Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration
In Continuous Integration (CI), regression testing is constrained by the time between commits. This demands for careful selection and/or prioritization of test cases within test suites too large to be run entirely. To this aim, some Machine Learning (ML) techniques have been proposed, as an alternat...
Saved in:
| Published in | 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE) pp. 1 - 12 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
ACM
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1558-1225 |
| DOI | 10.1145/3377811.3380369 |
Cover
| Abstract | In Continuous Integration (CI), regression testing is constrained by the time between commits. This demands for careful selection and/or prioritization of test cases within test suites too large to be run entirely. To this aim, some Machine Learning (ML) techniques have been proposed, as an alternative to deterministic approaches. Two broad strategies for ML-based prioritization are learning-to-rank and what we call ranking-to-learn (i.e., reinforcement learning). Various ML algorithms can be applied in each strategy. In this paper we introduce ten of such algorithms for adoption in CI practices, and perform a comprehensive study comparing them against each other using subjects from the Apache Commons project. We analyze the influence of several features of the code under test and of the test process. The results allow to draw criteria to support testers in selecting and tuning the technique that best fits their context. |
|---|---|
| AbstractList | In Continuous Integration (CI), regression testing is constrained by the time between commits. This demands for careful selection and/or prioritization of test cases within test suites too large to be run entirely. To this aim, some Machine Learning (ML) techniques have been proposed, as an alternative to deterministic approaches. Two broad strategies for ML-based prioritization are learning-to-rank and what we call ranking-to-learn (i.e., reinforcement learning). Various ML algorithms can be applied in each strategy. In this paper we introduce ten of such algorithms for adoption in CI practices, and perform a comprehensive study comparing them against each other using subjects from the Apache Commons project. We analyze the influence of several features of the code under test and of the test process. The results allow to draw criteria to support testers in selecting and tuning the technique that best fits their context. |
| Author | Guerriero, Antonio Bertolino, Antonia Pietrantuono, Roberto Miranda, Breno Russo, Stefano |
| Author_xml | – sequence: 1 givenname: Antonia surname: Bertolino fullname: Bertolino, Antonia email: antonia.bertolino@isti.cnr.it organization: ISTI - CNR,Pisa,Italy – sequence: 2 givenname: Antonio surname: Guerriero fullname: Guerriero, Antonio email: antonio.guerriero@unina.it organization: Università di Napoli Federico II,Napoli,Italy – sequence: 3 givenname: Breno surname: Miranda fullname: Miranda, Breno email: bafm@cin.ufpe.br organization: Federal University of Pernambuco,Recife,Brazil – sequence: 4 givenname: Roberto surname: Pietrantuono fullname: Pietrantuono, Roberto email: roberto.pietrantuono@unina.it organization: Università di Napoli Federico II,Napoli,Italy – sequence: 5 givenname: Stefano surname: Russo fullname: Russo, Stefano email: stefano.russo@unina.it organization: Università di Napoli Federico II,Napoli,Italy |
| BookMark | eNotjMtOwzAURA0CiaawZsHGP5Di6-v4wQ5FPCpFQmq7r5zkJgoPB9kpEn9PgK5mNHNmMnYWxkCMXYNYAajiFtEYC7BCtAK1O2HZnAo0IAFP2QKKwuYgZXHBspRehRBaObdgviIfwxD6fBrzjQ9v_CvxXz1Gf_Ud307RT9QPlHg3Rr6hPlJKwxj4jtI0s3wIvBzDbA_jIfF1mOl5MhOX7Lzz74mujrpk28eHXfmcVy9P6_K-yr1UZsobQwat6hx61yhVS91arUG2QoJuikZ4bQVBW7emdcoZU6BWuoHaYus8LtnN_-tARPvPOHz4-L130qIzDn8AZR1VBQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1145/3377811.3380369 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1450371213 9781450371216 |
| EISSN | 1558-1225 |
| EndPage | 12 |
| ExternalDocumentID | 9283979 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: CNPq grantid: 465614/2014-0 funderid: 10.13039/501100003593 – fundername: FACEPE grantid: PRONEX APQ 0388-1.03/14,APQ-0399-1.03/17 funderid: 10.13039/501100006162 – fundername: MIUR funderid: 10.13039/501100003407 – fundername: CAPES grantid: 88887.136410/2017-00 funderid: 10.13039/501100002322 |
| GroupedDBID | -~X .4S .DC 123 23M 29O 5VS 6IE 6IF 6IH 6IK 6IL 6IM 6IN 8US AAJGR AAWTH ABLEC ADZIZ AFFNX ALMA_UNASSIGNED_HOLDINGS APO ARCSS AVWKF BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO EDO FEDTE I-F I07 IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS XOL |
| ID | FETCH-LOGICAL-a247t-c7e7384f93a9c44b26d86612d0216c5c0a680e1dbd7d9497753646c1b83d9a3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:32:58 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a247t-c7e7384f93a9c44b26d86612d0216c5c0a680e1dbd7d9497753646c1b83d9a3 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9283979 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Oct. |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct. |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE) |
| PublicationTitleAbbrev | ICSE |
| PublicationYear | 2020 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssj0006499 ssj0002870079 |
| Score | 2.4696114 |
| Snippet | In Continuous Integration (CI), regression testing is constrained by the time between commits. This demands for careful selection and/or prioritization of test... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | continuous integration machine learning Machine learning algorithms regression testing Reinforcement learning Software algorithms Software engineering test prioritization test selection Testing Time factors Tuning |
| Title | Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration |
| URI | https://ieeexplore.ieee.org/document/9283979 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxmsaOH6wIVJCKUClSt8qvVlUlB9GEgV-PnbhFIAaGKJGTwbKVu-98930HwFVqjEcJxiB_-QDFO0AkueWIy8B71ISLeqfHT3T0Sh5n-awFrndcGGttXXxmk_BY5_JNoatwVDYQ3hcKJtqgzThtuFq785SQsEtDxilaYeqhfJTyGZJ8gDELnMrER2TeZosfvVRqV3LfBePtJJoKknVSlSrRn7_0Gf87y33Q_ybtweedOzoALesOQXfbtQHGn7gHZJRUXaKyQBPp1vBjA8M9DtWvb-BWttZuoMe1cGKXTcWsg9MgzOGWcOVg0LZauaqoNvAh6k74L_rg5f5uejtCsdECkhlhJdLMMszJQmApNCEqo4Z7v50ZDwCoznUqKU_t0CjDjCAeMeaYEqqHimMjJD4CHVc4ewygZpIsuDQ8V4oII6Uy3phKnmFrhRb5CeiF9Zq_NUoa87hUp38Pn4G9LES3dencOeiU75W98BCgVJf13n8BL6GxNQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_DoxljbrfVqJKBADGLCjfQXhJB0RjYP_vW2W8FoPHhYtnQ7NN32vu_1vfc9AG4ipSxLUCqwh3VQLAAGnGoaUO7qHiWmrHzTw1HSe8WPUzKtgdttLYzWukw-06G7LGP5KpOF2yprM4uFLGU7YJdgjElVrbXdUXEhu8jFnLwdTiyZ92I-HUzaCKWuqjK0Ppm12uxHN5USTLoNMNxMo8ohWYVFLkL5-Uuh8b_zPACt77I9-LwFpENQ0-YINDZ9G6D_jZuAe1HVRZBnwZibFfxYQ3f2Q-XtO7gRrtVraJktHOtFlTNr4MRJc5gFXBro1K2WpsiKNex75Qn7RAu8dB8m973At1oIeIzTPJCpThHFc4Y4kxiLOFHUInesLAVIJJERT2ikO0qoVDFsOSNBCU5kR1CkGEfHoG4yo08AlCnHc8oVJUJgpjgXyppTTmOkNZOMnIKmW6_ZW6WlMfNLdfb38DXY602Gg9mgP3o6B_ux83XLRLoLUM_fC31pCUEursrv4Auks7SC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2020+IEEE%2FACM+42nd+International+Conference+on+Software+Engineering+%28ICSE%29&rft.atitle=Learning-to-Rank+vs+Ranking-to-Learn%3A+Strategies+for+Regression+Testing+in+Continuous+Integration&rft.au=Bertolino%2C+Antonia&rft.au=Guerriero%2C+Antonio&rft.au=Miranda%2C+Breno&rft.au=Pietrantuono%2C+Roberto&rft.date=2020-10-01&rft.pub=ACM&rft.eissn=1558-1225&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1145%2F3377811.3380369&rft.externalDocID=9283979 |