Cyber Threat Intelligence

This book provides readers with up-to-date research of emerging cyber threats and defensive mechanisms, which are timely and essential. It covers cyber threat intelligence concepts against a range of threat actors and threat tools (i.e. ransomware) in cutting-edge technologies, i.e., Internet of Thi...

Full description

Saved in:
Bibliographic Details
Published inAdvances in information security Vol. 70
Main Authors Dehghantanha, Ali, Conti, Mauro, Dargahi, Tooska
Format eBook Book
LanguageEnglish
Published Cham Springer Nature 2018
Springer
Springer International Publishing AG
Springer International Publishing
Edition1
SeriesAdvances in Information Security
Subjects
Online AccessGet full text
ISBN9783319739519
3319739514
3319739506
9783319739502
ISSN1568-2633
2512-2193
DOI10.1007/978-3-319-73951-9

Cover

Abstract This book provides readers with up-to-date research of emerging cyber threats and defensive mechanisms, which are timely and essential. It covers cyber threat intelligence concepts against a range of threat actors and threat tools (i.e. ransomware) in cutting-edge technologies, i.e., Internet of Things (IoT), Cloud computing and mobile devices. This book also provides the technical information on cyber-threat detection methods required for the researcher and digital forensics experts, in order to build intelligent automated systems to fight against advanced cybercrimes.The ever increasing number of cyber-attacks requires the cyber security and forensic specialists to detect, analyze and defend against the cyber threats in almost real-time, and with such a large number of attacks is not possible without deeply perusing the attack features and taking corresponding intelligent defensive actions - this in essence defines cyber threat intelligence notion. However, such intelligence would not be possible without the aid of artificial intelligence, machine learning and advanced data mining techniques to collect, analyze, and interpret cyber-attack campaigns which is covered in this book. This book will focus on cutting-edge research from both academia and industry, with a particular emphasis on providing wider knowledge of the field, novelty of approaches, combination of tools and so forth to perceive reason, learn and act on a wide range of data collected from different cyber security and forensics solutions. This book introduces the notion of cyber threat intelligence and analytics and presents different attempts in utilizing machine learning and data mining techniques to create threat feeds for a range of consumers. Moreover, this book sheds light on existing and emerging trends in the field which could pave the way for future works. The inter-disciplinary nature of this book, makes it suitable for a wide range of audiences with backgrounds in artificial intelligence, cyber security, forensics, big data and data mining, distributed systems and computer networks. This would include industry professionals, advanced-level students and researchers that work within these related fields.
AbstractList This book provides readers with up-to-date research of emerging cyber threats and defensive mechanisms, which are timely and essential. It covers cyber threat intelligence concepts against a range of threat actors and threat tools (i.e. ransomware) in cutting-edge technologies, i.e., Internet of Things (IoT), Cloud computing and mobile devices. This book also provides the technical information on cyber-threat detection methods required for the researcher and digital forensics experts, in order to build intelligent automated systems to fight against advanced cybercrimes.The ever increasing number of cyber-attacks requires the cyber security and forensic specialists to detect, analyze and defend against the cyber threats in almost real-time, and with such a large number of attacks is not possible without deeply perusing the attack features and taking corresponding intelligent defensive actions - this in essence defines cyber threat intelligence notion. However, such intelligence would not be possible without the aid of artificial intelligence, machine learning and advanced data mining techniques to collect, analyze, and interpret cyber-attack campaigns which is covered in this book. This book will focus on cutting-edge research from both academia and industry, with a particular emphasis on providing wider knowledge of the field, novelty of approaches, combination of tools and so forth to perceive reason, learn and act on a wide range of data collected from different cyber security and forensics solutions. This book introduces the notion of cyber threat intelligence and analytics and presents different attempts in utilizing machine learning and data mining techniques to create threat feeds for a range of consumers. Moreover, this book sheds light on existing and emerging trends in the field which could pave the way for future works. The inter-disciplinary nature of this book, makes it suitable for a wide range of audiences with backgrounds in artificial intelligence, cyber security, forensics, big data and data mining, distributed systems and computer networks. This would include industry professionals, advanced-level students and researchers that work within these related fields.
Author Dargahi, Tooska
Dehghantanha, Ali
Conti, Mauro
Author_xml – sequence: 1
  fullname: Dehghantanha, Ali
– sequence: 2
  fullname: Conti, Mauro
– sequence: 3
  fullname: Dargahi, Tooska
BackLink https://cir.nii.ac.jp/crid/1130577121818496654$$DView record in CiNii
BookMark eNp9kE9P3DAQxV0BFSzdD8ANIaSKQ2Am479HuqIUCakXxNVygr0bMM4Sh6L99pgNl_bQy4zm6fee9GbGdlOfPGNHCOcIoC6M0hVVhKZSZARW5gubF42KshXMzj_3LjtAIXVVS6I9NqsBteGAsv7KZghEEohrvc_mOT8CABpTjHTAjhabxg_Hd6vBu_H4Jo0-xm7pU-u_sb3gYvbzz33I7n9e3S1-Vbe_r28Wl7eVq7kyvGoxeHDYOK1CQDQPnLfUNKh4TQ8YkIQM3EjujQtKBAmt8KEF7evCAzk6ZPUU_JrWbvPmYrTroXt2w8Yi2I932FLVki1l7batNcV0NplcfvJvedXHMds_0Td9_5TtX68p7MXE5pKbln6wE_W_9O-TYz30L68-j3Yb3Po0Di7aqx8LQUqCVIU8ncjUdbbtPiYigVAKa9SoS3MpeMFOJqx12cWC2ec-9cvBrVfZCi55Aekdhh6KUw
ContentType eBook
Book
Copyright Springer International Publishing AG, part of Springer Nature 2018
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
DBID I4C
RYH
ABOKW
UNPAY
DEWEY 005
DOI 10.1007/978-3-319-73951-9
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
CiNii Complete
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319739519
3319739514
Edition 1
1st ed. 2018.
Editor Dargahi, Tooska
Conti, Mauro
Dehghantanha, Ali
Editor_xml – sequence: 1
  fullname: Conti, Mauro
– sequence: 2
  fullname: Dargahi, Tooska
– sequence: 3
  fullname: Dehghantanha, Ali
ExternalDocumentID oai:usir.salford.ac.uk:47128
9783319739519
431144
EBC5376067
BD00670701
5464849
GroupedDBID 0D6
0DA
20A
38.
AABBV
ABLLD
ACBPT
ACOUV
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
AZZ
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z88
RYH
ABOKW
UNPAY
ID FETCH-LOGICAL-a24794-c1fe0a1ba87ff119d44c3bb17423d1f1356f4964e9af75f60c5efc08e27ff03a3
IEDL.DBID UNPAY
ISBN 9783319739519
3319739514
3319739506
9783319739502
ISSN 1568-2633
2512-2193
IngestDate Sun Oct 26 04:04:49 EDT 2025
Thu May 08 07:17:11 EDT 2025
Wed Sep 17 03:31:01 EDT 2025
Thu Apr 10 07:48:48 EDT 2025
Thu Jun 26 22:10:04 EDT 2025
Sun May 11 05:58:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCN 2018940162
LCCallNum_Ident Q
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a24794-c1fe0a1ba87ff119d44c3bb17423d1f1356f4964e9af75f60c5efc08e27ff03a3
Notes Includes bibiographical references and index
OCLC 1033603488
OpenAccessLink https://proxy.k.utb.cz/login?url=http://usir.salford.ac.uk/id/eprint/47128/
PQID EBC5376067
PageCount 334
ParticipantIDs unpaywall_primary_10_1007_978_3_319_73951_9
askewsholts_vlebooks_9783319739519
springer_books_10_1007_978_3_319_73951_9
proquest_ebookcentral_EBC5376067
nii_cinii_1130577121818496654
casalini_monographs_5464849
PublicationCentury 2000
PublicationDate 2018
c2018
20180424
2018-04-27
PublicationDateYYYYMMDD 2018-01-01
2018-04-24
2018-04-27
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Netherlands
– name: Cham
PublicationSeriesTitle Advances in Information Security
PublicationSeriesTitleAlternate Adv.Information Security
PublicationTitle Advances in information security
PublicationYear 2018
Publisher Springer Nature
Springer
Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer Nature
– name: Springer
– name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Jajodia, Sushil
RelatedPersons_xml – sequence: 1
  givenname: Sushil
  surname: Jajodia
  fullname: Jajodia, Sushil
  organization: George Mason University, Fairfax, VA, USA
SSID ssj0001999733
Score 2.0764887
Snippet This book provides readers with up-to-date research of emerging cyber threats and defensive mechanisms, which are timely and essential. It covers cyber threat...
SourceID unpaywall
askewsholts
springer
proquest
nii
casalini
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Artificial Intelligence
Computer Communication Networks
Computer programming, programs, data
Computer Science
Computer security
Data protection
Information systems
Information Systems and Communication Service
Internet -- Security measures
Security
TableOfContents Application of Machine Learning Techniques to Detecting Anomalies in Communication Networks: Classification Algorithms -- 1 Introduction -- 1.1 Machine Learning Techniques -- 2 Classification Algorithms -- 2.1 Performance Metrics -- 3 Support Vector Machine (SVM) -- 4 Long Short-Term Memory (LSTM) Neural Network -- 5 Hidden Markov Model (HMM) -- 6 Naive Bayes -- 7 Decision Tree Algorithm -- 8 Extreme Learning Machine Algorithm (ELM) -- 9 Discussion -- 10 Conclusion -- References -- Leveraging Machine LearningTechniques for Windows Ransomware Network Traffic Detection -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Data Collection Phase -- 3.1.1 Malicious Applications -- 3.1.2 Benign Applications -- 3.2 Feature Selection and Extraction -- 3.3 Machine Learning Classifiers -- 4 Experiments and Results -- 4.1 Evaluation Measures -- 4.2 Malware Experiment and Results -- 4.3 Result Comparison -- 5 Conclusion and Future Works -- References -- Leveraging Support Vector Machine for Opcode Density Based Detection of Crypto-Ransomware -- 1 Introduction -- 2 Related Works and Research Literature -- 3 Methodology -- 3.1 Data Collection -- 3.2 Feature Extraction -- 3.3 Dataset Creation -- 3.3.1 Merging the Data -- 3.3.2 Normalising the Data -- 3.3.3 Opcode Breakdown -- 3.4 Machine Learning Classification -- 3.4.1 SVM and Kernel Functions -- 3.4.2 Feature/Attribute Selection Process -- 3.5 Implementation -- 3.5.1 Pre-processing the Dataset (1) -- 3.5.2 Creating the Training and Test Datasets (2) -- 3.5.3 Training and Testing the SVM Classifier (3.1) -- 3.5.4 Training and Testing the Attribute Selection Evaluators -- 3.5.5 Evaluation Metrics -- 3.5.6 Machine Specifications -- 4 Experiments and Results -- 4.1 SMO (Two Classes) -- 4.2 SMO (Six Classes) -- 4.3 Training and Testing the Attribute Selection Evaluators -- 4.3.1 CFSSubsetEval
4.3.2 CorrelationAttributeEval -- 4.3.3 GainRatioAttributeEval -- 4.3.4 InfoGainAttributeEval -- 4.3.5 OneRAttributeEval -- 4.3.6 PrincipalComponents -- 4.3.7 RelieffAttributeEval -- 4.3.8 SymmetricalUncertAttributeEval -- 4.4 Tuning the Attribute Selection Evaluators to Achieve Further Feature Reduction (4) -- 4.5 Important Opcodes -- 5 Conclusion -- References -- BoTShark: A Deep Learning Approach for Botnet Traffic Detection -- 1 Introduction -- 2 Related Work -- 3 Background: Deep Learning -- 3.1 Autoencoders -- 3.2 Convolutional Neural Network (CNN) -- 4 Data Collection and Primary Feature Extraction -- 5 Proposed BoTShark -- 5.1 BoTShark-SA: Using Stacked Autoencoders -- 5.2 SocialBoTShrak-CNN: Using CNNs -- 6 Evaluation -- 7 Conclusion -- References -- A Practical Analysis of the Rise in Mobile Phishing -- 1 Introduction -- 2 Measuring the Impact of Phishing -- 3 Methodology for Visitors to Phishing Websites -- 4 Mobile Phishing Kits in the Wild -- 5 Mobile Phishing Campaigns -- 6 Recommended Changes -- 7 Conclusion -- A.1 Appendix -- References -- PDF-Malware Detection: A Survey and Taxonomyof Current Techniques -- 1 Introduction -- 2 Background on Malicious PDF Files -- 2.1 The Portable Document Format -- 2.2 PDF Document Obfuscation Techniques -- 3 Taxonomy of PDF Malware Detection Approaches -- 3.1 Features -- 3.1.1 Metadata -- 3.1.2 JavaScript -- 3.1.3 Whole File -- 3.1.4 Feature Selection -- 3.2 Detection Approaches -- 3.2.1 Statistical Analysis -- 3.2.2 Machine Learning Classification -- 3.2.3 Clustering -- 3.2.4 Signature Matching -- 4 State of the Art Discussion -- 4.1 Related Works -- 5 Conclusions -- References -- Adaptive Traffic Fingerprinting for Darknet Threat Intelligence -- 1 Introduction -- 2 Background -- 2.1 Analysis of Attack Vectors in Tor -- 2.2 Hidden Services -- 2.3 Combining Methods
Intro -- Contents -- Cyber Threat Intelligence: Challenges and Opportunities -- 1 Introduction -- 1.1 Cyber Threat Intelligence Challenges -- 1.1.1 Attack Vector Reconnaissance -- 1.1.2 Attack Indicator Reconnaissance -- 1.2 Cyber Threat Intelligence Opportunities -- 2 A Brief Review of the Book Chapters -- References -- Machine Learning Aided Static Malware Analysis:A Survey and Tutorial -- 1 Introduction -- 2 An Overview of Machine Learning-Aided Static Malware Detection -- 2.1 Static Characteristics of PE Files -- 2.2 Machine Learning Methods Used for Static-Based Malware Detection -- 2.2.1 Statistical Methods -- 2.2.2 Rule Based -- 2.2.3 Distance Based -- 2.2.4 Neural Networks -- 2.2.5 Open Source and Freely Available ML Tools -- 2.2.6 Feature Selection and Construction Process -- 2.3 Taxonomy of Malware Static Analysis Using Machine Learning -- 3 Approaches for Malware Feature Construction -- 4 Experimental Design -- 5 Results and Discussions -- 5.1 Accuracy of ML-Aided Malware Detection Using Static Characteristics -- 5.1.1 PE32 Header -- 5.1.2 Bytes n-Gram -- 5.1.3 Opcode n-Gram -- 5.1.4 API Call n-Grams -- 6 Conclusion -- References -- Application of Machine Learning Techniques to Detecting Anomalies in Communication Networks: Datasets and Feature Selection Algorithms -- 1 Introduction -- 1.1 Border Gateway Protocol (BGP) -- 1.2 Approaches for Detecting Network Anomalies -- 2 Examples of BGP Anomalies -- 3 Analyzed BGP Datasets -- 3.1 Processing of Collected Data -- 4 Extraction of Features from BGP Update Messages -- 5 Review of Feature Selection Algorithms -- 5.1 Fisher Algorithm -- 5.2 Minimum Redundancy Maximum Relevance (mRMR) Algorithms -- 5.3 Odds Ratio Algorithms -- 5.4 Decision Tree Algorithm -- 6 Conclusion -- References
3 Adaptive Traffic Association and BGP Interception Algorithm (ATABI) -- 3.1 BGP Interception Component -- 3.2 MITM Component -- 3.3 Detection Scheme -- 4 Experimentation and Results -- 4.1 Experiment Setup -- 4.2 Evaluation Criteria -- 4.3 Results -- 5 Discussion -- 5.1 Use Cases -- 5.2 Proposed Defences -- 6 Conclusion and Future Work -- References -- A Model for Android and iOS Applications Risk Calculation: CVSS Analysis and Enhancement Using Case-Control Studies -- 1 Introduction -- 1.1 Background -- 1.2 Impact Sub-Score -- 1.3 Exploitability Sub-Score -- 1.4 Research Data Set -- 1.5 The CVSS Analysis of Data Set -- 2 Proposed Model -- 2.1 Results and Discussion -- 3 Conclusions and Future Works -- References -- A Honeypot Proxy Framework for Deceiving Attackers with Fabricated Content -- 1 Introduction -- 2 Deceiving Cyber Adversaries -- 3 Desirable Properties for a Fake Content Generator -- 4 The Design and Implementation of a Fake Content Generator -- 4.1 A Conceptual Design of a Fake Content Generator -- 4.2 The Implementation -- 4.3 An Example on the Usage of Honeyproxy -- 4.4 Recognizing Names Using Regular Expressions -- 4.5 Fake Entity Generation -- 5 Experiments -- 5.1 Recognizing Entity Attributes -- 5.2 Performance -- 6 Discussion and Limitations -- 7 Related Work -- 8 Conclusions and Future Work -- References -- Investigating the Possibility of Data Leakage in Time of Live VM Migration -- 1 Introduction -- 2 Background on Live Virtual Machine Migration -- 2.1 Memory Migration -- 2.2 Migration Algorithms -- 2.3 Live VM Migration Process -- 3 Security Threat Model -- 3.1 Threat Model -- 3.2 Security Threats and Attacks -- 3.2.1 Control Plane -- 3.2.2 Data Plane -- 3.2.3 Migration Module -- 3.2.4 Insecure Algorithms and Implementations -- 4 Secure Live Migration -- 4.1 Essential Security Requirements -- 4.2 Existing Solutions
4.2.1 Trusted Computing -- 4.2.2 VM-vTPM Live Migration -- 4.2.3 Trusted Third Party -- 4.2.4 Role-Based Migration -- 4.2.5 VLANs -- 5 Uncovered Threats with Potential Research Directions -- 5.1 Bugs in VMM -- 5.2 Replay of VM Data Messages -- 5.3 Privileged Access -- 5.4 Lack of Access Control -- 6 Proposed Secure Live VM Migration Protocol -- 7 Conclusion -- References -- Forensics Investigation of OpenFlow-Based SDN Platforms -- 1 Introduction -- 2 Related Work -- 3 Framework Specification and Design -- 4 Framework Development and Implementation -- 5 SDN Southbound Forensics Tool -- 6 Testing Environment Setup -- 7 Evaluation and Discussion -- 8 Conclusion -- References -- Mobile Forensics: A Bibliometric Analysis -- 1 Introduction -- 2 Methodology -- 2.1 Web of Science -- 3 Finding in Publications Distribution -- 3.1 Productivity -- 3.2 Research Areas -- 3.3 Institutions -- 3.4 Impact Journals -- 3.5 Highly Cited Articles -- 4 Conclusion and Future Works -- References -- Emerging from the Cloud: A Bibliometric Analysis of Cloud Forensics Studies -- 1 Introduction -- 2 Methodology -- 3 Results and Discussion -- 3.1 Productivity -- 3.2 Research Areas -- 3.3 Institutions -- 3.4 Impact Journals -- 3.5 Highly-Cited Articles -- 3.6 Keywords Frequency -- 4 Challenges and Future Trends -- 4.1 Evidence Identification -- 4.2 Legal Issues in the Cloud -- 4.3 Data Collection and Preservation -- 4.4 Analysis and Presentation -- 4.5 Future Trends -- 5 Conclusion -- References -- Index
Title Cyber Threat Intelligence
URI http://digital.casalini.it/9783319739519
https://cir.nii.ac.jp/crid/1130577121818496654
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5376067
http://link.springer.com/10.1007/978-3-319-73951-9
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319739519&uid=none
http://usir.salford.ac.uk/id/eprint/47128/
UnpaywallVersion submittedVersion
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB7O3YfDF5W74-ovFrmHA8natEnaPuqyonInPqh4TyFJEywuVWxX0b_eSXare8jB-VIoCU0y0-SbZDLfAPxQCGsmdpTwmFrCsjIhmnFGnLOJYdwJFaLSfp-Kowt2csWv3mhyprhXHzZq4gInbQimQp1Yf8bV7uE6muR7S9AXHO3uHvQvTs_2_wRCVIHqFiFvvMdrgtMw7VyYcxZZH0VWEO-WogTNyWXV3OAqgitM23hIUthoVVeIMHVV_WVtvjpIl-HztL5TT49qMlnAoMOVWTKjJlAX-qsnN8Npq4fm-T2x438MbxX61oc5rMEnW3-BaPSk7f3g_NqbkIPjBZrOr3B5OD4fHZF50gSiEs8WTwx1NlZUqzxzjtKiZMykWlPvki2poykXjhWC2UK5DJURG26diXObYP04Vek36NW3tf0Og4zqAmd0KfICd420LDRXAt-UMkpnpY5gZ0GM8mESHLyN9MdJKO0g7CKCjU66EmfWjIi7kZwJljMs3UKBS1P5J0VA5RmKAc0OLPOJkSMYdKqQ4evzO6tyfDDyTDQIthH87FQkZ-13VMzYD5lK7IkMXZHY2u6rCuXdjM7j37XXP1R7E3rt_dRuoY3S6m3o749Pfl1uz3_SFyRc3vE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66HcSLior1F0M8CJLZtEnaHnU4VFA8qOgpJGmCZaOK7RT9633J1jkRQS-FktAk7zX5XvLyvofQvgRY06ElmIXEYJrkEVaUUWytiTRllksflXZ5xc9u6cU9u_-iyRnBXr1byaH1nLQ-mAp0YtwZV30E62iUHs2jNmdgd7dQ-_bq-vjBE6JyUDf3eeMdXmOYhnHjwpywyLoosgw7txTBYE4uymoAqwisMHXlIElCo0VZAMKURfHN2pw6SBfRwqh8lu9vcjicwaD-0jiZUeWpC93Vk0F3VKuu_vhJ7PiH4S2jtnFhDitozpSrKOi9K_PSuXl0JmTnfIamcw3d9U9vemd4kjQBy8ixxWNNrAklUTJNrCUkyynVsVLEuWRzYknMuKUZpyaTNgFlhJoZq8PURFA_jGW8jlrlU2k2UCchKoMZnfM0g10jyTPFJIc3KbVUSa4CtDcjRvE69A7eSrjjJJC2F3YWoK1GugJm1piIuxKMcppSKN0BgQtduCcBQGUJiAHMDihziZED1GlUIfzXJ3dWxelJzzHRANgG6KBRkRi331AxQz9ELKAnwndFQGuHUxWK5zGdx--1N_9Vexu16peR2QEbpVa7k5_zEzS43Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Cyber+threat+intelligence&rft.au=Dehghantanha%2C+Ali&rft.au=Conti%2C+Mauro&rft.au=Dargahi%2C+Tooska&rft.date=2018-01-01&rft.pub=Springer&rft.isbn=9783319739502&rft_id=info:doi/10.1007%2F978-3-319-73951-9&rft.externalDocID=BD00670701
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833197%2F9783319739519.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-319-73951-9