Computer Vision for X-Ray Testing Imaging, Systems, Image Databases, and Algorithms

This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Covering complex topics in an easy-to-understand way, without requiring any prior knowledge in the field, the book provides a concise review of the key methodologi...

Full description

Saved in:
Bibliographic Details
Main Author Mery, Domingo
Format eBook
LanguageEnglish
Published Cham Springer Nature 2015
Springer International Publishing AG
Springer International Publishing
Springer
Edition1
Subjects
Online AccessGet full text
ISBN3319207474
9783319207476
3319207466
9783319207469
DOI10.1007/978-3-319-20747-6

Cover

Table of Contents:
  • 6.2.4 Linear Discriminant Analysis -- 6.2.5 Quadratic Discriminant Analysis -- 6.2.6 K-Nearest Neighbors -- 6.2.7 Neural Networks -- 6.2.8 Support Vector Machines -- 6.2.9 Classification Using Sparse Representations -- 6.3 Performance Evaluation -- 6.3.1 Hold-Out -- 6.3.2 Cross-Validation -- 6.3.3 Leave-One-Out -- 6.3.4 Confusion Matrix -- 6.3.5 ROC Curve -- 6.4 A Final Example -- 6.5 Summary -- References -- 7 Simulation in X-ray Testing -- 7.1 Introduction -- 7.2 Modelling -- 7.2.1 Geometric Model -- 7.2.2 X-ray Imaging -- 7.3 Basic General Simulation -- 7.4 Flaw Simulation -- 7.4.1 Mask Superimposition -- 7.4.2 CAD Models for Object and Defect -- 7.4.3 CAD Models for Defects Only -- 7.5 Summary -- References -- 8 Applications in X-ray Testing -- 8.1 Introduction -- 8.2 Castings -- 8.2.1 State of the Art -- 8.2.2 An Application -- 8.2.3 An Example -- 8.3 Welds -- 8.3.1 State of the Art -- 8.3.2 An Application -- 8.3.3 An Example -- 8.4 Baggage -- 8.4.1 State of the Art -- 8.4.2 An Application -- 8.4.3 An Example -- 8.5 Natural Products -- 8.5.1 State of the Art -- 8.5.2 An Application -- 8.5.3 An Example -- 8.6 Further Applications -- 8.6.1 Cargo Inspection -- 8.6.2 Electronic Circuits -- 8.7 Summary -- References -- Appendix A GDXray Details -- Appendix B XVIS Toolbox: Quick Reference -- Index
  • 3.6.2 3D Reconstruction from Two or More Views -- 3.7 Summary -- References -- 4 X-ray Image Processing -- 4.1 Introduction -- 4.2 Image Preprocessing -- 4.2.1 Noise Removal -- 4.2.2 Contrast Enhancement -- 4.2.3 Shading Correction -- 4.3 Image Filtering -- 4.3.1 Linear Filtering -- 4.3.2 Nonlinear Filtering -- 4.4 Edge Detection -- 4.4.1 Gradient Estimation -- 4.4.2 Laplacian-of-Gaussian -- 4.4.3 Canny Edge Detector -- 4.5 Segmentation -- 4.5.1 Thresholding -- 4.5.2 Region Growing -- 4.5.3 Maximally Stable Extremal Regions -- 4.6 Image Restoration -- 4.7 Summary -- References -- 5 X-ray Image Representation -- 5.1 Introduction -- 5.2 Geometric Features -- 5.2.1 Basic Geometric Features -- 5.2.2 Elliptical Features -- 5.2.3 Fourier Descriptors -- 5.2.4 Invariant Moments -- 5.3 Intensity Features -- 5.3.1 Basic Intensity Features -- 5.3.2 Contrast -- 5.3.3 Crossing Line Profiles -- 5.3.4 Intensity Moments -- 5.3.5 Statistical Textures -- 5.3.6 Gabor -- 5.3.7 Filter Banks -- 5.4 Descriptors -- 5.4.1 Local Binary Patterns -- 5.4.2 Binarized Statistical Image Features -- 5.4.3 Histogram of Oriented Gradients -- 5.4.4 Scale-Invariant Feature Transform -- 5.5 Sparse Representations -- 5.5.1 Traditional Dictionaries -- 5.5.2 Sparse Dictionaries -- 5.5.3 Dictionary Learning -- 5.6 Feature Selection -- 5.6.1 Basics -- 5.6.2 Exhaustive Search -- 5.6.3 Branch and Bound -- 5.6.4 Sequential Forward Selection -- 5.6.5 Sequential Backward Selection -- 5.6.6 Ranking by Class Separability Criteria -- 5.6.7 Forward Orthogonal Search -- 5.6.8 Least Square Estimation -- 5.6.9 Combination with Principal Components -- 5.6.10 Feature Selection Based in Mutual Information -- 5.7 A Final Example -- 5.8 Summary -- References -- 6 Classification in X-ray Testing -- 6.1 Introduction -- 6.2 Classifiers -- 6.2.1 Minimal Distance -- 6.2.2 Mahalanobis Distance -- 6.2.3 Bayes
  • Intro -- Foreword -- Preface -- Scope -- Organization -- Who Is This Book For -- Hands on! -- References -- Acknowledgments -- Contents -- About the Author -- 1 X-ray Testing -- 1.1 Introduction -- 1.2 History -- 1.3 Physics of the X-rays -- 1.3.1 Formation of X-rays -- 1.3.2 Scattering and Absorption of X-rays -- 1.4 X-ray Testing System -- 1.4.1 X-ray Source -- 1.4.2 Manipulator -- 1.4.3 Image Intensifier -- 1.4.4 CCD Camera -- 1.4.5 Flat Panel -- 1.4.6 Computer -- 1.5 X-ray Imaging -- 1.5.1 X-ray Image Formation -- 1.5.2 Image Acquisition -- 1.5.3 X-ray Image Visualization -- 1.5.4 Dual Energy -- 1.6 Computer Vision -- 1.6.1 Geometric Model -- 1.6.2 Single View Analysis -- 1.6.3 Multiple View Analysis -- 1.6.4 mathbbXVIS Toolbox -- 1.6.5 mathbbGDXray Database -- 1.7 Summary -- References -- 2 Images for X-ray Testing -- 2.1 Introduction -- 2.2 Structure of the Database -- 2.3 Castings -- 2.4 Welds -- 2.5 Baggage -- 2.6 Natural Objects -- 2.7 Settings -- 2.8 Matlab Commands -- 2.9 Summary -- References -- 3 Geometry in X-ray Testing -- 3.1 Introduction -- 3.2 Geometric Transformations -- 3.2.1 Homogeneous Coordinates -- 3.2.2 2D rightarrow 2D Transformation -- 3.2.3 3D rightarrow 3D Transformation -- 3.2.4 3D rightarrow 2D Transformation -- 3.3 Geometric Model of an X-ray Computer Vision System -- 3.3.1 A General Model -- 3.3.2 Geometric Models of the Computer Vision System -- 3.3.3 Explicit Geometric Model Using an Image Intensifier -- 3.3.4 Multiple View Model -- 3.4 Calibration -- 3.4.1 Calibration Using Matlab -- 3.4.2 Experiments of Calibration -- 3.5 Geometric Correspondence in Multiple Views -- 3.5.1 Correspondence Between Two Views -- 3.5.2 Correspondence Between Three Views -- 3.5.3 Correspondence Between Four Views or More -- 3.6 Three-Dimensional Reconstruction -- 3.6.1 Linear 3D Reconstruction from Two Views