Efficient collective data distribution in all-port wormhole-routed hypercubes

This paper addresses the problem of collective data distribution, specifically multicast, in wormhole-routed hypercubes. The system model allows a processor to send and receive data in all dimensions simultaneously. New theoretical results that characterize contention among messages in wormhole-rout...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 1993 ACM/IEEE conference on Supercomputing pp. 792 - 801
Main Authors Robinson, D. F., Judd, D., McKinley, P. K., Cheng, B. H. C.
Format Conference Proceeding
LanguageEnglish
Published New York, NY, USA ACM 01.12.1993
IEEE
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN0818643404
9780818643408
ISSN1063-9535
DOI10.1145/169627.169837

Cover

More Information
Summary:This paper addresses the problem of collective data distribution, specifically multicast, in wormhole-routed hypercubes. The system model allows a processor to send and receive data in all dimensions simultaneously. New theoretical results that characterize contention among messages in wormhole-routed hypercubes are developed and used to design new multicast routing algorithms. The algorithms are compared in terms of the number of steps required in each, their measured execution times when implemented on a relatively small-scale nCUBE-2, and their simulated execution times on larger hypercubes. The results indicate that significant performance improvement is possible when the multicast algorithm actively identifies and uses multiple ports in parallel.
Bibliography:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:0818643404
9780818643408
ISSN:1063-9535
DOI:10.1145/169627.169837