Game-Theoretic Modeling of Human Adaptation in Human-Robot Collaboration

In human-robot teams, humans often start with an inaccurate model of the robot capabilities. As they interact with the robot, they infer the robot's capabilities and partially adapt to the robot, i.e., they might change their actions based on the observed outcomes and the robot's actions,...

Full description

Saved in:
Bibliographic Details
Published in2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI pp. 323 - 331
Main Authors Nikolaidis, Stefanos, Nath, Swaprava, Procaccia, Ariel D., Srinivasa, Siddhartha
Format Conference Proceeding
LanguageEnglish
Published New York, NY, USA ACM 06.03.2017
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN9781450343367
1450343368
ISSN2167-2148
DOI10.1145/2909824.3020253

Cover

Abstract In human-robot teams, humans often start with an inaccurate model of the robot capabilities. As they interact with the robot, they infer the robot's capabilities and partially adapt to the robot, i.e., they might change their actions based on the observed outcomes and the robot's actions, without replicating the robot's policy. We present a game-theoretic model of human partial adaptation to the robot, where the human responds to the robot's actions by maximizing a reward function that changes stochastically over time, capturing the evolution of their expectations of the robot's capabilities. The robot can then use this model to decide optimally between taking actions that reveal its capabilities to the human and taking the best action given the information that the human currently has. We prove that under certain observability assumptions, the optimal policy can be computed efficiently. We demonstrate through a human subject experiment that the proposed model significantly improves human-robot team performance, compared to policies that assume complete adaptation of the human to the robot.
AbstractList In human-robot teams, humans often start with an inaccurate model of the robot capabilities. As they interact with the robot, they infer the robot's capabilities and partially adapt to the robot, i.e., they might change their actions based on the observed outcomes and the robot's actions, without replicating the robot's policy. We present a game-theoretic model of human partial adaptation to the robot, where the human responds to the robot's actions by maximizing a reward function that changes stochastically over time, capturing the evolution of their expectations of the robot's capabilities. The robot can then use this model to decide optimally between taking actions that reveal its capabilities to the human and taking the best action given the information that the human currently has. We prove that under certain observability assumptions, the optimal policy can be computed efficiently. We demonstrate through a human subject experiment that the proposed model significantly improves human-robot team performance, compared to policies that assume complete adaptation of the human to the robot.
Author Procaccia, Ariel D.
Nath, Swaprava
Srinivasa, Siddhartha
Nikolaidis, Stefanos
Author_xml – sequence: 1
  givenname: Stefanos
  surname: Nikolaidis
  fullname: Nikolaidis, Stefanos
  email: snikolai@andrew.cmu.edu
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 2
  givenname: Swaprava
  surname: Nath
  fullname: Nath, Swaprava
  email: swapravn@cs.cmu.edu
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 3
  givenname: Ariel D.
  surname: Procaccia
  fullname: Procaccia, Ariel D.
  email: arielpro@cs.cmu.edu
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 4
  givenname: Siddhartha
  surname: Srinivasa
  fullname: Srinivasa, Siddhartha
  email: siddh@cmu.edu
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
BookMark eNqNkDtPwzAQgM1LopTODCwZWVL8ih9jVQFFKkJCZbbO8RkCSVwlYeDfk9JOTEwn3afvpPsuyGmbWiTkitE5Y7K45ZZaw-VcUE55IY7IzGozAiqkEEofkwlnSuecSXPyh52TWd9_ULrzjBZsQlYP0GC-ecfU4VCV2VMKWFftW5ZitvpqoM0WAbYDDFVqs6rd7_KX5NOQLVNdg0_dL7wkZxHqHmeHOSWv93eb5SpfPz88LhfrHLjUQw4FIFguIkoVqbCBKQpaUq2pL6SRqKyQwesQIKCAUpkQFHpZKhZtjIWYkuv93QoR3barGui-nSmEHP8c6XxPoWycT-mzd4y6XTZ3yOYO2ZzvKoyjcPNPQfwABZ1pxA
ContentType Conference Proceeding
Copyright 2017 ACM
Copyright_xml – notice: 2017 ACM
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/2909824.3020253
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781450343367
1450343368
EISSN 2167-2148
EndPage 331
ExternalDocumentID 8534814
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
OCL
RIE
RIL
AAWTH
ADZIZ
CHZPO
ID FETCH-LOGICAL-a247t-a5aea923fe46f039d160a740770b5484e6934db7ddade3ac68dd6eb4c61f9ff53
IEDL.DBID RIE
ISBN 9781450343367
1450343368
IngestDate Wed Aug 27 02:52:38 EDT 2025
Wed Jan 31 06:48:21 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords human-robot collaboration
game-theory
human adaptation
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel DirectLink
MeetingName HRI '17: ACM/IEEE International Conference on Human-Robot Interaction
MergedId FETCHMERGED-LOGICAL-a247t-a5aea923fe46f039d160a740770b5484e6934db7ddade3ac68dd6eb4c61f9ff53
PageCount 9
ParticipantIDs acm_books_10_1145_2909824_3020253
ieee_primary_8534814
acm_books_10_1145_2909824_3020253_brief
PublicationCentury 2000
PublicationDate 20170306
2017-March
PublicationDateYYYYMMDD 2017-03-06
2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 20170306
  day: 06
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI
PublicationTitleAbbrev HRI
PublicationYear 2017
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002538731
ssj0003204102
Score 2.0434673
Snippet In human-robot teams, humans often start with an inaccurate model of the robot capabilities. As they interact with the robot, they infer the robot's...
SourceID ieee
acm
SourceType Publisher
StartPage 323
SubjectTerms Adaptation models
Collaboration
Computational modeling
Computing methodologies -- Artificial intelligence -- Planning and scheduling -- Robotic planning
Force
Games
Human-centered computing -- Human computer interaction (HCI) -- HCI design and evaluation methods -- User studies
Robots
Task analysis
Theory of computation -- Theory and algorithms for application domains -- Algorithmic game theory and mechanism design -- Algorithmic game theory
Title Game-Theoretic Modeling of Human Adaptation in Human-Robot Collaboration
URI https://ieeexplore.ieee.org/document/8534814
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ734sanziwqCF9NlaZo2RxnOIUxENtitJM0LDFk7ZnfxrzdpuzlF0Fvy6CG8l_R9_t5D6MYoIDHQFLMwCjDjimJLkRgUS0lsQJPQ4Z1Hz3w4YU_TcNpAdxssDACUxWfgu2WZy9d5unKhsq5VLSx2U6t3okhUWK1NPIXalxvVGS23DyhhPVe8c1I1xA27VBARU-YH1kKibhjyjkzn34aqlDplsI9G69NUpSRv_qpQfvrxo1Hjf497gNpf6D3vZaOXDlEDsiO0t9V4sIWGj3IOeLwGMXpuIprDpXu58cqwvnev5aLK0nuzrKLh11zlhdffvjltNBk8jPtDXM9UwJKyqMAylCCtUWeAcUMCoXucyMh6dRFR1nlhwEXAtIq0lhoCmfJYa-4Ex3tGGBMGx6iZ5RmcuqIoEcdGMJEaybTkUlvT0NhfCFdSkZB00LVlcOKchfekwj-HSS2EpBZCB93--U2iljMwHdRyHE4WVROOpGbu2e_kc7RLnf4ti8UuULNYruDSWg-FuiqvzSc3Gr50
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61HtSLj_qozxUEL6ZNs0l29yjFWh8VkRa8LclmAkXaLXV78deb7G5rFUFvybCHMJPsPL8ZhC6MAhICTTDjgY-ZUBRbisSgWEJCA5pwh3fuPYnugN2_8tcKulpgYQAgLz6DhlvmuXydJjMXKmta1cJCN7V6lVuvIijQWouICrVvNyhzWm7vU8Jarnxnv2iJy5s0IlFIWcO3NhJ145BXZDL6NlYl1yqdTdSbn6coJnlrzDLVSD5-tGr874G30O4Xfs97XmimbVSB8Q7aWGo9WEPdWzkC3J_DGD03E80h073UeHlg37vWclLk6b3huKDhl1Slmddevju7aNC56be7uJyqgCVlQYYllyCtWWeACUP8SLcEkYH16wKirPvCQEQ-0yrQWmrwZSJCrYUTnWiZyBju76HqOB3DgSuLisLQRCxKjGRaCqmtcWjsT0QoqQgndXRuGRw7d-E9LhDQPC6FEJdCqKPLP7-J1XQIpo5qjsPxpGjDEZfMPfydfIbWuv3eY_x49_RwhNap08Z56dgxqmbTGZxYWyJTp_kV-gRsocHF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2017+ACM%2FIEEE+International+Conference+on+Human-Robot+Interaction&rft.atitle=Game-Theoretic+Modeling+of+Human+Adaptation+in+Human-Robot+Collaboration&rft.au=Nikolaidis%2C+Stefanos&rft.au=Nath%2C+Swaprava&rft.au=Procaccia%2C+Ariel+D.&rft.au=Srinivasa%2C+Siddhartha&rft.series=ACM+Conferences&rft.date=2017-03-06&rft.pub=ACM&rft.isbn=9781450343367&rft.spage=323&rft.epage=331&rft_id=info:doi/10.1145%2F2909824.3020253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343367/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343367/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450343367/sc.gif&client=summon&freeimage=true