Comprehensive Kinetics and Thermodynamics Analysis of Salix psammophila Biomass Pyrolysis Using Multicomponent Modeling

Multicomponent deconvolution enables precise peak separation and accurate determination of kinetic parameters and improves identification of the underlying mechanisms of biomass pyrolysis. In the present study, the multicomponent kinetics and thermodynamics of Salix psammophila pyrolysis were invest...

Full description

Saved in:
Bibliographic Details
Published inACS sustainable chemistry & engineering Vol. 13; no. 33; pp. 13695 - 13708
Main Authors Tang, Maoyi, Yao, Zhitong, Wang, Haoqi, Li, Huanxuan, da Silva, Jean Constantino Gomes, Pejic, Ljiljana Medic, Manić, Nebojša, Sun, Yuhang, Kumar, Akash, Chen, Yang, Liu, Jie, Qi, Wei
Format Journal Article
LanguageEnglish
Published American Chemical Society 25.08.2025
Subjects
Online AccessGet full text
ISSN2168-0485
2168-0485
DOI10.1021/acssuschemeng.5c07132

Cover

Abstract Multicomponent deconvolution enables precise peak separation and accurate determination of kinetic parameters and improves identification of the underlying mechanisms of biomass pyrolysis. In the present study, the multicomponent kinetics and thermodynamics of Salix psammophila pyrolysis were investigated to evaluate its bioenergy potential. Thermogravimetric analysis coupled with peak deconvolution revealed three stages involving four components (pseudoextractives/PS-EC, pseudohemicellulose/PS-CL, pseudocellulose/PS-CL, and pseudolignin/PS-LG) with the corresponding peak temperatures of 246.83–270.83, 291.59–315.59, 335.26–359.26, and 386.14–410.14 °C, respectively. Pyrolysis gas chromatography/mass spectrometry analysis indicated dominant products of acids, phenolics, and alkanes. Activation energies for each pseudocomponent from four isoconversional methods were comparable, following an order of PS-EC (134.96 kJ mol–1) < PS-HC (151.59 kJ mol–1) < PS-CL (166.93 kJ mol–1) < PS-LG (239.65 kJ mol–1). Master plot analysis suggested an order-based reaction mechanism. Positive enthalpy changes (127.83–227.33 kJ mol–1) and Gibbs free energy changes (144.73–193.03 kJ mol–1) indicated higher energy barriers, especially for PS-LG, and limited spontaneity of conversion. These findings highlighted the potential of S. psammophila as a viable feedstock and offered critical insights into reactor design and process optimization for industrial applications.
AbstractList Multicomponent deconvolution enables precise peak separation and accurate determination of kinetic parameters and improves identification of the underlying mechanisms of biomass pyrolysis. In the present study, the multicomponent kinetics and thermodynamics of Salix psammophila pyrolysis were investigated to evaluate its bioenergy potential. Thermogravimetric analysis coupled with peak deconvolution revealed three stages involving four components (pseudoextractives/PS-EC, pseudohemicellulose/PS-CL, pseudocellulose/PS-CL, and pseudolignin/PS-LG) with the corresponding peak temperatures of 246.83–270.83, 291.59–315.59, 335.26–359.26, and 386.14–410.14 °C, respectively. Pyrolysis gas chromatography/mass spectrometry analysis indicated dominant products of acids, phenolics, and alkanes. Activation energies for each pseudocomponent from four isoconversional methods were comparable, following an order of PS-EC (134.96 kJ mol–1) < PS-HC (151.59 kJ mol–1) < PS-CL (166.93 kJ mol–1) < PS-LG (239.65 kJ mol–1). Master plot analysis suggested an order-based reaction mechanism. Positive enthalpy changes (127.83–227.33 kJ mol–1) and Gibbs free energy changes (144.73–193.03 kJ mol–1) indicated higher energy barriers, especially for PS-LG, and limited spontaneity of conversion. These findings highlighted the potential of S. psammophila as a viable feedstock and offered critical insights into reactor design and process optimization for industrial applications.
Author Liu, Jie
Pejic, Ljiljana Medic
Li, Huanxuan
Sun, Yuhang
Yao, Zhitong
Tang, Maoyi
da Silva, Jean Constantino Gomes
Manić, Nebojša
Wang, Haoqi
Chen, Yang
Kumar, Akash
Qi, Wei
AuthorAffiliation Fuel and Combustion Laboratory, Faculty of Mechanical Engineering
Chinese Academy of Sciences
College of Materials Science and Environmental Engineering
Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía
Guangzhou Institute of Energy Conversion
State University of Campinas
Beijing Key Laboratory of Lignocellulosic Chemistry
School of Civil Engineering
Interdisciplinary Research Group on Biotechnology Applied to the Agriculture and the Environment, School of Agricultural Engineering
AuthorAffiliation_xml – name: State University of Campinas
– name: College of Materials Science and Environmental Engineering
– name: School of Civil Engineering
– name: Chinese Academy of Sciences
– name: Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía
– name: Guangzhou Institute of Energy Conversion
– name: Fuel and Combustion Laboratory, Faculty of Mechanical Engineering
– name: Interdisciplinary Research Group on Biotechnology Applied to the Agriculture and the Environment, School of Agricultural Engineering
– name: Beijing Key Laboratory of Lignocellulosic Chemistry
Author_xml – sequence: 1
  givenname: Maoyi
  surname: Tang
  fullname: Tang, Maoyi
  organization: College of Materials Science and Environmental Engineering
– sequence: 2
  givenname: Zhitong
  orcidid: 0000-0002-9180-2329
  surname: Yao
  fullname: Yao, Zhitong
  email: sxyzt@126.com
  organization: College of Materials Science and Environmental Engineering
– sequence: 3
  givenname: Haoqi
  surname: Wang
  fullname: Wang, Haoqi
  organization: College of Materials Science and Environmental Engineering
– sequence: 4
  givenname: Huanxuan
  surname: Li
  fullname: Li, Huanxuan
  organization: College of Materials Science and Environmental Engineering
– sequence: 5
  givenname: Jean Constantino Gomes
  orcidid: 0000-0003-2600-7123
  surname: da Silva
  fullname: da Silva, Jean Constantino Gomes
  organization: State University of Campinas
– sequence: 6
  givenname: Ljiljana Medic
  surname: Pejic
  fullname: Pejic, Ljiljana Medic
  organization: Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía
– sequence: 7
  givenname: Nebojša
  orcidid: 0000-0002-2801-8195
  surname: Manić
  fullname: Manić, Nebojša
  organization: Fuel and Combustion Laboratory, Faculty of Mechanical Engineering
– sequence: 8
  givenname: Yuhang
  surname: Sun
  fullname: Sun, Yuhang
  organization: Beijing Key Laboratory of Lignocellulosic Chemistry
– sequence: 9
  givenname: Akash
  surname: Kumar
  fullname: Kumar, Akash
  organization: School of Civil Engineering
– sequence: 10
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  organization: College of Materials Science and Environmental Engineering
– sequence: 12
  givenname: Wei
  orcidid: 0000-0002-3000-6951
  surname: Qi
  fullname: Qi, Wei
  email: qiwei@ms.giec.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFUE1PwzAMjdCQGGM_ASl_oCNpmqQ9jokvsQkktnOVpumaqU2qegP678m0HeCEL7ae_Z7td41GzjuD0C0lM0pieqc0wAF0bVrjtjOuiaQsvkDjmIo0IknKR7_qKzQF2JEQWcbilI7R18K3XW9q48B-GvxqndlbDVi5Eq9r07e-HJxqj9DcqWYAC9hX-EM19ht3oNrWd7VtFL63vlUA-H3o_WlsA9Zt8erQBMGwJJzt9njlS9ME_AZdVqoBMz3nCdo8PqwXz9Hy7ellMV9GKk74PlIy4bqQjJhKMp4UqiRCMJMRLmiZJizLpC6CD6ritBIpL4TQsVRMMCmzrIjZBPGTru49QG-qvOttq_ohpyQ_Gpj_MTA_Gxh49MQL7XznD314Hv7h_AAro32M
Cites_doi 10.30939/ijastech.1445222
10.1016/j.cec.2025.100128
10.1002/bbb.2273
10.1016/j.jaap.2021.105133
10.1016/j.biortech.2025.132472
10.1016/j.scitotenv.2024.175010
10.1016/j.jenvman.2024.120835
10.1016/j.fuel.2020.117172
10.1007/s13399-022-03347-7
10.1016/j.indcrop.2025.120858
10.1016/j.fuproc.2022.107465
10.1039/D3SE01216F
10.1039/D2GC02965K
10.1016/j.fuel.2019.05.093
10.1016/j.renene.2022.02.024
10.1016/j.combustflame.2022.112142
10.1007/s13399-016-0234-6
10.1016/j.tca.2023.179500
10.1016/j.jaap.2017.09.011
10.1016/j.biortech.2016.07.136
10.1016/j.eti.2021.101366
10.1016/j.renene.2024.120693
10.1007/s13399-020-01104-2
10.1016/j.energy.2021.121497
10.1016/j.scitotenv.2020.143679
10.1016/j.biombioe.2023.106746
10.1016/j.indcrop.2025.120656
10.1016/j.ces.2024.120584
10.1016/j.renene.2022.03.159
10.1016/j.energy.2023.128036
10.1016/j.renene.2021.04.034
10.4236/abb.2016.73014
10.1680/jgrma.18.00093
10.1016/j.biombioe.2024.107382
10.1016/S1872-5813(10)60019-9
10.1016/j.fuel.2019.116516
10.1016/j.jaap.2024.106704
10.1016/j.jclepro.2019.05.031
10.1016/j.jaap.2024.106438
10.1016/j.indcrop.2024.120308
10.1016/j.jaap.2023.106021
10.1016/j.indcrop.2025.120985
10.1016/j.combustflame.2022.111999
10.1016/j.jclepro.2023.136560
10.1016/j.renene.2024.120453
10.1016/j.proci.2020.06.172
10.1016/j.jaap.2023.105912
10.1016/j.biortech.2019.01.106
10.1016/j.pecs.2003.10.004
10.1016/j.jaap.2016.10.008
10.1016/j.biortech.2008.03.026
10.1016/j.enconman.2021.115076
10.1016/j.fuel.2004.02.021
10.1016/j.renene.2022.03.084
10.1007/s13399-020-01077-2
10.1016/j.renene.2021.09.053
10.1016/j.tca.2017.09.016
10.1016/j.cec.2023.100063
10.1016/j.fuel.2018.10.064
10.1007/978-3-030-30853-7_3
10.1016/j.scitotenv.2021.149290
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acssuschemeng.5c07132
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-0485
EndPage 13708
ExternalDocumentID 10_1021_acssuschemeng_5c07132
a414104189
GroupedDBID 55A
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
GGK
GNL
IH9
JG~
ROL
UI2
VF5
VG9
W1F
AAYXX
CITATION
ID FETCH-LOGICAL-a245t-a745cb730ef7354bad0663e90561d843997cb102af51f685b66c27a3637799b23
IEDL.DBID ACS
ISSN 2168-0485
IngestDate Wed Oct 01 05:31:36 EDT 2025
Tue Aug 26 03:11:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords bioenergy
deconvolution
pyrolysis conversion
Salix psammophila
multicomponent kinetic
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a245t-a745cb730ef7354bad0663e90561d843997cb102af51f685b66c27a3637799b23
ORCID 0000-0003-2600-7123
0000-0002-2801-8195
0000-0002-3000-6951
0000-0002-9180-2329
PageCount 14
ParticipantIDs crossref_primary_10_1021_acssuschemeng_5c07132
acs_journals_10_1021_acssuschemeng_5c07132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250825
2025-08-25
PublicationDateYYYYMMDD 2025-08-25
PublicationDate_xml – month: 08
  year: 2025
  text: 20250825
  day: 25
PublicationDecade 2020
PublicationTitle ACS sustainable chemistry & engineering
PublicationTitleAlternate ACS Sustainable Chem. Eng
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref54/cit54
  doi: 10.30939/ijastech.1445222
– ident: ref6/cit6
  doi: 10.1016/j.cec.2025.100128
– ident: ref40/cit40
  doi: 10.1002/bbb.2273
– ident: ref21/cit21
  doi: 10.1016/j.jaap.2021.105133
– ident: ref22/cit22
  doi: 10.1016/j.biortech.2025.132472
– ident: ref11/cit11
  doi: 10.1016/j.scitotenv.2024.175010
– ident: ref50/cit50
  doi: 10.1016/j.jenvman.2024.120835
– ident: ref53/cit53
  doi: 10.1016/j.fuel.2020.117172
– ident: ref60/cit60
  doi: 10.1007/s13399-022-03347-7
– ident: ref5/cit5
  doi: 10.1016/j.indcrop.2025.120858
– ident: ref2/cit2
  doi: 10.1016/j.fuproc.2022.107465
– ident: ref29/cit29
  doi: 10.1039/D3SE01216F
– ident: ref3/cit3
  doi: 10.1039/D2GC02965K
– ident: ref59/cit59
  doi: 10.1016/j.fuel.2019.05.093
– ident: ref61/cit61
  doi: 10.1016/j.renene.2022.02.024
– ident: ref45/cit45
  doi: 10.1016/j.combustflame.2022.112142
– ident: ref36/cit36
  doi: 10.1007/s13399-016-0234-6
– ident: ref57/cit57
  doi: 10.1016/j.tca.2023.179500
– ident: ref42/cit42
  doi: 10.1016/j.jaap.2017.09.011
– ident: ref47/cit47
  doi: 10.1016/j.biortech.2016.07.136
– ident: ref7/cit7
  doi: 10.1016/j.eti.2021.101366
– ident: ref17/cit17
  doi: 10.1016/j.renene.2024.120693
– ident: ref56/cit56
  doi: 10.1007/s13399-020-01104-2
– ident: ref30/cit30
  doi: 10.1016/j.energy.2021.121497
– ident: ref28/cit28
  doi: 10.1016/j.scitotenv.2020.143679
– ident: ref9/cit9
  doi: 10.1016/j.biombioe.2023.106746
– ident: ref10/cit10
  doi: 10.1016/j.indcrop.2025.120656
– ident: ref25/cit25
  doi: 10.1016/j.ces.2024.120584
– ident: ref24/cit24
  doi: 10.1016/j.renene.2022.03.159
– ident: ref1/cit1
  doi: 10.1016/j.energy.2023.128036
– ident: ref39/cit39
  doi: 10.1016/j.renene.2021.04.034
– ident: ref31/cit31
  doi: 10.4236/abb.2016.73014
– ident: ref8/cit8
  doi: 10.1680/jgrma.18.00093
– ident: ref23/cit23
  doi: 10.1016/j.biombioe.2024.107382
– ident: ref32/cit32
  doi: 10.1016/S1872-5813(10)60019-9
– ident: ref41/cit41
  doi: 10.1016/j.fuel.2019.116516
– ident: ref34/cit34
  doi: 10.1016/j.jaap.2024.106704
– ident: ref38/cit38
  doi: 10.1016/j.jclepro.2019.05.031
– ident: ref37/cit37
  doi: 10.1016/j.jaap.2024.106438
– ident: ref20/cit20
  doi: 10.1016/j.indcrop.2024.120308
– ident: ref49/cit49
  doi: 10.1016/j.jaap.2023.106021
– ident: ref12/cit12
  doi: 10.1016/j.indcrop.2025.120985
– ident: ref15/cit15
  doi: 10.1016/j.combustflame.2022.111999
– ident: ref46/cit46
  doi: 10.1016/j.jclepro.2023.136560
– ident: ref19/cit19
  doi: 10.1016/j.renene.2024.120453
– ident: ref33/cit33
  doi: 10.1016/j.proci.2020.06.172
– ident: ref35/cit35
  doi: 10.1016/j.jaap.2023.105912
– ident: ref55/cit55
  doi: 10.1016/j.biortech.2019.01.106
– ident: ref27/cit27
  doi: 10.1016/j.pecs.2003.10.004
– ident: ref43/cit43
  doi: 10.1016/j.jaap.2016.10.008
– ident: ref44/cit44
  doi: 10.1016/j.biortech.2008.03.026
– ident: ref51/cit51
  doi: 10.1016/j.enconman.2021.115076
– ident: ref26/cit26
  doi: 10.1016/j.fuel.2004.02.021
– ident: ref48/cit48
  doi: 10.1016/j.renene.2022.03.084
– ident: ref13/cit13
  doi: 10.1007/s13399-020-01077-2
– ident: ref58/cit58
  doi: 10.1016/j.renene.2021.09.053
– ident: ref52/cit52
  doi: 10.1016/j.tca.2017.09.016
– ident: ref4/cit4
  doi: 10.1016/j.cec.2023.100063
– ident: ref16/cit16
  doi: 10.1016/j.fuel.2018.10.064
– ident: ref18/cit18
  doi: 10.1007/978-3-030-30853-7_3
– ident: ref14/cit14
  doi: 10.1016/j.scitotenv.2021.149290
SSID ssj0000993281
Score 2.386521
Snippet Multicomponent deconvolution enables precise peak separation and accurate determination of kinetic parameters and improves identification of the underlying...
SourceID crossref
acs
SourceType Index Database
Publisher
StartPage 13695
Title Comprehensive Kinetics and Thermodynamics Analysis of Salix psammophila Biomass Pyrolysis Using Multicomponent Modeling
URI http://dx.doi.org/10.1021/acssuschemeng.5c07132
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 2168-0485
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993281
  issn: 2168-0485
  databaseCode: ACS
  dateStart: 20130107
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN40etGDb2N9ZQ-eTKBlYRc41sam0Wia1Ca9kd0FbKOWBmh8_HpneJgaU6M3EmBZhmHmm92Z-Qi5sJQGzCZ8I_J4jBRmYAe1UnAEFtkDABBbWCh8dy_6I-dmzMcN0lqxg8-sltQwAYj0cLXs0eQawyqwuetMuC7m8HW6w69FFYA7NiuISZklPAO0k9dVO6tGQq-ksyWvtOReettkUBfplFklT-YiV6b--Nmz8a8z3yFbFdSknVI3dkkjmu2RzaUGhPvkFc1BGk3KLHZ6C2ewbTOVs5CCAqUvSVgy1me07l5Ck5gOAby_0XkmQYnnk-mzpFdTzDPK6OA9TcrLilwEWtT3Ytp6MgPvRpF5DevfD8iod_3Q7RsVFYMhmcNzQ7oO1wqsQRS7NneUDBGqRD7GH6GHMY2rFby0jLkVC48rITRzpS2wn6GvmH1I1mbwpCNCba2FbduREm4I6MH1I9n2lfAdbikea9UklyC4oPqVsqDYJWdW8E2aQSXNJjHr7xbMy_Ycv99w_J_RT8gGQ7rfNhgTfkrW8nQRnQEGydV5oXefhEPccw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4QPKgH30Z87sGTSZE-dtsekUhQHjEBIrdmd9sKUQuhJT5-vTNtQTTRhFvTx3Z3O535ZnfmG0IudakAs3FXCxwWYgkz0INKSjgCjewAAAh1TBRud3ijb90P2KBA-DwXBjoRQ0txuon_zS6gX8O5eAYOHy6aPZWZQu8KVO8a45aOTle11l2srQDqMY20Pqmhc0cDIWXz5J2_WkLjpOIl47RkZerb5HHRvzS45Lk8S2RZff6iblx9ADtkKweetJpJyi4pBNEe2VyiI9wnb6gcpsEwi2mnTbiCJM5URD4FcZq-jv2sfn1M51wmdBzSLkD5dzqJBYj0ZDh6EfRmhFFHMX34mI6z29LIBJpm-2IQ-zgCW0exDhtmwx-Qfv22V2toeWEGTRgWSzRhW0xJ0A1BaJvMksJH4BK46I34Dno4tpIwaBEyPeQOk5wrwxYmR3ZDVxrmISlG8KYjQk2luGmageS2D1jCdgNRcSV3LaZLFipZIlcwcV7-Y8Veumdu6N6P2fTy2SyR8vzzeZOMrOP_B45Xaf2CrDd67ZbXuus0T8iGgYWAK6Bm2CkpJtNZcAboJJHnqSh-AUFw5NU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgujBt1ife_AkJDaP3SRHrZZqtRRqoeAh7G4SW9Q0NCk-fr0zSVqqoKC3kMdms5md-WZ35htCTgypALNxTwtdFmEJM9CDSko4Ao3sAgCIDEwUvmvzZs--6bN-GVWJuTDQiRRaSvNNfJzVSRCVDAPGGZxPJ-D04cLZo84UeligfhcZh-mOsKjena2vAPKxzLxGqWlwVwNBZdMEnp9aQgOl0jkDNWdpGmvkYdbHPMDkSZ9kUlcf3-gb__cR62S1BKD0vJCYDbIQxptkZY6WcIu8opIYh4Mitp224AqSOVMRBxTEavwyCoo69imdcprQUUS7AOnfaJIKEO1kMHwW9GKI0Ucp7byPR8VteYQCzbN-MZh9FIPNo1iPDbPit0mvcXVfb2plgQZNmDbLNOHYTEnQEWHkWMyWIkAAE3rolQQuejqOkvDRImJGxF0mOVemIyyOLIeeNK0dUonhTbuEWkpxy7JCyZ0AMIXjhaLmSe7ZzJAsUrJKTmHg_HKCpX6-d24a_pfR9MvRrBJ9-gv9pCDt-P2Bvb-0fkyWOpcN__a63donyybWA66BtmEHpJKNJ-EhgJRMHuXS-AmWHedY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Kinetics+and+Thermodynamics+Analysis+of+Salix+psammophila+Biomass+Pyrolysis+Using+Multicomponent+Modeling&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Tang%2C+Maoyi&rft.au=Yao%2C+Zhitong&rft.au=Wang%2C+Haoqi&rft.au=Li%2C+Huanxuan&rft.date=2025-08-25&rft.pub=American+Chemical+Society&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=13&rft.issue=33&rft.spage=13695&rft.epage=13708&rft_id=info:doi/10.1021%2Facssuschemeng.5c07132&rft.externalDocID=a414104189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon