Hardware realization of BSB recall function using memristor crossbar arrays

The Brain-State-in-a-Box (BSB) model is an auto-associative neural network that has been widely used in optical character recognition and image processing. Traditionally, the BSB model was realized at software level and carried out on high-performance computing clusters. To improve computation effic...

Full description

Saved in:
Bibliographic Details
Published inDAC Design Automation Conference 2012 pp. 498 - 503
Main Authors Hu, Miao, Li, Hai, Wu, Qing, Rose, Garrett S.
Format Conference Proceeding
LanguageEnglish
Published New York, NY, USA ACM 03.06.2012
IEEE
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN1450311997
9781450311991
ISSN0738-100X
DOI10.1145/2228360.2228448

Cover

Abstract The Brain-State-in-a-Box (BSB) model is an auto-associative neural network that has been widely used in optical character recognition and image processing. Traditionally, the BSB model was realized at software level and carried out on high-performance computing clusters. To improve computation efficiency and reduce resources requirement, we propose a hardware realization by utilizing memristor crossbar arrays. In this work, we explore the potential of a memristor crossbar array as an auto-associative memory. More specificly, the recall function of a multi-answer character recognition based on BSB model was realized. The robustness of the proposed BSB circuit was analyzed and evaluated based on massive Monte-Carlo simulations, considering input defects, process variations, and electrical fluctuations. The physical constrains when implementing a neural network with memristor crossbar array have also been discussed. Our results show that the BSB circuit has a high tolerance to random noise. Comparably, the correlations between memristor arrays introduces directional noise and hence dominates the quality of circuits.
AbstractList The Brain-State-in-a-Box (BSB) model is an auto-associative neural network that has been widely used in optical character recognition and image processing. Traditionally, the BSB model was realized at software level and carried out on high-performance computing clusters. To improve computation efficiency and reduce resources requirement, we propose a hardware realization by utilizing memristor crossbar arrays. In this work, we explore the potential of a memristor crossbar array as an auto-associative memory. More specificly, the recall function of a multi-answer character recognition based on BSB model was realized. The robustness of the proposed BSB circuit was analyzed and evaluated based on massive Monte-Carlo simulations, considering input defects, process variations, and electrical fluctuations. The physical constrains when implementing a neural network with memristor crossbar array have also been discussed. Our results show that the BSB circuit has a high tolerance to random noise. Comparably, the correlations between memristor arrays introduces directional noise and hence dominates the quality of circuits.
Author Hu, Miao
Rose, Garrett S.
Li, Hai
Wu, Qing
Author_xml – sequence: 1
  givenname: Miao
  surname: Hu
  fullname: Hu, Miao
  email: mhu01@students.poly.edu
  organization: Polytechnic Institute of New York University, Metrotech Center, Brooklyn, NY
– sequence: 2
  givenname: Hai
  surname: Li
  fullname: Li, Hai
  email: hli@poly.edu
  organization: Polytechnic Institute of New York University, Metrotech Center, Brooklyn, NY
– sequence: 3
  givenname: Qing
  surname: Wu
  fullname: Wu, Qing
  email: qing.wu@rl.af.mil
  organization: Air Force Research Laboratory, Rome Site, Rome, NY
– sequence: 4
  givenname: Garrett S.
  surname: Rose
  fullname: Rose, Garrett S.
  email: garrett.rose@rl.af.mil
  organization: Air Force Research Laboratory, Rome Site, Rome, NY
BookMark eNqNkL1PwzAUxI0oEm3pzMDikSXFX0nskVaFIioxABKb9eLYyJDEyG6Fyl9P-jEwsrzT-53uhhuhQRc6i9AlJVNKRX7DGJO8INOdCiFP0KinhFOqVHn69xmgISm5zCghb-doktIHIYRSRvKyGKLHJcT6G6LF0ULjf2DtQ4eDw7PnWY8MNA12m87s8Sb57h23to0-rUPEJoaUKogYYoRtukBnDppkJ0cdo9e7xct8ma2e7h_mt6sMmCjXGZXKEiYVLUA5V5WyNiCM4oUruSgsCAtEmZwKt791xYGANDVYI2upcj5GV4deb63VX9G3ELe6YILmOevd6cEF0-oqhM-kKdG7zfRxM33cTFfRW9cHrv8Z4L939Gpg
ContentType Conference Proceeding
Copyright 2012 ACM
Copyright_xml – notice: 2012 ACM
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/2228360.2228448
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1450311997
9781450311991
EndPage 503
ExternalDocumentID 6241552
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IK
6IL
6IM
6IN
AAJGR
ACM
ADFMO
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
IERZE
IJVOP
LHSKQ
OCL
RIE
RIL
RIO
123
29O
AAWTH
ACGFS
ADZIZ
CHZPO
IPLJI
M43
RNS
ID FETCH-LOGICAL-a247t-189e028916a9ffb78dca4c936f7346ea4ea09c514f9c514db3a0a8cdaec8d8953
IEDL.DBID RIE
ISBN 1450311997
9781450311991
ISSN 0738-100X
IngestDate Wed Aug 27 04:26:54 EDT 2025
Sun Dec 01 11:06:00 EST 2024
Wed Jan 31 06:41:11 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords BSB model
crossbar array
neural network
process variation
memristor
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel DirectLink
MeetingName DAC '12: The 49th Annual Design Automation Conference 2012
MergedId FETCHMERGED-LOGICAL-a247t-189e028916a9ffb78dca4c936f7346ea4ea09c514f9c514db3a0a8cdaec8d8953
PageCount 6
ParticipantIDs ieee_primary_6241552
acm_books_10_1145_2228360_2228448
acm_books_10_1145_2228360_2228448_brief
PublicationCentury 2000
PublicationDate 20120603
2012-June
PublicationDateYYYYMMDD 2012-06-03
2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 20120603
  day: 03
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle DAC Design Automation Conference 2012
PublicationTitleAbbrev DAC
PublicationYear 2012
Publisher ACM
IEEE
Publisher_xml – name: ACM
– name: IEEE
SSID ssj0001120576
ssj0004161
Score 2.3069973
Snippet The Brain-State-in-a-Box (BSB) model is an auto-associative neural network that has been widely used in optical character recognition and image processing....
SourceID ieee
acm
SourceType Publisher
StartPage 498
SubjectTerms Biological neural networks
Brain modeling
BSB model
Computer systems organization -- Architectures -- Other architectures -- Neural networks
crossbar array
Integrated circuit modeling
memristor
Memristors
neural network
Neurons
Noise
process variation
Robustness
Title Hardware realization of BSB recall function using memristor crossbar arrays
URI https://ieeexplore.ieee.org/document/6241552
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rx0Yr1xQqCF9Nmm81u9lqxFKUiaKG3MNmHiH1I2iL6693dpK2KoJc8hhyyM0NmMjPftwidC8U1xFEcAE9UQI0xQSLbEISRMRkDmzIQB3Du37HegN4M42EFXa6wMFprP3ymm-7S9_LVVC5cqazFXLiJ7Qd3g3NRYLXW9RTStqkHW2MiiedKtR7s6EvDoQd1xdaF3WTFkuupvCcl548VtFxFJGJh050p9QSscvxt6xUfebrbqL9852Lg5KW5mGdN-fGDzvG_i9pB9TXGD9-votcuqujJHtr6Qk9YQ7eurf8GucY2sxyVgE08Nbjz0LEia90RdnHRi90A_RMe67EnK8ixD78Z5BjyHN5ndTToXj9e9YJy84UA2pTPA5II7bqQhIGwZrOWlECliJjhEWUaqIZQSJtuGX9UWQQhJFKBlolKRBzto-pkOtEHCGtBE2DAKTVAFU-EdQbDiSJG8YwIaKAzq-PU_VXM0gIoHaelHdLSDg108eczaZY_a9NANafk9LVg60hL_R7-Lj5CmzYFahfDX8eoOs8X-sSmGfPs1PvXJ5bbxrM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4hOBQu5SnSQtlKlXrBwRuvd71XUFEKBCEBUm7WeB9VBUmQSVTBr2d2bUipkOjFj5EP9szIMzsz37cA37RVDvMsT1AVNhHe-6QwPUzSzPtKIqUMPACcB-eyfy1OhvlwAfZfsDDOuTh85rrhMvby7cTMQqnsQIZwk9MPdymnVYVq0FrzigrvUfIh56hIHtlSyYcDgWk6jLCunJw4zFY8sz2197xl_SHBQaiJZDLthrMQkYLVjF5tvhJjz_FHGDy_dTNyctOdTauuefyH0PF_P2sVNucoP3bxEr_WYMGN12HlL4LCDTgNjf0_WDtGueVtC9lkE88OLw9JRPa9ZSEyRnEYof_FRm4U6QpqFgNwhTXDusaH-024Pv5xddRP2u0XEuwJNU14oV3oQ3KJmgxHtjQojM6kV5mQDoXDVBtKuHw82irDFAtj0ZnCFjrPtmBxPBm7bWBOiwIlKiE8CqsKTe7gFbfcW1VxjR34Sjouw7rivmyg0nnZ2qFs7dCB7-8-U1b1b-c7sBGUXN41fB1lq99Pb4v34EP_anBWnv08P_0My5QQ9ZpRsB1YnNYzt0tJx7T6En3tCT-2ygQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+49th+Annual+Design+Automation+Conference&rft.atitle=Hardware+realization+of+BSB+recall+function+using+memristor+crossbar+arrays&rft.au=Hu%2C+Miao&rft.au=Li%2C+Hai&rft.au=Wu%2C+Qing&rft.au=Rose%2C+Garrett+S.&rft.series=ACM+Conferences&rft.date=2012-06-03&rft.pub=ACM&rft.isbn=1450311997&rft.spage=498&rft.epage=503&rft_id=info:doi/10.1145%2F2228360.2228448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0738-100X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0738-100X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0738-100X&client=summon