Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration

In Continuous Integration (CI), regression testing is constrained by the time between commits. This demands for careful selection and/or prioritization of test cases within test suites too large to be run entirely. To this aim, some Machine Learning (ML) techniques have been proposed, as an alternat...

Full description

Saved in:
Bibliographic Details
Published in2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE) pp. 1 - 12
Main Authors Bertolino, Antonia, Guerriero, Antonio, Miranda, Breno, Pietrantuono, Roberto, Russo, Stefano
Format Conference Proceeding
LanguageEnglish
Published ACM 01.10.2020
Subjects
Online AccessGet full text
ISSN1558-1225
DOI10.1145/3377811.3380369

Cover

Abstract In Continuous Integration (CI), regression testing is constrained by the time between commits. This demands for careful selection and/or prioritization of test cases within test suites too large to be run entirely. To this aim, some Machine Learning (ML) techniques have been proposed, as an alternative to deterministic approaches. Two broad strategies for ML-based prioritization are learning-to-rank and what we call ranking-to-learn (i.e., reinforcement learning). Various ML algorithms can be applied in each strategy. In this paper we introduce ten of such algorithms for adoption in CI practices, and perform a comprehensive study comparing them against each other using subjects from the Apache Commons project. We analyze the influence of several features of the code under test and of the test process. The results allow to draw criteria to support testers in selecting and tuning the technique that best fits their context.
AbstractList In Continuous Integration (CI), regression testing is constrained by the time between commits. This demands for careful selection and/or prioritization of test cases within test suites too large to be run entirely. To this aim, some Machine Learning (ML) techniques have been proposed, as an alternative to deterministic approaches. Two broad strategies for ML-based prioritization are learning-to-rank and what we call ranking-to-learn (i.e., reinforcement learning). Various ML algorithms can be applied in each strategy. In this paper we introduce ten of such algorithms for adoption in CI practices, and perform a comprehensive study comparing them against each other using subjects from the Apache Commons project. We analyze the influence of several features of the code under test and of the test process. The results allow to draw criteria to support testers in selecting and tuning the technique that best fits their context.
Author Guerriero, Antonio
Bertolino, Antonia
Pietrantuono, Roberto
Miranda, Breno
Russo, Stefano
Author_xml – sequence: 1
  givenname: Antonia
  surname: Bertolino
  fullname: Bertolino, Antonia
  email: antonia.bertolino@isti.cnr.it
  organization: ISTI - CNR,Pisa,Italy
– sequence: 2
  givenname: Antonio
  surname: Guerriero
  fullname: Guerriero, Antonio
  email: antonio.guerriero@unina.it
  organization: Università di Napoli Federico II,Napoli,Italy
– sequence: 3
  givenname: Breno
  surname: Miranda
  fullname: Miranda, Breno
  email: bafm@cin.ufpe.br
  organization: Federal University of Pernambuco,Recife,Brazil
– sequence: 4
  givenname: Roberto
  surname: Pietrantuono
  fullname: Pietrantuono, Roberto
  email: roberto.pietrantuono@unina.it
  organization: Università di Napoli Federico II,Napoli,Italy
– sequence: 5
  givenname: Stefano
  surname: Russo
  fullname: Russo, Stefano
  email: stefano.russo@unina.it
  organization: Università di Napoli Federico II,Napoli,Italy
BookMark eNotjMtOwzAURA0CiaawZsHGP5Di6-v4wQ5FPCpFQmq7r5zkJgoPB9kpEn9PgK5mNHNmMnYWxkCMXYNYAajiFtEYC7BCtAK1O2HZnAo0IAFP2QKKwuYgZXHBspRehRBaObdgviIfwxD6fBrzjQ9v_CvxXz1Gf_Ud307RT9QPlHg3Rr6hPlJKwxj4jtI0s3wIvBzDbA_jIfF1mOl5MhOX7Lzz74mujrpk28eHXfmcVy9P6_K-yr1UZsobQwat6hx61yhVS91arUG2QoJuikZ4bQVBW7emdcoZU6BWuoHaYus8LtnN_-tARPvPOHz4-L130qIzDn8AZR1VBQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3377811.3380369
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1450371213
9781450371216
EISSN 1558-1225
EndPage 12
ExternalDocumentID 9283979
Genre orig-research
GrantInformation_xml – fundername: CNPq
  grantid: 465614/2014-0
  funderid: 10.13039/501100003593
– fundername: FACEPE
  grantid: PRONEX APQ 0388-1.03/14,APQ-0399-1.03/17
  funderid: 10.13039/501100006162
– fundername: MIUR
  funderid: 10.13039/501100003407
– fundername: CAPES
  grantid: 88887.136410/2017-00
  funderid: 10.13039/501100002322
GroupedDBID -~X
.4S
.DC
123
23M
29O
5VS
6IE
6IF
6IH
6IK
6IL
6IM
6IN
8US
AAJGR
AAWTH
ABLEC
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
APO
ARCSS
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
EDO
FEDTE
I-F
I07
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
XOL
ID FETCH-LOGICAL-a247t-c7e7384f93a9c44b26d86612d0216c5c0a680e1dbd7d9497753646c1b83d9a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:32:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a247t-c7e7384f93a9c44b26d86612d0216c5c0a680e1dbd7d9497753646c1b83d9a3
PageCount 12
ParticipantIDs ieee_primary_9283979
PublicationCentury 2000
PublicationDate 2020-Oct.
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.
PublicationDecade 2020
PublicationTitle 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)
PublicationTitleAbbrev ICSE
PublicationYear 2020
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0006499
ssj0002870079
Score 2.4696114
Snippet In Continuous Integration (CI), regression testing is constrained by the time between commits. This demands for careful selection and/or prioritization of test...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms continuous integration
machine learning
Machine learning algorithms
regression testing
Reinforcement learning
Software algorithms
Software engineering
test prioritization
test selection
Testing
Time factors
Tuning
Title Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration
URI https://ieeexplore.ieee.org/document/9283979
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxmsaOH6wIVJCKUClSt8qvVlUlB9GEgV-PnbhFIAaGKJGTwbKVu-98930HwFVqjEcJxiB_-QDFO0AkueWIy8B71ISLeqfHT3T0Sh5n-awFrndcGGttXXxmk_BY5_JNoatwVDYQ3hcKJtqgzThtuFq785SQsEtDxilaYeqhfJTyGZJ8gDELnMrER2TeZosfvVRqV3LfBePtJJoKknVSlSrRn7_0Gf87y33Q_ybtweedOzoALesOQXfbtQHGn7gHZJRUXaKyQBPp1vBjA8M9DtWvb-BWttZuoMe1cGKXTcWsg9MgzOGWcOVg0LZauaqoNvAh6k74L_rg5f5uejtCsdECkhlhJdLMMszJQmApNCEqo4Z7v50ZDwCoznUqKU_t0CjDjCAeMeaYEqqHimMjJD4CHVc4ewygZpIsuDQ8V4oII6Uy3phKnmFrhRb5CeiF9Zq_NUoa87hUp38Pn4G9LES3dencOeiU75W98BCgVJf13n8BL6GxNQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_DoxljbrfVqJKBADGLCjfQXhJB0RjYP_vW2W8FoPHhYtnQ7NN32vu_1vfc9AG4ipSxLUCqwh3VQLAAGnGoaUO7qHiWmrHzTw1HSe8WPUzKtgdttLYzWukw-06G7LGP5KpOF2yprM4uFLGU7YJdgjElVrbXdUXEhu8jFnLwdTiyZ92I-HUzaCKWuqjK0Ppm12uxHN5USTLoNMNxMo8ohWYVFLkL5-Uuh8b_zPACt77I9-LwFpENQ0-YINDZ9G6D_jZuAe1HVRZBnwZibFfxYQ3f2Q-XtO7gRrtVraJktHOtFlTNr4MRJc5gFXBro1K2WpsiKNex75Qn7RAu8dB8m973At1oIeIzTPJCpThHFc4Y4kxiLOFHUInesLAVIJJERT2ikO0qoVDFsOSNBCU5kR1CkGEfHoG4yo08AlCnHc8oVJUJgpjgXyppTTmOkNZOMnIKmW6_ZW6WlMfNLdfb38DXY602Gg9mgP3o6B_ux83XLRLoLUM_fC31pCUEursrv4Auks7SC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2020+IEEE%2FACM+42nd+International+Conference+on+Software+Engineering+%28ICSE%29&rft.atitle=Learning-to-Rank+vs+Ranking-to-Learn%3A+Strategies+for+Regression+Testing+in+Continuous+Integration&rft.au=Bertolino%2C+Antonia&rft.au=Guerriero%2C+Antonio&rft.au=Miranda%2C+Breno&rft.au=Pietrantuono%2C+Roberto&rft.date=2020-10-01&rft.pub=ACM&rft.eissn=1558-1225&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1145%2F3377811.3380369&rft.externalDocID=9283979