Applied Supervised Learning with Python Use Scikit-Learn to Build Predictive Models from Real-world Datasets and Prepare Yourself for the Future of Machine Learning

Applied Supervised Learning with Python provides you a rich understanding of machine learning, one of the most pursued topics in information science, and Python, one of the most popular scripting languages. Through this book, you'll learn Jupyter Notebooks, the technology used in academic and c...

Full description

Saved in:
Bibliographic Details
Main Authors Johnston, Benjamin, Mathur, Ishita
Format eBook
LanguageEnglish
Published Birmingham Packt Publishing, Limited 2019
Edition1
Online AccessGet full text
ISBN1789954924
9781789954920

Cover

Abstract Applied Supervised Learning with Python provides you a rich understanding of machine learning, one of the most pursued topics in information science, and Python, one of the most popular scripting languages. Through this book, you'll learn Jupyter Notebooks, the technology used in academic and commercial circles with in-line code running support.
AbstractList Applied Supervised Learning with Python provides you a rich understanding of machine learning, one of the most pursued topics in information science, and Python, one of the most popular scripting languages. Through this book, you'll learn Jupyter Notebooks, the technology used in academic and commercial circles with in-line code running support.
Author Johnston, Benjamin
Mathur, Ishita
Author_xml – sequence: 1
  fullname: Johnston, Benjamin
– sequence: 2
  fullname: Mathur, Ishita
BookMark eNo1jktLw0AURkd8oK39D9l1Fbgzd57LGqoVAgqK2zKZ3NhomIlJqvjvDair853Nx1mws5ginbAFN9Y5pSzy03-RTsiLWThwQCdAX7LVOL4BAHLruBZXbL3p-66lOns69jR8tuM8S_JDbONr9tVOh-zxezqkeM3OG9-NtPrjkr3cbp-LXV4-3N0XmzL3Qmot86pptCW0tTcCvDfBOCRBAsEZYwPqOQyEI9E0vtYBfZDOqzpAVUnJFeCSrX-P-yF9HGmc9lSl9B4oToPv9tubQhmN3En8Af3hQ8k
ContentType eBook
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1789955831
9781789955835
Edition 1
ExternalDocumentID EBC5763194
GroupedDBID -VX
AABBV
AAFKH
AAKGN
AANYM
AAZGR
ABARN
ABIWA
ABMRC
ABRSK
ACLGV
ADBND
ADVEM
AECLD
AEHEP
AFQEX
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
APVFW
ATDNW
AZZ
BBABE
CZZ
DUGUG
E2F
EBSCA
GEOUK
IHRAH
L7C
OHILO
OODEK
UE6
ID FETCH-LOGICAL-a24664-bff68e38da720aa7c793e2e2309778c36789029e2ffad6c3ac49a5dc0bb441503
ISBN 1789954924
9781789954920
IngestDate Wed Oct 29 01:44:14 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q325.5 .S253 2019
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a24664-bff68e38da720aa7c793e2e2309778c36789029e2ffad6c3ac49a5dc0bb441503
OCLC 1101039206
PQID EBC5763194
PageCount 404
ParticipantIDs proquest_ebookcentral_EBC5763194
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Birmingham
PublicationPlace_xml – name: Birmingham
PublicationYear 2019
Publisher Packt Publishing, Limited
Publisher_xml – name: Packt Publishing, Limited
SSID ssj0003189162
ssj0003001814
Score 2.107891
Snippet Applied Supervised Learning with Python provides you a rich understanding of machine learning, one of the most pursued topics in information science, and...
SourceID proquest
SourceType Publisher
Subtitle Use Scikit-Learn to Build Predictive Models from Real-world Datasets and Prepare Yourself for the Future of Machine Learning
TableOfContents Activity 11: Linear Regression Classifier - Two-Class Classifier -- Activity 12: Iris Classification Using Logistic Regression -- Classification Using K-Nearest Neighbors -- Exercise 39: K-NN Classification -- Exercise 40: Visualizing K-NN Boundaries -- Activity 13: K-NN Multiclass Classifier -- Classification Using Decision Trees -- Exercise 41: ID3 Classification -- Exercise 42: Iris Classification Using a CART Decision Tree -- Summary -- Chapter 5: Ensemble Modeling -- Introduction -- Exercise 43: Importing Modules and Preparing the Dataset -- Overfitting and Underfitting -- Underfitting -- Overfitting -- Overcoming the Problem of Underfitting and Overfitting -- Bagging -- Bootstrapping -- Bootstrap Aggregation -- Exercise 44: Using the Bagging Classifier -- Random Forest -- Exercise 45: Building the Ensemble Model Using Random Forest -- Boosting -- Adaptive Boosting -- Exercise 46: Adaptive Boosting -- Gradient Boosting -- Exercise 47: GradientBoostingClassifier -- Stacking -- Exercise 48: Building a Stacked Model -- Activity 14: Stacking with Standalone and Ensemble Algorithms -- Summary -- Chapter 6: Model Evaluation -- Introduction -- Exercise 49: Importing the Modules and Preparing Our Dataset -- Evaluation Metrics -- Regression -- Exercise 50: Regression Metrics -- Classification -- Exercise 51: Classification Metrics -- Splitting the Dataset -- Hold-out Data -- K-Fold Cross-Validation -- Sampling -- Exercise 52: K-Fold Cross-Validation with Stratified Sampling -- Performance Improvement Tactics -- Variation in Train and Test Error -- Hyperparameter Tuning -- Exercise 53: Hyperparameter Tuning with Random Search -- Feature Importance -- Exercise 54: Feature Importance Using Random Forest -- Activity 15: Final Test Project -- Summary -- Appendix -- Index
Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Python Machine Learning Toolkit -- Introduction -- Supervised Machine Learning -- When to Use Supervised Learning -- Why Python? -- Jupyter Notebooks -- Exercise 1: Launching a Jupyter Notebook -- Exercise 2: Hello World -- Exercise 3: Order of Execution in a Jupyter Notebook -- Exercise 4: Advantages of Jupyter Notebooks -- Python Packages and Modules -- pandas -- Loading Data in pandas -- Exercise 5: Loading and Summarizing the Titanic Dataset -- Exercise 6: Indexing and Selecting Data -- Exercise 7: Advanced Indexing and Selection -- pandas Methods -- Exercise 8: Splitting, Applying, and Combining Data Sources -- Lambda Functions -- Exercise 9: Lambda Functions -- Data Quality Considerations -- Managing Missing Data -- Class Imbalance -- Low Sample Size -- Activity 1: pandas Functions -- Summary -- Chapter 2: Exploratory Data Analysis and Visualization -- Introduction -- Exploratory Data Analysis (EDA) -- Exercise 10: Importing Libraries for Data Exploration -- Summary Statistics and Central Values -- Standard Deviation -- Percentiles -- Exercise 11: Summary Statistics of Our Dataset -- Missing Values -- Finding Missing Values -- Exercise 12: Visualizing Missing Values -- Imputation Strategies for Missing Values -- Exercise 13: Imputation Using pandas -- Exercise 14: Imputation Using scikit-learn -- Exercise 15: Imputation Using Inferred Values -- Activity 2: Summary Statistics and Missing Values -- Distribution of Values -- Target Variable -- Exercise 16: Plotting a Bar Chart -- Categorical Data -- Exercise 17: Datatypes for Categorical Variables -- Exercise 18: Calculating Category Value Counts -- Exercise 19: Plotting a Pie Chart -- Continuous Data -- Exercise 20: Plotting a Histogram -- Exercise 21: Skew and Kurtosis
Activity 3: Visually Representing the Distribution of Values -- Relationships within the Data -- Relationship between Two Continuous Variables -- Exercise 22: Plotting a Scatter Plot -- Exercise 23: Correlation Heatmap -- Exercise 24: Pairplot -- Relationship between a Continuous and a Categorical Variable -- Exercise 25: Bar Chart -- Exercise 26: Box Plot -- Relationship between Two Categorical Variables -- Exercise 27: Stacked Bar Chart -- Activity 4: Relationships Within the Data -- Summary -- Chapter 3: Regression Analysis -- Introduction -- Regression and Classification Problems -- Data, Models, Training, and Evaluation -- Linear Regression -- Exercise 28: Plotting Data with a Moving Average -- Activity 5: Plotting Data with a Moving Average -- Least Squares Method -- The scikit-learn Model API -- Exercise 29: Fitting a Linear Model Using the Least Squares Method -- Activity 6: Linear Regression Using the Least Squares Method -- Linear Regression with Dummy Variables -- Exercise 30: Introducing Dummy Variables -- Activity 7: Dummy Variables -- Parabolic Model with Linear Regression -- Exercise 31: Parabolic Models with Linear Regression -- Activity 8: Other Model Types with Linear Regression -- Generic Model Training -- Gradient Descent -- Exercise 32: Linear Regression with Gradient Descent -- Exercise 33: Optimizing Gradient Descent -- Activity 9: Gradient Descent -- Multiple Linear Regression -- Exercise 34: Multiple Linear Regression -- Autoregression Models -- Exercise 35: Creating an Autoregression Model -- Activity 10: Autoregressors -- Summary -- Chapter 4: Classification -- Introduction -- Linear Regression as a Classifier -- Exercise 36: Linear Regression as a Classifier -- Logistic Regression -- Exercise 37: Logistic Regression as a Classifier - Two-Class Classifier -- Exercise 38: Logistic Regression - Multiclass Classifier
Title Applied Supervised Learning with Python
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5763194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgvXBiF7tyQHAKSh0nTq6tigqiqBIF9VY5XkRBhELTA3w9M6mzsEgILpbtRLYyL7ZnxrMQcpyIRHJhYCGBLODCT0GhJj1Xy5DqiAvgUNFRuH8d9m7Z5SgYVXnDcu-SLDmT7z_6lfwHVegDXNFL9g_IloNCB9QBXygBYSi_ML9l05oWW97xZj7FtT6D6lWh48g1q4M3jAlQN4-ZWTv5tk4fxNOkfNYHFnCew3Yxu59koq4GQM-jT2qAgZCPWU11tZDq6y5SC4mxxSOMABdTrzoASrO8brsD4gcsSnYyfXExMxfeYNs0JctkmXPYQ5pwXnb7pR7Lx7R-9iY2b7ci4DhRAC6nYja0Vjn1t3MvP8yHa6Sp0cNjnSzpdIOsFnktHLvNbZJTS16nIq9TkNdB8joL8m6Ru_PusNNzbUIJV1AMo-8mxoSR9iMlOPWE4BJ2J001iGHABkfSD9EtmMaaGiNUKH0hWSwCJb0kQbnT87dJI31O9Q5xooBpY6RnlFaMcg-GDlQQC6aUaRkW7BKn-MZxfu9tjW3HFZH3fn9ln6xUYB-QRvY614fABWXJkQXiA-2ACX0
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Applied+Supervised+Learning+with+Python&rft.au=Johnston%2C+Benjamin&rft.au=Mathur%2C+Ishita&rft.date=2019-01-01&rft.pub=Packt+Publishing%2C+Limited&rft.isbn=9781789954920&rft.externalDocID=EBC5763194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781789954920/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781789954920/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781789954920/sc.gif&client=summon&freeimage=true