Basic Optics - Principles and Concepts

This book addresses in great details the basic principles of the science of optics, and their related concepts. The book provides a lucid and coherent presentation of an extensive range of concepts from the field of optics, which is of central relevance to several broad areas of science including ph...

Full description

Saved in:
Bibliographic Details
Main Author Lahiri, Avijit
Format eBook Book
LanguageEnglish
Published Amsterdam ; Tokyo Elsevier 2016
Edition1
Subjects
Online AccessGet full text
ISBN9780128053577
0128053577

Cover

Table of Contents:
  • Title Page Table of Contents 1. Electromagnetic Theory and Optics 2. Foundations of Ray Optics 3. Ray Optics: Optical Systems and Optical Imaging 4. Interference 5. Diffraction and Scattering 6. Fourier Optics 7. Optical Coherence: Statistical Optics 8. Quantum Optics 9. Nonlinear Optics Bibliography Index
  • 1.13 States of Polarization of a Plane Wave -- 1.13.1 Linear, Circular, and Elliptic Polarization -- 1.13.2 States of Polarization: Summary -- 1.13.3 Intensity of a Polarized Plane Wave -- 1.13.4 Polarized and Unpolarized Waves -- 1.14 Reflection and Refraction at a Planar Interface -- 1.14.1 The Fields and the Boundary Conditions -- 1.14.2 The Laws of Reflection and Refraction -- 1.14.3 The Fresnel Formulae -- 1.14.3.1 Setting up the problem -- 1.14.3.2 Perpendicular polarization -- Phase change in reflection -- 1.14.3.3 Parallel polarization: Brewster's angle -- Brewster's angle -- Parallel polarization: Phase change on reflection -- The case of normal incidence -- 1.15 Total Internal Reflection -- 1.16 Plane Waves: Significance in Electromagnetic Theory and Optics -- 1.17 Electromagnetic Waves in Dispersive Media -- 1.17.1 Susceptibility and Refractive Index in an Isotropic Dielectric -- 1.17.1.1 Introduction: The context -- 1.17.1.2 Dispersion: The basic equations -- 1.17.2 Dispersion: Further Considerations -- 1.17.2.1 The local field: Clausius-Mossotti relation -- 1.17.2.2 Dispersion: The general formula -- 1.17.2.3 The distribution of resonant frequencies -- 1.17.2.4 Types of microscopic response -- 1.17.2.5 The quantum theory of atomic susceptibilities -- 1.17.2.6 Low-frequency and high-frequency limits in dispersion -- 1.17.2.7 Wave propagation in conducting media -- 1.17.2.8 Dispersion as coherent scattering -- 1.17.2.9 Dispersion and absorption: A consequence of causality -- 1.17.2.10 Magnetic permeability: Absence of dispersion -- 1.17.2.11 Dispersion and absorption in water -- 1.17.2.12 Negative refractive index -- 1.17.3 Conducting Media: Absorption and Reflection -- 1.17.3.1 Absorption in a conducting medium -- 1.17.3.2 Reflection from the surface of a conductor -- 1.17.4 Group Velocity
  • 2.3.6.2 Transitions in the nature of stationarity -- 2.3.6.3 Transitions in the nature of stationarity: Example -- 2.3.7 Families of Ray Paths: Caustics and Conjugate Points -- 2.3.8 Caustics and Conjugate Points: Examples -- 2.3.8.1 The spherical mirror: Equation of the caustic -- 2.3.8.2 Refraction at a planar surface -- 2.3.8.3 Reflection at a planar surface -- 2.3.9 Fermat's Principle and the Path Integral -- 2.3.9.1 The path integral in quantum theory -- 2.3.9.2 Path integral and geometrical optics -- 2.3.9.3 Fermat's principle, diffraction, and the path integral -- 2.4 Geometrical Optics: The Luneburg-Kline Approach -- 2.5 Principles of Ray Optics: An Overview -- Chapter 3: Ray Optics: Optical Systems and Optical Imaging -- 3.1 Introduction -- 3.2 Gaussian Optics -- 3.2.1 Gaussian Optics: Introduction -- 3.2.2 Sign Convention in Ray Optics -- 3.2.3 The Ray Coordinates -- 3.2.3.1 Meridional and skew rays -- 3.2.3.2 Reduced angles and distances: The ray coordinates -- 3.2.4 Transfer Matrices -- 3.2.4.1 The translation matrix -- 3.2.4.2 The refraction and reflection matrices -- 3.2.5 The System Matrix -- 3.2.6 Condition for Image Formation: The Conjugation Matrix -- 3.2.6.1 Real and virtual images -- 3.2.6.2 The condition for image formation -- 3.2.6.3 Succession of intermediate images -- 3.2.7 Transverse and Angular Magnifications -- 3.2.7.1 The transverse magnification -- 3.2.7.2 The angular magnification -- 3.2.7.3 The Lagrange invariant -- 3.2.8 The Cardinal Points -- 3.2.8.1 The principal planes -- 3.2.8.2 The focal planes -- 3.2.8.3 The nodal points -- 3.3 Gaussian Optics: Examples -- 3.3.1 A Single Refracting Surface -- 3.3.2 A Thin Lens -- 3.3.3 A Thick Lens -- 3.3.3.1 Thick lens: The general case -- 3.3.3.2 A spherical lens -- 3.3.4 A Combination of Two Thin Lenses -- 3.4 Nonsymmetric Systems: Linear Optics
  • 1.23 Coherent and Incoherent Waves -- Chapter 2: Foundations of Ray Optics -- 2.1 Introduction -- 2.2 The Eikonal Approximation -- 2.2.1 The Eikonal Function -- 2.2.2 The Eikonal Equation -- 2.2.3 The Field Vectors e and h -- 2.2.4 Energy Density and the Poynting Vector -- 2.2.4.1 The energy density -- 2.2.4.2 Eikonal approximation as a local plane wave description -- 2.2.4.3 Spherical and cylindrical dipole fields -- 2.2.4.4 The Poynting vector and intensity -- 2.2.5 The Geometrical Wavefront and the Ray Path -- 2.2.6 Intensity and Its Variation Along a Ray Path -- 2.2.7 Optical Path Length -- 2.2.7.1 Optical path length along an arbitrary path -- 2.2.7.2 The optical path length along a ray path -- 2.2.7.3 Path length and phase difference -- 2.2.7.4 The scalar approach: Phase difference and optical path length -- 2.2.8 The Transport of Field Vectors Along a Ray Path -- 2.2.9 The Laws of Reflection and Refraction -- 2.2.10 The Fresnel Formulae for Reflection and Refraction -- 2.2.11 Reflection and Refraction: A Digression -- 2.2.12 The Eikonal Approximation: Summary -- 2.3 Characterizing the Ray Paths: Fermat's Principle -- 2.3.1 Introduction -- 2.3.2 Digression: Basic Ideas in the Calculus of Variations -- 2.3.2.1 Integrals along a path and their variation -- 2.3.2.2 Parameterization of varied paths -- 2.3.2.3 First-order and higher-order variations in I -- 2.3.2.4 Euler equations in the calculus of variations -- 2.3.3 The Ray Equation and Fermat's Principle -- 2.3.4 Digression: The Lagrangian and Hamiltonian Formulations -- 2.3.5 Fermat's Principle and Ray Optics -- 2.3.5.1 Fermat's principle and the laws of reflection and refraction -- 2.3.5.2 Ray produced backward: Defining the optical path -- 2.3.6 The Nature of Stationarity in Fermat's Principle -- 2.3.6.1 Stationarity related to signs of a set of eigenvalues
  • 3.4.1 Nonsymmetric Systems: Introduction
  • Digression: Frequency as a function of the wave vector for isotropic and anisotropic media -- 1.17.5 Energy Density in a Dispersive Medium -- 1.17.6 Group Velocity and Velocity of Energy Propagation -- 1.17.7 Group Velocity, Signal Velocity, and Causality -- 1.17.7.1 Introduction -- 1.17.7.2 Velocity of energy propagation and ray velocity -- 1.17.7.3 Wave propagation: The work of Sommerfeld and Brillouin -- 1.17.7.4 Superluminal group velocity: Defining the signal velocity -- 1.18 Stationary Waves -- 1.19 Spherical Waves -- 1.19.1 The Scalar Wave Equation and Its Spherical Wave Solutions -- 1.19.2 Vector Spherical Waves -- 1.19.3 Electric and Magnetic Dipole Fields -- 1.19.3.1 The field of an oscillating electric dipole -- 1.19.3.2 The oscillating magnetic dipole -- 1.19.3.3 The dipole field produced by a pinhole -- 1.20 Cylindrical Waves -- 1.20.1 Cylindrical Wave Solutions of the Scalar Wave Equation -- 1.20.2 Vector Cylindrical Waves -- 1.20.2.1 Cylindrical waves produced by narrow slits -- 1.21 Wave Propagation in Anisotropic Media -- 1.21.1 Introduction -- 1.21.2 Propagation of a Plane Wave: The Basics -- 1.21.3 The Phase Velocity Surface -- 1.21.4 The Ray Velocity Surface -- 1.21.5 The Wave Vector and the Ray Vector -- 1.21.6 Polarization of the Field Vectors -- 1.21.7 The Two Ellipsoids -- 1.21.7.1 The index ellipsoid -- 1.21.7.2 The ray ellipsoid -- 1.21.8 Uniaxial and Biaxial Media -- 1.21.9 Propagation in a Uniaxial Medium -- 1.21.10 Double Refraction -- 1.22 Wave Propagation in Metamaterials -- 1.22.1 Electric and Magnetic Response in Dielectrics and Conductors -- 1.22.2 Response in Metamaterials -- 1.22.3 `Left-Handed' Metamaterials and Negative Refractive Index -- 1.22.4 Negative Refractive Index: General Criteria -- 1.22.5 Metamaterials in Optics and in Electromagnetic Phenomena -- 1.22.6 Transformation Optics: The Basic Idea
  • Front Cover -- Basic Optics: Principles and Concepts -- Copyright -- Dedication -- Contents -- Acknowledgments -- Chapter 1: Electromagnetic Theory and Optics -- 1.1 Introduction -- 1.2 Maxwell's Equations in Material Media and in Free Space -- 1.2.1 Electromagnetic Field Variables -- 1.2.1.1 Digression: The naming of the field variables -- 1.2.1.2 Digression: The naming of the field variables and their space-time variations in optics -- 1.2.2 Maxwell's Equations -- 1.2.3 Material Media and the Constitutive Relations -- 1.2.3.1 Linear media -- Digression: tensors and tensor fields -- 1.2.3.2 Nonlinear media -- 1.2.4 Integral Form of Maxwell's Equations -- 1.2.5 Boundary Conditions Across a Surface -- 1.2.6 The Electromagnetic Field in Free Space -- 1.2.7 Microscopic and Macroscopic Variables for a Material Medium -- 1.3 Digression: Vector Differential Operators -- 1.3.1 Curvilinear Coordinates -- 1.3.2 The Differential Operators -- 1.4 Electromagnetic Potentials -- 1.4.1 Gauge Transformations -- 1.4.2 The Lorentz Gauge and the Inhomogeneous Wave Equation -- 1.4.3 The Homogeneous Wave Equation in a Source-Free Region -- 1.5 The Hertz Vector Representation -- 1.6 The Principle of Superposition -- 1.7 The Complex Representation -- 1.8 Energy Density and Energy Flux -- 1.8.1 Energy Density -- 1.8.2 Poynting's Theorem: The Poynting Vector -- 1.8.3 Intensity at a Point -- 1.9 Optical Fields: An Overview -- 1.10 The Uniqueness Theorem -- 1.11 Simple Solutions to Maxwell's Equations -- 1.11.1 Overview -- 1.11.2 Harmonic Time Dependence -- 1.11.2.1 Fictitious magnetic charges and currents -- 1.11.2.2 The Helmholtz equations -- 1.12 The Monochromatic Plane Wave -- 1.12.1 Monochromatic Plane Waves in Free Space -- 1.12.2 Plane Waves in an Isotropic Dielectric -- 1.12.3 Energy Density and Intensity for a Monochromatic Plane Wave