Workload Analysis for the Scope of User Demand Prediction Model Evaluations in Cloud Environments

Alongside the healthy development of the Cloud-based technologies across various application deployments, their associated energy consumptions incurred by the excess usage of Information and Communication Technology (ICT) resources, is one of the serious concerns demanding effective solutions with i...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing pp. 883 - 889
Main Authors Panneerselvam, John, Lu Liu, Antonopoulos, Nick, Yuan Bo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2014
Subjects
Online AccessGet full text
DOI10.1109/UCC.2014.144

Cover

Abstract Alongside the healthy development of the Cloud-based technologies across various application deployments, their associated energy consumptions incurred by the excess usage of Information and Communication Technology (ICT) resources, is one of the serious concerns demanding effective solutions with immediate effect. Effective auto scaling of the Cloud resources in accordance to the incoming user demand and thereby reducing the idle resources is one optimum solution which not only reduces the excess energy consumptions but also helps maintaining the Quality of Service (QoS). Whilst achieving such tasks, estimating the user demand in advance with reliable level of accuracy has become an integral and vital component. With this in mind, this research work is aimed at analyzing the Cloud workloads and further evaluating the performances of two widely used prediction techniques such as Markov modelling and Bayesian modelling with 7 hours of Google cluster data. An important outcome of this research work is the categorization and characterization of the Cloud workloads which will assist leading into the user demand prediction parameter modelling.
AbstractList Alongside the healthy development of the Cloud-based technologies across various application deployments, their associated energy consumptions incurred by the excess usage of Information and Communication Technology (ICT) resources, is one of the serious concerns demanding effective solutions with immediate effect. Effective auto scaling of the Cloud resources in accordance to the incoming user demand and thereby reducing the idle resources is one optimum solution which not only reduces the excess energy consumptions but also helps maintaining the Quality of Service (QoS). Whilst achieving such tasks, estimating the user demand in advance with reliable level of accuracy has become an integral and vital component. With this in mind, this research work is aimed at analyzing the Cloud workloads and further evaluating the performances of two widely used prediction techniques such as Markov modelling and Bayesian modelling with 7 hours of Google cluster data. An important outcome of this research work is the categorization and characterization of the Cloud workloads which will assist leading into the user demand prediction parameter modelling.
Author Lu Liu
Panneerselvam, John
Antonopoulos, Nick
Yuan Bo
Author_xml – sequence: 1
  givenname: John
  surname: Panneerselvam
  fullname: Panneerselvam, John
  email: j.panneerselvam@derby.ac.uk
  organization: Sch. of Comput. & Math., Univ. of Derby, Derby, UK
– sequence: 2
  surname: Lu Liu
  fullname: Lu Liu
  email: l.liu@derby.ac.uk
  organization: Sch. of Comput. & Math., Univ. of Derby, Derby, UK
– sequence: 3
  givenname: Nick
  surname: Antonopoulos
  fullname: Antonopoulos, Nick
  email: n.antonopouolos@derby.ac.uk
  organization: Sch. of Comput. & Math., Univ. of Derby, Derby, UK
– sequence: 4
  surname: Yuan Bo
  fullname: Yuan Bo
  email: b.yuan@derby.ac.uk
  organization: Sch. of Comput. & Math., Univ. of Derby, Derby, UK
BookMark eNotjE1LAzEUACMoqLU3b17yB1rfS9Ikeyxr_YCKgi4eS7p5i9FtUpJtof_eip4GhmEu2WlMkRi7RpgiQnXb1PVUAKopKnXCxpWxqEx1hEV9zsalfAEA6tkxhgvmPlL-7pPzfB5dfyih8C5lPnwSf2vTlnjqeFMo8zvauOj5ayYf2iGkyJ-Tp54v9q7fuV9ReIi87tPO80Xch5zihuJQrthZ5_pC43-OWHO_eK8fJ8uXh6d6vpw4oXCYWGmkIImKNPrKafJ2ZoVxovVAXlR-rYCgU2shTduBhLU2kiyQ8i2h1XLEbv6-gYhW2xw2Lh9WBoTRiPIHrNVUoA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/UCC.2014.144
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479978816
1479978817
EndPage 889
ExternalDocumentID 7027611
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a241t-83732e314e61d9a6ed85827a2cd0ed29db40e0f4b237cf030b673e80e4dce1863
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a241t-83732e314e61d9a6ed85827a2cd0ed29db40e0f4b237cf030b673e80e4dce1863
PageCount 7
ParticipantIDs ieee_primary_7027611
PublicationCentury 2000
PublicationDate 2014-Dec.
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-Dec.
PublicationDecade 2010
PublicationTitle Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing
PublicationTitleAbbrev UCC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001651100
Score 1.6815289
Snippet Alongside the healthy development of the Cloud-based technologies across various application deployments, their associated energy consumptions incurred by the...
SourceID ieee
SourceType Publisher
StartPage 883
SubjectTerms Analytical models
Computational modeling
Hidden Markov models
Markov processes
Mathematical model
modelling
pattern
prediction
Predictive models
Resource management
workloads
Title Workload Analysis for the Scope of User Demand Prediction Model Evaluations in Cloud Environments
URI https://ieeexplore.ieee.org/document/7027611
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhJ6yQXO5lDqwqpiIFI3Sp_XCRESSpIFn49dtKmgBjYoiiKI1_s8929e4-QW-UUtUUMXqQS4wGi9hRD7mm0-yRIZT2KCxQXj3yewcMyWvbIXdcLg4gN-AzH7rKp5ZtS1y5VNhE2huKukfdAxLzt1drnU3jk2M86bHsyydLUQbfA1S9_aKc0rmM2IIvdoC1i5HVcV2qsP3_xMf73q47IaN-kR58693NMelickMFOpYFuF-2QSJcPX5fS0B0BCbUHVWoPfvaZcoO0zGlmf0R6j2-yMPadrnbj7EWdUNqaTjtC8A_6UtB0XdaGTr81yI1INps-p3NvK6zgSeuwK88GpWGAoQ_IfZNIjiaO4kDIQBuGJkiMAoYsBxWEQud2G1BchBgzBKPRj3l4SvpFWeAZoT4KrQXLE2AacmnjaQghNsBAhpFIgnMydDO22rTcGavtZF38ffuSHDqLtXCRK9Kv3mu8tk6_UjeNtb8A3-6tKg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LToNAFJ00daGrqq3x7SxcSsvjwsAa21RtGxcl6a6ZxyUxVmgUNn69M9BSNS7cEUKAzIW5z3MOIbfCKGqzECxfRMoCRGkJGwNLot4ngQvtUUyiOJ0F4wQeF_6iRe4aLAwiVsNn2DeHVS9f5bI0pbIB0zlUYIC8ez4A-DVaa1dRCXzDf9ZMt0eDJI7N8BaYDuYP9ZTKeYw6ZLp9bD0z8tovC9GXn78YGf_7Xoekt4Pp0efGAR2RFmbHpLPVaaCb37ZLuKmIr3Ku6JaChOpQlerQT1-Tr5HmKU30p0jv8Y1nSt_TdG-MxaiRSlvRYUMJ_kFfMhqv8lLR4TeIXI8ko-E8HlsbaQWLa5ddWDot9Vz0HMDAUREPUIV-6DLuSmWjciMlwEY7BeF6TKZ6IxAB8zC0EZREJwy8E9LO8gxPCXWQScnsNAJbQsp1Rg0ehAps4J7PIveMdM2KLdc1e8Zys1jnf5--Ifvj-XSynDzMni7IgbFePTxySdrFe4lXOgQoxHVl-S8fN7B3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2014+IEEE%2FACM+7th+International+Conference+on+Utility+and+Cloud+Computing&rft.atitle=Workload+Analysis+for+the+Scope+of+User+Demand+Prediction+Model+Evaluations+in+Cloud+Environments&rft.au=Panneerselvam%2C+John&rft.au=Lu+Liu&rft.au=Antonopoulos%2C+Nick&rft.au=Yuan+Bo&rft.date=2014-12-01&rft.pub=IEEE&rft.spage=883&rft.epage=889&rft_id=info:doi/10.1109%2FUCC.2014.144&rft.externalDocID=7027611