCH0d-cDH4RmD_f7g7vXE4QP2HU4BSWJQreKs_Es62MThHyJUQ2g2YSLjCq3E2-3HRLZQC6WLQF8Yag9PKvi8AfXS4FxGm4KmMXwqBKjvnQGhiR2hxd3tfIe8cjR631-XvJXjhdQu4oLDJ71iybi1Kv5XXK7hR81HuT3yJFd3Sd3NmeO0BaHD8ib6YoC5ilgnl42tMM89ZinHvMUEEw95uk-5h-SxSibD_OgPQQkKIRU60DEheJJIWBQKaWo4gaWAGUN00bNlRQND0tZRNIWScWbWFe1jCyvyiiCUUeD6syjR-R4dbmyjwkNdaiqSFlp61LWIi1r0P9TW8dpWvCmsifE-NZYtn38-_Lakjkhp5uG3JYCFeGwDFM6fPIfXvGU3Nr2rVNyvP52ZZ-BZrwunzs4_ATFuIt4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Use+of+Bronchial+Breath+Sounds+for+Person+Identification&rft.jtitle=Journal+of+Information+Science+and+Engineering&rft.au=VAN-THUAN+TRAN&rft.au=%E6%9E%97%E5%8B%87%E5%BF%97%28YUNG-CHIH+LIN%29&rft.au=%E8%94%A1%E5%81%89%E5%92%8C%28WEI-HO+TSAI%29&rft.date=2021-01-01&rft.pub=%E7%A4%BE%E5%9C%98%E6%B3%95%E4%BA%BA%E4%B8%AD%E8%8F%AF%E6%B0%91%E5%9C%8B%E8%A8%88%E7%AE%97%E8%AA%9E%E8%A8%80%E5%AD%B8%E5%AD%B8%E6%9C%83&rft.issn=1016-2364&rft.volume=37&rft.issue=1&rft.spage=219&rft.epage=241&rft_id=info:doi/10.6688%2FJISE.202101_37%281%29.0014&rft.externalDocID=10162364_202101_202012150001_202012150001_219_241
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F10162364-c.jpg