Basic Optics - Principles and Concepts
This book addresses in great details the basic principles of the science of optics, and their related concepts. The book provides a lucid and coherent presentation of an extensive range of concepts from the field of optics, which is of central relevance to several broad areas of science including ph...
        Saved in:
      
    
          | Main Author | |
|---|---|
| Format | eBook Book | 
| Language | English | 
| Published | 
        Amsterdam ; Tokyo
          Elsevier
    
        2016
     | 
| Edition | 1 | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9780128053577 0128053577  | 
Cover
                Table of Contents: 
            
                  - Title Page Table of Contents 1. Electromagnetic Theory and Optics 2. Foundations of Ray Optics 3. Ray Optics: Optical Systems and Optical Imaging 4. Interference 5. Diffraction and Scattering 6. Fourier Optics 7. Optical Coherence: Statistical Optics 8. Quantum Optics 9. Nonlinear Optics Bibliography Index
 - 1.13 States of Polarization of a Plane Wave -- 1.13.1 Linear, Circular, and Elliptic Polarization -- 1.13.2 States of Polarization: Summary -- 1.13.3 Intensity of a Polarized Plane Wave -- 1.13.4 Polarized and Unpolarized Waves -- 1.14 Reflection and Refraction at a Planar Interface -- 1.14.1 The Fields and the Boundary Conditions -- 1.14.2 The Laws of Reflection and Refraction -- 1.14.3 The Fresnel Formulae -- 1.14.3.1 Setting up the problem -- 1.14.3.2 Perpendicular polarization -- Phase change in reflection -- 1.14.3.3 Parallel polarization: Brewster's angle -- Brewster's angle -- Parallel polarization: Phase change on reflection -- The case of normal incidence -- 1.15 Total Internal Reflection -- 1.16 Plane Waves: Significance in Electromagnetic Theory and Optics -- 1.17 Electromagnetic Waves in Dispersive Media -- 1.17.1 Susceptibility and Refractive Index in an Isotropic Dielectric -- 1.17.1.1 Introduction: The context -- 1.17.1.2 Dispersion: The basic equations -- 1.17.2 Dispersion: Further Considerations -- 1.17.2.1 The local field: Clausius-Mossotti relation -- 1.17.2.2 Dispersion: The general formula -- 1.17.2.3 The distribution of resonant frequencies -- 1.17.2.4 Types of microscopic response -- 1.17.2.5 The quantum theory of atomic susceptibilities -- 1.17.2.6 Low-frequency and high-frequency limits in dispersion -- 1.17.2.7 Wave propagation in conducting media -- 1.17.2.8 Dispersion as coherent scattering -- 1.17.2.9 Dispersion and absorption: A consequence of causality -- 1.17.2.10 Magnetic permeability: Absence of dispersion -- 1.17.2.11 Dispersion and absorption in water -- 1.17.2.12 Negative refractive index -- 1.17.3 Conducting Media: Absorption and Reflection -- 1.17.3.1 Absorption in a conducting medium -- 1.17.3.2 Reflection from the surface of a conductor -- 1.17.4 Group Velocity
 - 2.3.6.2 Transitions in the nature of stationarity -- 2.3.6.3 Transitions in the nature of stationarity: Example -- 2.3.7 Families of Ray Paths: Caustics and Conjugate Points -- 2.3.8 Caustics and Conjugate Points: Examples -- 2.3.8.1 The spherical mirror: Equation of the caustic -- 2.3.8.2 Refraction at a planar surface -- 2.3.8.3 Reflection at a planar surface -- 2.3.9 Fermat's Principle and the Path Integral -- 2.3.9.1 The path integral in quantum theory -- 2.3.9.2 Path integral and geometrical optics -- 2.3.9.3 Fermat's principle, diffraction, and the path integral -- 2.4 Geometrical Optics: The Luneburg-Kline Approach -- 2.5 Principles of Ray Optics: An Overview -- Chapter 3: Ray Optics: Optical Systems and Optical Imaging -- 3.1 Introduction -- 3.2 Gaussian Optics -- 3.2.1 Gaussian Optics: Introduction -- 3.2.2 Sign Convention in Ray Optics -- 3.2.3 The Ray Coordinates -- 3.2.3.1 Meridional and skew rays -- 3.2.3.2 Reduced angles and distances: The ray coordinates -- 3.2.4 Transfer Matrices -- 3.2.4.1 The translation matrix -- 3.2.4.2 The refraction and reflection matrices -- 3.2.5 The System Matrix -- 3.2.6 Condition for Image Formation: The Conjugation Matrix -- 3.2.6.1 Real and virtual images -- 3.2.6.2 The condition for image formation -- 3.2.6.3 Succession of intermediate images -- 3.2.7 Transverse and Angular Magnifications -- 3.2.7.1 The transverse magnification -- 3.2.7.2 The angular magnification -- 3.2.7.3 The Lagrange invariant -- 3.2.8 The Cardinal Points -- 3.2.8.1 The principal planes -- 3.2.8.2 The focal planes -- 3.2.8.3 The nodal points -- 3.3 Gaussian Optics: Examples -- 3.3.1 A Single Refracting Surface -- 3.3.2 A Thin Lens -- 3.3.3 A Thick Lens -- 3.3.3.1 Thick lens: The general case -- 3.3.3.2 A spherical lens -- 3.3.4 A Combination of Two Thin Lenses -- 3.4 Nonsymmetric Systems: Linear Optics
 - 1.23 Coherent and Incoherent Waves -- Chapter 2: Foundations of Ray Optics -- 2.1 Introduction -- 2.2 The Eikonal Approximation -- 2.2.1 The Eikonal Function -- 2.2.2 The Eikonal Equation -- 2.2.3 The Field Vectors e and h -- 2.2.4 Energy Density and the Poynting Vector -- 2.2.4.1 The energy density -- 2.2.4.2 Eikonal approximation as a local plane wave description -- 2.2.4.3 Spherical and cylindrical dipole fields -- 2.2.4.4 The Poynting vector and intensity -- 2.2.5 The Geometrical Wavefront and the Ray Path -- 2.2.6 Intensity and Its Variation Along a Ray Path -- 2.2.7 Optical Path Length -- 2.2.7.1 Optical path length along an arbitrary path -- 2.2.7.2 The optical path length along a ray path -- 2.2.7.3 Path length and phase difference -- 2.2.7.4 The scalar approach: Phase difference and optical path length -- 2.2.8 The Transport of Field Vectors Along a Ray Path -- 2.2.9 The Laws of Reflection and Refraction -- 2.2.10 The Fresnel Formulae for Reflection and Refraction -- 2.2.11 Reflection and Refraction: A Digression -- 2.2.12 The Eikonal Approximation: Summary -- 2.3 Characterizing the Ray Paths: Fermat's Principle -- 2.3.1 Introduction -- 2.3.2 Digression: Basic Ideas in the Calculus of Variations -- 2.3.2.1 Integrals along a path and their variation -- 2.3.2.2 Parameterization of varied paths -- 2.3.2.3 First-order and higher-order variations in I -- 2.3.2.4 Euler equations in the calculus of variations -- 2.3.3 The Ray Equation and Fermat's Principle -- 2.3.4 Digression: The Lagrangian and Hamiltonian Formulations -- 2.3.5 Fermat's Principle and Ray Optics -- 2.3.5.1 Fermat's principle and the laws of reflection and refraction -- 2.3.5.2 Ray produced backward: Defining the optical path -- 2.3.6 The Nature of Stationarity in Fermat's Principle -- 2.3.6.1 Stationarity related to signs of a set of eigenvalues
 - 3.4.1 Nonsymmetric Systems: Introduction
 - Digression: Frequency as a function of the wave vector for isotropic and anisotropic media -- 1.17.5 Energy Density in a Dispersive Medium -- 1.17.6 Group Velocity and Velocity of Energy Propagation -- 1.17.7 Group Velocity, Signal Velocity, and Causality -- 1.17.7.1 Introduction -- 1.17.7.2 Velocity of energy propagation and ray velocity -- 1.17.7.3 Wave propagation: The work of Sommerfeld and Brillouin -- 1.17.7.4 Superluminal group velocity: Defining the signal velocity -- 1.18 Stationary Waves -- 1.19 Spherical Waves -- 1.19.1 The Scalar Wave Equation and Its Spherical Wave Solutions -- 1.19.2 Vector Spherical Waves -- 1.19.3 Electric and Magnetic Dipole Fields -- 1.19.3.1 The field of an oscillating electric dipole -- 1.19.3.2 The oscillating magnetic dipole -- 1.19.3.3 The dipole field produced by a pinhole -- 1.20 Cylindrical Waves -- 1.20.1 Cylindrical Wave Solutions of the Scalar Wave Equation -- 1.20.2 Vector Cylindrical Waves -- 1.20.2.1 Cylindrical waves produced by narrow slits -- 1.21 Wave Propagation in Anisotropic Media -- 1.21.1 Introduction -- 1.21.2 Propagation of a Plane Wave: The Basics -- 1.21.3 The Phase Velocity Surface -- 1.21.4 The Ray Velocity Surface -- 1.21.5 The Wave Vector and the Ray Vector -- 1.21.6 Polarization of the Field Vectors -- 1.21.7 The Two Ellipsoids -- 1.21.7.1 The index ellipsoid -- 1.21.7.2 The ray ellipsoid -- 1.21.8 Uniaxial and Biaxial Media -- 1.21.9 Propagation in a Uniaxial Medium -- 1.21.10 Double Refraction -- 1.22 Wave Propagation in Metamaterials -- 1.22.1 Electric and Magnetic Response in Dielectrics and Conductors -- 1.22.2 Response in Metamaterials -- 1.22.3 `Left-Handed' Metamaterials and Negative Refractive Index -- 1.22.4 Negative Refractive Index: General Criteria -- 1.22.5 Metamaterials in Optics and in Electromagnetic Phenomena -- 1.22.6 Transformation Optics: The Basic Idea
 - Front Cover -- Basic Optics: Principles and Concepts -- Copyright -- Dedication -- Contents -- Acknowledgments -- Chapter 1: Electromagnetic Theory and Optics -- 1.1 Introduction -- 1.2 Maxwell's Equations in Material Media and in Free Space -- 1.2.1 Electromagnetic Field Variables -- 1.2.1.1 Digression: The naming of the field variables -- 1.2.1.2 Digression: The naming of the field variables and their space-time variations in optics -- 1.2.2 Maxwell's Equations -- 1.2.3 Material Media and the Constitutive Relations -- 1.2.3.1 Linear media -- Digression: tensors and tensor fields -- 1.2.3.2 Nonlinear media -- 1.2.4 Integral Form of Maxwell's Equations -- 1.2.5 Boundary Conditions Across a Surface -- 1.2.6 The Electromagnetic Field in Free Space -- 1.2.7 Microscopic and Macroscopic Variables for a Material Medium -- 1.3 Digression: Vector Differential Operators -- 1.3.1 Curvilinear Coordinates -- 1.3.2 The Differential Operators -- 1.4 Electromagnetic Potentials -- 1.4.1 Gauge Transformations -- 1.4.2 The Lorentz Gauge and the Inhomogeneous Wave Equation -- 1.4.3 The Homogeneous Wave Equation in a Source-Free Region -- 1.5 The Hertz Vector Representation -- 1.6 The Principle of Superposition -- 1.7 The Complex Representation -- 1.8 Energy Density and Energy Flux -- 1.8.1 Energy Density -- 1.8.2 Poynting's Theorem: The Poynting Vector -- 1.8.3 Intensity at a Point -- 1.9 Optical Fields: An Overview -- 1.10 The Uniqueness Theorem -- 1.11 Simple Solutions to Maxwell's Equations -- 1.11.1 Overview -- 1.11.2 Harmonic Time Dependence -- 1.11.2.1 Fictitious magnetic charges and currents -- 1.11.2.2 The Helmholtz equations -- 1.12 The Monochromatic Plane Wave -- 1.12.1 Monochromatic Plane Waves in Free Space -- 1.12.2 Plane Waves in an Isotropic Dielectric -- 1.12.3 Energy Density and Intensity for a Monochromatic Plane Wave