Nature-inspired computing and optimization : theory and applications

The text provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimisation. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications.

Saved in:
Bibliographic Details
Main Authors Patnaik, Srikanta, Yang, Xin-She, 中松, 和巳
Format eBook Book
LanguageEnglish
Published Cham Springer 2017
Springer International Publishing AG
Springer International Publishing
Edition1
SeriesModeling and Optimization in Science and Technologies
Subjects
Online AccessGet full text
ISBN9783319509198
3319509195
ISSN2196-7326
2196-7334
DOI10.1007/978-3-319-50920-4

Cover

Abstract The text provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimisation. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications.
AbstractList The text provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimisation. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications.
Author Yang, Xin-She
Patnaik, Srikanta
中松, 和巳
Author_FL ナカマツ, カズミ
Author_FL_xml – sequence: 3
  fullname: ナカマツ, カズミ
Author_xml – sequence: 1
  fullname: Patnaik, Srikanta
– sequence: 2
  fullname: Yang, Xin-She
– sequence: 3
  fullname: 中松, 和巳
BackLink https://cir.nii.ac.jp/crid/1130000798264336768$$DView record in CiNii
BookMark eNpVkE9v1DAQxQ20iG3ZD8Ath0qIg-nY4_gPN7qUglTBBXG1vLaXmqZxGmdB9NPjTRCCy1jz3u-N5HdCjvrcR0JeMHjNANS5UZoiRWZoC4YDFY_IumpYlVkQj8mKMyOpQhRP_vWY0Ud_PS6PyQkHJo0ExfhTsjJKGKG4Vs_IupTvAMA0q2m1Iu8-uWk_Rpr6MqQxhsbnu2E_pf5b4_rQ5GFKd-nBTSn3zZtmuol5_DU7bhi65GejPCfHO9eVuP7znpKv7y-_bD7Q689XHzdvr6njQhpGW7YFzXctNwGhbX1gHAU32nu21ejN1ovoOAYVQtQYwi5yJwMHzuoadwJPyavlsCu38We5yd1U7I8ubnO-Lfa_rip7vrBlGOt34mgXioE9tH2gLdrK2zlgD4mXS2IY8_0-lsnOh33sp9F19vJiIzQHRKjk2UL2KVmfDpMxrL2CMppLgSiV1PgbfbKA7Q
ContentType eBook
Book
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID RYH
DEWEY 003.3
DOI 10.1007/978-3-319-50920-4
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
Engineering
EISBN 9783319509204
3319509209
EISSN 2196-7334
Edition 1
Editor Yang, Xin-She
Patnaik, Srikanta
Nakamatsu, Kazumi
Editor_xml – sequence: 1
  givenname: Srikanta
  surname: Patnaik
  fullname: Patnaik, Srikanta
  email: patnaik_srikanta@yahoo.co.in
  organization: Dept of Computer Science and Engineering, SOA University Dept of Computer Science and Engineering, Bhubaneswar, India
– sequence: 2
  givenname: Xin-She
  surname: Yang
  fullname: Yang, Xin-She
  email: x.yang@mdx.ac.uk
  organization: School of Science and Technology, Middlesex University School of Science and Technology, London, United Kingdom
– sequence: 3
  givenname: Kazumi
  surname: Nakamatsu
  fullname: Nakamatsu, Kazumi
  email: nakamatu@shse.u-hyogo.ac.jp
  organization: School of H.S.E., University of Hyogo School of H.S.E., Himeji, Japan
ExternalDocumentID 9783319509204
419483
EBC4820330
BB25610920
GroupedDBID 0D9
0DA
20A
38.
AABBV
AALVI
AAZIN
ABQUB
ACBPT
ACLYY
ADCXD
AEJLV
AEKFX
AETDV
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CEWPM
CZZ
DBMNP
I4C
IEZ
MYL
RYH
SBO
SWYDZ
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-a24691-51b082f529d3055cd1234298cc1b83c9bc4ea23d7dde83ddfe2a6d2021e83ef43
ISBN 9783319509198
3319509195
ISSN 2196-7326
IngestDate Sun Oct 19 07:26:21 EDT 2025
Wed Sep 17 02:40:14 EDT 2025
Fri May 30 21:37:14 EDT 2025
Thu Jun 26 22:38:05 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2016960712
LCCallNum_Ident Q342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a24691-51b082f529d3055cd1234298cc1b83c9bc4ea23d7dde83ddfe2a6d2021e83ef43
Notes Includes bibliographical references and index
OCLC 974947287
PQID EBC4820330
PageCount 506
ParticipantIDs askewsholts_vlebooks_9783319509204
springer_books_10_1007_978_3_319_50920_4
proquest_ebookcentral_EBC4820330
nii_cinii_1130000798264336768
PublicationCentury 2000
PublicationDate 2017
20170309
2017-03-07
PublicationDateYYYYMMDD 2017-01-01
2017-03-09
2017-03-07
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Modeling and Optimization in Science and Technologies
PublicationSeriesTitleAlternate Modeling and Optimization in Science and Technologies
PublicationYear 2017
Publisher Springer
Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer
– name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Patnaik, Srikanta
Sethi, Ishwar K.
Li, Xiaolong
RelatedPersons_xml – sequence: 1
  givenname: Srikanta
  surname: Patnaik
  fullname: Patnaik, Srikanta
  organization: Department of Computer Science and Engin, SOA University, Bhubaneswar, India
– sequence: 2
  givenname: Ishwar K.
  surname: Sethi
  fullname: Sethi, Ishwar K.
  organization: Department of Computer Science and Engin, Oakland University, Rochester, USA
– sequence: 3
  givenname: Xiaolong
  surname: Li
  fullname: Li, Xiaolong
  organization: Electronics & Comp Engg Tech, Indiana State University, Terre Haute, USA
SSID ssj0001819787
ssib025541248
ssib015765165
Score 2.228577
Snippet The text provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimisation. The approach...
SourceID askewsholts
springer
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Artificial Intelligence
Computational Intelligence
Engineering
Engineering Economics, Organization, Logistics, Marketing
Engineering economy
Natural computation
Optimization
Simulation and Modeling
TableOfContents 4 Experiments -- 5 Conclusion with Future Ideas -- References -- Limiting Distribution and Mixing Time for Genetic Algorithms -- 1 Introduction -- 2 Preliminaries -- 2.1 Random Search and Markov Chains -- 2.2 Boltzmann Distribution and Simulated Annealing -- 3 Expected Hitting Time as a Means of Comparison -- 3.1 ``No Free Lunch'' Considerations -- 4 The Holland Genetic Algorithm -- 5 A Simple Genetic Algorithm -- 6 Shuffle-Bit GA -- 6.1 Results -- 6.2 Estimate of Expected Hitting Time -- 7 Discussion and Future Work -- References -- Permutation Problems, Genetic Algorithms, and Dynamic Representations -- 1 Introduction -- 2 Problem Descriptions -- 2.1 Bin Packing Problem -- 2.2 Graph Colouring Problem -- 2.3 Travelling Salesman Problem -- 3 Previous Work on Small Travelling Salesman Problem Instances -- 4 Algorithms -- 4.1 2-Opt -- 4.2 Lin--Kernighan -- 4.3 Genetic Algorithm Variations -- 4.4 Representation -- 5 Experimental Design -- 5.1 Bin Packing Problem -- 5.2 Graph Colouring Problem -- 5.3 Travelling Salesman Problem -- 6 Results and Discussion -- 6.1 Bin Packing Problem -- 6.2 Graph Colouring Problem -- 6.3 Travelling Salesman Problem -- 7 Conclusions -- References -- Hybridization of the Flower Pollination Algorithm---A Case Study in the Problem of Generating Healthy Nutritional Meals for Older Adults -- 1 Introduction -- 2 Background -- 2.1 Optimization Problems -- 2.2 Meta-Heuristic Algorithms -- 3 Literature Review -- 4 Problem Definition -- 4.1 Search Space and Solution Representation -- 4.2 Fitness Function -- 4.3 Constraints -- 5 Hybridizing the Flower Pollination Algorithm for Generating Personalized Menu Recommendations -- 5.1 Hybrid Flower Pollination-Based Model -- 5.2 Flower Pollination-Based Algorithms for Generating Personalized Menu Recommendations
5.3 The Iterative Stage of the Hybrid Flower Pollination-Based Algorithm for Generating Healthy Menu Recommendations -- 6 Performance Evaluation -- 6.1 Experimental Prototype -- 6.2 Test Scenarios -- 6.3 Setting the Optimal Values of the Algorithms' Adjustable Parameters -- 6.4 Comparison Between the Classical and Hybrid Flower Pollination-Based Algorithms -- 7 Conclusions -- References -- Nature-inspired Algorithm-based Optimization for Beamforming of Linear Antenna Array System -- 1 Introduction -- 2 Problem Formulation -- 3 Flower Pollination Algorithm [55] -- 3.1 Global Pollination: -- 3.2 Local Pollination: -- 3.3 Pseudo-code for FPA: -- 4 Simulation Results -- 4.1 Optimization of Hyper-Beam by Using FPA -- 4.2 Comparisons of Accuracies Based on t test -- 5 Convergence Characteristics of Different Algorithms -- 6 Conclusion -- 7 Future Research Topics -- References -- Multi-Agent Optimization of Resource-Constrained Project Scheduling Problem Using Nature-Inspired Computing -- 1 Introduction -- 1.1 Multi-agent System -- 1.2 Scheduling -- 1.3 Nature-Inspired Computing -- 2 Resource-Constrained Project Scheduling Problem -- 3 Various Nature-Inspired Computation Techniques for RCPSP -- 3.1 Particle Swarm Optimization (PSO) -- 3.2 Particle Swarm Optimization (PSO) for RCPSP -- 3.3 Ant Colony Optimization (ACO) -- 3.4 Ant Colony Optimization (ACO) for RCPSP -- 3.5 Shuffled Frog-Leaping Algorithm (SFLA) -- 3.6 Shuffled Frog-Leaping Algorithm (SFLA) for RCPSP -- 3.7 Multi-objective Invasive Weed Optimization -- 3.8 Multi-objective Invasive Weed Optimization for MRCPSP -- 3.9 Discrete Flower Pollination -- 3.10 Discrete Flower Pollination for RCPSP -- 3.11 Discrete Cuckoo Search -- 3.12 Discrete Cuckoo Search for RCPSP -- 3.13 Multi-agent Optimization Algorithm (MAOA) -- 4 Proposed Approach -- 4.1 RCPSP for Retail Industry
7 Interpretation and Intuitive Understanding of Morphological Filters in Multivalued Function Domain
Intro -- Preface -- Contents -- Contributors -- Members of Review Board -- The Nature of Nature: Why Nature-Inspired Algorithms Work -- 1 Introduction: How Nature Works -- 2 The Nature of Nature -- 2.1 Fitness Landscape -- 2.2 Graphs and Phase Changes -- 3 Nature-Inspired Algorithms -- 3.1 Genetic Algorithm -- 3.2 Ant Colony Optimization -- 3.3 Simulated Annealing -- 3.4 Convergence -- 4 Dual-Phase Evolution -- 4.1 Theory -- 4.2 GA -- 4.3 Ant Colony Optimization -- 4.4 Simulated Annealing -- 5 Evolutionary Dynamics -- 5.1 Markov Chain Models -- 5.2 The Replicator Equation -- 6 Generalized Local Search Machines -- 6.1 The Model -- 6.2 SA -- 6.3 GA -- 6.4 ACO -- 6.5 Discussion -- 7 Conclusion -- References -- Multimodal Function Optimization Using an Improved Bat Algorithm in Noise-Free and Noisy Environments -- 1 Introduction -- 2 Improved Bat Algorithm -- 3 IBA for Multimodal Problems -- 3.1 Parameter Settings -- 3.2 Test Functions -- 3.3 Numerical Results -- 4 Performance Comparison of IBA with Other Algorithms -- 5 IBA Performance in AWGN -- 5.1 Numerical Results -- 6 Conclusions -- References -- Multi-objective Ant Colony Optimisation in Wireless Sensor Networks -- 1 Introduction -- 2 Multi-objective Combinatorial Optimisation Problems -- 2.1 Combinatorial Optimisation Problems -- 2.2 Multi-objective Combinatorial Optimisation Problems -- 2.3 Pareto Optimality -- 2.4 Decision-Making -- 2.5 Solving Combinatorial Optimisation Problems -- 3 Multi-objective Ant Colony Optimisation -- 3.1 Origins -- 3.2 Multi-objective Ant Colony Optimisation -- 4 Applications of MOACO Algorithms in WSNs -- 5 Conclusion -- References -- Generating the Training Plans Based on Existing Sports Activities Using Swarm Intelligence -- 1 Introduction -- 2 Artificial Sports Trainer -- 3 Generating the Training Plans -- 3.1 Preprocessing -- 3.2 Optimization Process
4.2 Cooperative Hunting Behaviour of Lion Pride -- 5 A Lion Pride-Inspired Multi-Agent System-Based Approach for RCPSP -- 6 Conclusion -- References -- Application of Learning Classifier Systems to Gene Expression Analysis in Synthetic Biology -- 1 Introduction -- 2 Learning Classifier Systems: Creating Rules that Describe Systems -- 2.1 Basic Components -- 2.2 Michigan- and Pittsburgh-style LCS -- 3 Examples of LCS -- 3.1 Minimal Classifier Systems -- 3.2 Zeroth-level Classifier Systems -- 3.3 Extended Classifier Systems -- 4 Synthetic Biology: Designing Biological Systems -- 4.1 The Synthetic Biology Design Cycle -- 4.2 Basic Biological Parts -- 4.3 DNA Construction -- 4.4 Future Applications -- 5 Gene Expression Analysis with LCS -- 6 Optimization of Artificial Operon Structure -- 7 Optimization of Artificial Operon Construction by Machine Learning -- 7.1 Introduction -- 7.2 Artificial Operon Model -- 7.3 Experimental Framework -- 7.4 Results -- 7.5 Conclusion -- 8 Summary -- References -- Ant Colony Optimization for Semantic Searching of Distributed Dynamic Multiclass Resources -- 1 Introduction -- 2 P2p Search Strategies -- 3 Nature-Inspired Ant Colony Optimization -- 4 Nature-Inspired Strategies in Dynamic Networks -- 4.1 Network Dynamism Inefficiency -- 4.2 Solution Framework -- 4.3 Experimental Evaluation -- 5 Nature-Inspired Strategies of Semantic Nature -- 5.1 Semantic Query Inefficiency -- 5.2 Solution Framework -- 5.3 Experimental Evaluation -- 6 Conclusions and Future Developments -- References -- Adaptive Virtual Topology Control Based on Attractor Selection -- 1 Introduction -- 2 Related Work -- 3 Attractor Selection -- 3.1 Concept of Attractor Selection -- 3.2 Cell Model -- 3.3 Mathematical Model of Attractor Selection -- 4 Virtual Topology Control Based on Attractor Selection -- 4.1 Virtual Topology Control
4.2 Overview of Virtual Topology Control Based on Attractor Selection -- 4.3 Dynamics of Virtual Topology Control -- 4.4 Attractor Structure -- 4.5 Dynamic Reconfiguration of Attractor Structure -- 5 Performance Evaluation -- 5.1 Simulation Conditions -- 5.2 Dynamics of Virtual Topology Control Based on Attractor Selection -- 5.3 Adaptability to Node Failures -- 5.4 Effects of Noise Strength -- 5.5 Effects of Activity -- 5.6 Effects of Reconfiguration Methods of Attractor Structure -- 6 Conclusion -- References -- CBO-Based TDR Approach for Wiring Network Diagnosis -- 1 Introduction -- 2 The Proposed TDR-CBO-Based Approach -- 2.1 Problem Formulation -- 2.2 The Forward Model -- 2.3 Colliding Bodies Optimization (CBO) -- 3 Applications and Results -- 3.1 The Y-Shaped Wiring Network -- 3.2 The YY-shaped Wiring Network -- 4 Conclusion -- References -- Morphological Filters: An Inspiration from Natural Geometrical Erosion and Dilation -- 1 Natural Geometrical Inspired Operators -- 2 Mathematical Morphology -- 2.1 Morphological Filters -- 3 Morphological Operators and Set Theory -- 3.1 Sets and Corresponding Operators -- 3.2 Basic Properties for Morphological Operators -- 3.3 Set Dilation and Erosion -- 3.4 A Geometrical Interpretation of Dilation and Erosion Process -- 3.5 Direct Effect of Edges and Borders on the Erosion and Dilation -- 3.6 Closing and Opening -- 3.7 A Historical Review to Definitions and Notations -- 4 Practical Interpretation of Binary Opening and Closing -- 5 Morphological Operators in Grayscale Domain -- 5.1 Basic Morphological Operators in Multivalued Function Domain -- 5.2 Dilation and Erosion of Multivalued Functions -- 5.3 Two Forms of Presentation for Dilation and Erosion Formula -- 6 Opening and Closing of Multivalued Functions
Title Nature-inspired computing and optimization : theory and applications
URI https://cir.nii.ac.jp/crid/1130000798264336768
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4820330
http://link.springer.com/10.1007/978-3-319-50920-4
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319509204&uid=none
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbocqEX3mKBoghhCQkFbWxnnXBrdoOqCri0VMvJiuNEjQop6qY99Nfz2ZvXLkgILlaeO6v5nPE3Hs-YkDczDFGFDgM_0xIOCj5tP2Ky8HNpnaC51oG2Cc6fv8yPvorjVbgatlB12SWNfp_f_jGv5H9QxTXgarNk_wHZ_kdxAcfAFy0QRrtDfvvTNlvWleP0q9rGyQuXmPbzuunyDS9hBn60-ZXv2oUbNpTu6rKOAtZD-Kips8qZxZOr6gK67m31t3Y6eVXV_sl53wloKmgS0cMlTec0XtLEramkaUhjRqOFPUgkTfh4TiGQO3MK3Zzilq_Jud0xNg42m0b_ZnnHiy1sYhQehWMqhmGmX_yXJMySNtzeI3tSwmO-e5gefzobpsbAUmBHbCZOJzPc1Eoa_kMXoG5rBG_J3Cf72foCYwTGj2YN0lBX1ZYDsRPzdlTi9AGZ2PSSh-ROUT8i97tNNbzWxj4myx1svR5bD_h5Y2y9D94GWXdnjOwTcvYxPV0c-e1WF37GxDwO_DDQIGNlyGJja7DlBowCVCHK80BHPI91ju-IcSMxHEXcmLJg2dwwMDScFqXgT8mkvqyLZ8RjUWlmpZE8NpmQOodHYjgreax1ZoTOpuT1SD3q5rsLy6_VoF82E1NyAK2pvLJtYGOeUHUMX1RwW-MvmhKv06dy77driVWaLARYJeezKXnb6VltJHQlsiFJcQVZyglT4vlfpL0g94Zu-pJMmqvr4gBksNGv2s7zC9teT-E
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Nature-inspired+computing+and+optimization+%3A+theory+and+applications&rft.au=Patnaik%2C+Srikanta&rft.au=Yang%2C+Xin-She&rft.au=%E4%B8%AD%E6%9D%BE%2C+%E5%92%8C%E5%B7%B3&rft.date=2017-01-01&rft.pub=Springer&rft.isbn=9783319509198&rft_id=info:doi/10.1007%2F978-3-319-50920-4&rft.externalDocID=BB25610920
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833195%2F9783319509204.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-319-50920-4