Platinum and Gold Supported on Transition Metal Nitrides for Hydrogen Evolution in an Alkaline Electrolyte

As the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has emerged as a promising technology. Alkaline electrolyzers typically exhibit lower current densities than acidic electrolyzers due to the slow kin...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 39; no. 11; pp. 5587 - 5593
Main Authors Nichols, Nathaniel N., Han, Xue, Kang, Sinwoo, Zhao, Hanjun, Kattel, Shyam, Chen, Jingguang G.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.03.2025
American Chemical Society (ACS)
Subjects
Online AccessGet full text
ISSN0887-0624
1520-5029
1520-5029
DOI10.1021/acs.energyfuels.5c00198

Cover

Abstract As the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has emerged as a promising technology. Alkaline electrolyzers typically exhibit lower current densities than acidic electrolyzers due to the slow kinetics of the hydrogen evolution reaction (HER) under alkaline conditions. This work developed Pt- and Au-modified transition metal nitride (TMN) thin films for improving alkaline HER kinetics. One monolayer Pt–VN, Pt–Mo2N, and Pt–TiN were the most promising thin-film catalysts, with alkaline HER activity approaching that of a bulk Pt foil. Additionally, the Gibbs free energy of adsorbed hydrogen was identified as a useful descriptor for alkaline HER activity on TMN and TMN-supported catalysts and has the potential to guide future studies on TMN-based catalysts for enhancing alkaline HER. For practical applications, the thin-film catalysts were then extended to Pt- and Au-modified TMN powders for alkaline HER. Both 5 wt % Pt/TiN and 2 wt % Pt/TiN powders exhibited lower overpotentials at 5 mA/cm2 when normalized by the Pt electrochemical surface area than the commercial 5 wt % Pt/C benchmark, suggesting a Pt–TiN synergy that creates opportunities for more cost-effective alkaline HER cathodes. Moreover, 20 wt % Au/Mo2N also displayed an enhancement in HER activity when compared to the commercial 20 wt % Au/C benchmark.
AbstractList As the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has emerged as a promising technology. Alkaline electrolyzers typically exhibit lower current densities than acidic electrolyzers due to the slow kinetics of the hydrogen evolution reaction (HER) under alkaline conditions. This work developed Pt- and Au-modified transition metal nitride (TMN) thin films for improving alkaline HER kinetics. One monolayer Pt–VN, Pt–Mo₂N, and Pt–TiN were the most promising thin-film catalysts, with alkaline HER activity approaching that of a bulk Pt foil. Additionally, the Gibbs free energy of adsorbed hydrogen was identified as a useful descriptor for alkaline HER activity on TMN and TMN-supported catalysts and has the potential to guide future studies on TMN-based catalysts for enhancing alkaline HER. For practical applications, the thin-film catalysts were then extended to Pt- and Au-modified TMN powders for alkaline HER. Both 5 wt % Pt/TiN and 2 wt % Pt/TiN powders exhibited lower overpotentials at 5 mA/cm² when normalized by the Pt electrochemical surface area than the commercial 5 wt % Pt/C benchmark, suggesting a Pt–TiN synergy that creates opportunities for more cost-effective alkaline HER cathodes. Moreover, 20 wt % Au/Mo₂N also displayed an enhancement in HER activity when compared to the commercial 20 wt % Au/C benchmark.
As the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has emerged as a promising technology. Alkaline electrolyzers typically exhibit lower current densities than acidic electrolyzers due to the slow kinetics of the hydrogen evolution reaction (HER) under alkaline conditions. This work developed Pt- and Au-modified transition metal nitride (TMN) thin films for improving alkaline HER kinetics. One monolayer Pt–VN, Pt–Mo2N, and Pt–TiN were the most promising thin-film catalysts, with alkaline HER activity approaching that of a bulk Pt foil. Additionally, the Gibbs free energy of adsorbed hydrogen was identified as a useful descriptor for alkaline HER activity on TMN and TMN-supported catalysts and has the potential to guide future studies on TMN-based catalysts for enhancing alkaline HER. For practical applications, the thin-film catalysts were then extended to Pt- and Au-modified TMN powders for alkaline HER. Both 5 wt % Pt/TiN and 2 wt % Pt/TiN powders exhibited lower overpotentials at 5 mA/cm2 when normalized by the Pt electrochemical surface area than the commercial 5 wt % Pt/C benchmark, suggesting a Pt–TiN synergy that creates opportunities for more cost-effective alkaline HER cathodes. Moreover, 20 wt % Au/Mo2N also displayed an enhancement in HER activity when compared to the commercial 20 wt % Au/C benchmark.
Here, as the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has emerged as a promising technology. Alkaline electrolyzers typically exhibit lower current densities than acidic electrolyzers due to the slow kinetics of the hydrogen evolution reaction (HER) under alkaline conditions. This work developed Pt- and Au-modified transition metal nitride (TMN) thin films for improving alkaline HER kinetics. One monolayer Pt–VN, Pt–Mo2N, and Pt–TiN were the most promising thin-film catalysts, with alkaline HER activity approaching that of a bulk Pt foil. Additionally, the Gibbs free energy of adsorbed hydrogen was identified as a useful descriptor for alkaline HER activity on TMN and TMN-supported catalysts and has the potential to guide future studies on TMN-based catalysts for enhancing alkaline HER. For practical applications, the thin-film catalysts were then extended to Pt- and Au-modified TMN powders for alkaline HER. Both 5 wt % Pt/TiN and 2 wt % Pt/TiN powders exhibited lower overpotentials at 5 mA/cm2 when normalized by the Pt electrochemical surface area than the commercial 5 wt % Pt/C benchmark, suggesting a Pt–TiN synergy that creates opportunities for more cost-effective alkaline HER cathodes. Moreover, 20 wt % Au/Mo2N also displayed an enhancement in HER activity when compared to the commercial 20 wt % Au/C benchmark.
Author Nichols, Nathaniel N.
Kang, Sinwoo
Zhao, Hanjun
Han, Xue
Chen, Jingguang G.
Kattel, Shyam
AuthorAffiliation Department of Chemical Engineering
Chemistry Division
Department of Physics
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Chemistry Division
– name: Department of Physics
Author_xml – sequence: 1
  givenname: Nathaniel N.
  surname: Nichols
  fullname: Nichols, Nathaniel N.
  organization: Department of Chemical Engineering
– sequence: 2
  givenname: Xue
  surname: Han
  fullname: Han, Xue
  organization: Chemistry Division
– sequence: 3
  givenname: Sinwoo
  orcidid: 0000-0001-8069-891X
  surname: Kang
  fullname: Kang, Sinwoo
  organization: Chemistry Division
– sequence: 4
  givenname: Hanjun
  surname: Zhao
  fullname: Zhao, Hanjun
  organization: Department of Chemical Engineering
– sequence: 5
  givenname: Shyam
  orcidid: 0000-0002-5843-5889
  surname: Kattel
  fullname: Kattel, Shyam
  organization: Department of Physics
– sequence: 6
  givenname: Jingguang G.
  orcidid: 0000-0002-9592-2635
  surname: Chen
  fullname: Chen, Jingguang G.
  email: jgchen@columbia.edu
  organization: Chemistry Division
BackLink https://www.osti.gov/biblio/2549224$$D View this record in Osti.gov
BookMark eNqFkU1vGyEQhlGVSnXS_oainHpZd5ZdluUYRW5SKR-Vmp4RhiHFweACG8n_Pus4h95ymjk876sZPafkJKaIhHxtYdkCa79rU5YYMT_u3YShLLkBaOX4gSxazqDhwOQJWcA4igYG1n8ip6VsAGDoRr4gm19BVx-nLdXR0qsULP097XYpV7Q0RfqQdSy--nm9xaoDvfM1e4uFupTp9d7m9IiRrp5TmF4pH-cmehGedPAR6SqgqTmFfcXP5KPToeCXt3lG_vxYPVxeNzf3Vz8vL24azTpRm2HNBuzNmvdMCGdQCs0EmHF0wDtrhTmslsu1cyCldN2ajbxjOA68ZQxsd0bOj72pVK-K8RXNX5NinC9RjPeSsX6Gvh2hXU7_JixVbX0xGIKOmKaiOgbABileUXFETU6lZHRql_1W571qQR0UqFmB-k-BelMwJ7tj8gBs0pTj_Pe7qRfYXZNa
Cites_doi 10.1016/j.surfcoat.2010.08.082
10.1149/1.2359692
10.1016/j.egyr.2022.10.127
10.1016/j.ijhydene.2016.01.167
10.1016/j.ijhydene.2020.06.186
10.1021/cr950232u
10.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.0.CO;2-7
10.1107/S0909049505012719
10.1238/Physica.Topical.115a01007
10.1016/0927-0256(96)00008-0
10.1039/c3ee00045a
10.1021/acsmaterialsau.1c00067
10.1016/j.joule.2017.07.002
10.1016/j.checat.2023.100867
10.1038/s41467-019-11352-0
10.1039/C5EE02657A
10.1063/1.4960806
10.1021/ja208656v
10.1007/978-94-009-0917-5_4
10.1088/2515-7655/acbe1b
10.1103/PhysRevB.48.13115
10.1039/c1ee01851e
10.1016/j.jallcom.2007.09.110
10.1002/celc.202001436
10.1039/C7TA01907F
10.1021/acscatal.8b03990
10.1002/anie.202110352
10.1016/j.tsf.2019.06.051
10.1039/c3ee41006d
10.1016/j.susc.2006.12.010
10.1021/jacsau.4c00898
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
DBID AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1021/acs.energyfuels.5c00198
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 5593
ExternalDocumentID 2549224
10_1021_acs_energyfuels_5c00198
b156852508
GroupedDBID -~X
.DC
4.4
55A
5GY
5VS
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
ZCA
~02
AAYXX
ABBLG
ABLBI
CITATION
7S9
L.6
OTOTI
ID FETCH-LOGICAL-a237t-6b26e4cb54277fce97a270c88f053dd7cc88fd59bff0999f3b28532e8651220d3
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Mon Apr 14 02:30:57 EDT 2025
Wed Jul 02 04:41:06 EDT 2025
Tue Jul 01 05:17:36 EDT 2025
Fri Mar 21 03:24:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a237t-6b26e4cb54277fce97a270c88f053dd7cc88fd59bff0999f3b28532e8651220d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
BNL-227967-2025-JAAM
SC0012704; SC00234430; SC0012653; SC0012335
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB)
ORCID 0000-0002-5843-5889
0000-0002-9592-2635
0000-0001-8069-891X
0000000258435889
000000018069891X
0000000295922635
0000000221909227
PQID 3200269724
PQPubID 24069
PageCount 7
ParticipantIDs osti_scitechconnect_2549224
proquest_miscellaneous_3200269724
crossref_primary_10_1021_acs_energyfuels_5c00198
acs_journals_10_1021_acs_energyfuels_5c00198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-06
PublicationDateYYYYMMDD 2025-03-06
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2025
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
Moulder J. F. (ref23/cit23) 1992
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref21/cit21
  doi: 10.1016/j.surfcoat.2010.08.082
– ident: ref2/cit2
– ident: ref9/cit9
– ident: ref24/cit24
  doi: 10.1149/1.2359692
– ident: ref6/cit6
  doi: 10.1016/j.egyr.2022.10.127
– ident: ref27/cit27
  doi: 10.1016/j.ijhydene.2016.01.167
– ident: ref33/cit33
  doi: 10.1016/j.ijhydene.2020.06.186
– ident: ref11/cit11
  doi: 10.1021/cr950232u
– ident: ref4/cit4
– ident: ref15/cit15
  doi: 10.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.0.CO;2-7
– ident: ref31/cit31
  doi: 10.1107/S0909049505012719
– ident: ref32/cit32
  doi: 10.1238/Physica.Topical.115a01007
– ident: ref35/cit35
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref28/cit28
  doi: 10.1039/c3ee00045a
– ident: ref25/cit25
  doi: 10.1021/acsmaterialsau.1c00067
– ident: ref1/cit1
  doi: 10.1016/j.joule.2017.07.002
– ident: ref12/cit12
  doi: 10.1016/j.checat.2023.100867
– ident: ref8/cit8
– ident: ref30/cit30
  doi: 10.1038/s41467-019-11352-0
– ident: ref3/cit3
  doi: 10.1039/C5EE02657A
– ident: ref20/cit20
  doi: 10.1063/1.4960806
– ident: ref16/cit16
  doi: 10.1021/ja208656v
– ident: ref14/cit14
  doi: 10.1007/978-94-009-0917-5_4
– volume-title: Handbook of X-ray Photoelectron Spectroscopy
  year: 1992
  ident: ref23/cit23
– ident: ref26/cit26
  doi: 10.1088/2515-7655/acbe1b
– ident: ref36/cit36
  doi: 10.1103/PhysRevB.48.13115
– ident: ref10/cit10
  doi: 10.1039/c1ee01851e
– ident: ref19/cit19
  doi: 10.1016/j.jallcom.2007.09.110
– ident: ref5/cit5
  doi: 10.1002/celc.202001436
– ident: ref7/cit7
  doi: 10.1039/C7TA01907F
– ident: ref34/cit34
  doi: 10.1021/acscatal.8b03990
– ident: ref29/cit29
  doi: 10.1002/anie.202110352
– ident: ref22/cit22
  doi: 10.1016/j.tsf.2019.06.051
– ident: ref17/cit17
  doi: 10.1039/c3ee41006d
– ident: ref18/cit18
  doi: 10.1016/j.susc.2006.12.010
– ident: ref13/cit13
  doi: 10.1021/jacsau.4c00898
SSID ssj0006385
Score 2.4736562
Snippet As the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has...
Here, as the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis...
SourceID osti
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5587
SubjectTerms carbon dioxide
Catalysis and Kinetics
Catalysts
cost effectiveness
electrochemistry
electrolysis
electrolytes
energy
Evolution reactions
foil
GEOSCIENCES
Gibbs free energy
Gold
Granular materials
hydrogen
Hydrogen evolution reaction
hydrogen production
nitrides
Platinum
surface area
Thin films
Transition metal nitrides
X-ray absorption spectroscopy
Title Platinum and Gold Supported on Transition Metal Nitrides for Hydrogen Evolution in an Alkaline Electrolyte
URI http://dx.doi.org/10.1021/acs.energyfuels.5c00198
https://www.proquest.com/docview/3200269724
https://www.osti.gov/biblio/2549224
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS9xAEMcHe31ofaitrXjayhb62FzvNptk8yjH6SEoYiv4tuxPuHpN5JII-tc7k0uKRaTtWwjJkuzM7nyS_e4MwJfY5l5ywyOTuxAJG-LIaAQ5bmWmhXZ5aug_5OlZOr8UJ1fJ1QZMnlnB55Nv2lYj3-6DCw2Gi1FiCUvkC3jJU4w2REPT778nX3SnpE_uOU656CVdzzdEYclWf4SlQYnD68nk3Eacoy246PftrIUm16OmNiN7_zSN47-_zFt40_EnO1w7zDvY8MU2vJr2Zd-2YfNRhsL38POctHJF84vpwrHjcukY1QElha5jZcHaUNeqvtipR45nZ4t6tXC-YgjDbH7nViV6KJvddh7OFgW2xA6X15r4ls3WVXiWd7X_AJdHsx_TedSVZ4g0j7M6Sg1PvbAmETzLgvV5pnk2tlIGHNjOZZYOXZKbEAhDQ2w4sgH3MkXI4GMX78CgKAu_CywYLaQNGq-UAhuS3vpYWo4wHTROO0P4ij2nuuFVqXblnE8UnXzUnarrziGMe2Oqm3XSjr_fsk9GV8gdlDzXksrI1oo-nxFyhvC59wWF5qA1FV34sqlUTCKXNM-42Pu_Z9yH15xKCbfFHD_CoF41_hPyTW0OWo9-AEk5-2U
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcCg98CggQnksEkcc0vXaXh-jKCVAEyHRSuW02qcUGuwqtpHKr2fGsUsBIQQ3a2WP1juzO5-9384H8DK2uZfc8MjkLkTChjgyGoEctzLTQrs8NfQfcrFM56fi3VlytgOyPwuDnajQUtVu4v-oLnD4mtp8exwuNJg1RokldCJvwM0kFSmJNkymH6_WYIyqpK_xOU656JldfzZE2clWP2WnQYmz7Lc1uk08R3fg01WXW77J-aipzch--6Wa4_-801243aFRNtmGzz3Y8cU-7E57Ebh92LtWr_A-fP5AzLmi-cJ04dibcu0YqYISX9exsmBt4ms5YGzhEdWz5arerJyvGEJjNr90mxLjlc2-dvHOVgVaYpP1uSa0y2ZbTZ71Ze0fwOnR7GQ6jzqxhkjzOKuj1PDUC2sSwbMsWJ9nmmdjK2XAae5cZunSJbkJgUBpiA1HpMC9TBFy8LGLH8KgKAv_CFgwWkgbNN4pBRqS3vpYWo7QOmhchIbwCkdOdZOtUu0-Oj9U1HhtOFU3nEMY9z5VF9sSHn9_5IB8rxCFUCldS5wjWyv6mEbIM4QXfUgodAftsOjCl02lYqK8pHnGxeN_6-Nz2J2fLI7V8dvl-wO4xUlkuJV5fAKDetP4p4h8avOsDfLvbsgD1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VIHE8FCigpi2wSDziNFlfa4mXKCSEo1ElqNQXtNpTCk3tKraR2l_PjGNXBYQQvFkre7SeY-ezd3Y-gFehyZzgmgc6sz6IjA8DrRDIcSNSFSmbJZr-Qx4tkvlJ9OE0Pt2CN91ZGJxEiZLKZhOfovrC-rbDwOiQxl1zJM7XmDkGsSGEIm7BbYQlIyJuGE8-X6_D6Flx1-dzmPCoq-76syDKUKb8KUP1Coy039bpJvnMHsDX62k3NSdng7rSA3P1S0fH_32vh7DdolI23rjRI9hy-Q7cnXRkcDtw_0bfwsfw7Zgq6PL6nKncsnfFyjJiB6W6XcuKnDUJsKkFY0cO0T1bLKv10rqSIURm80u7LtBv2fR76_dsmaMkNl6dKUK9bLrh5lldVu4JnMymXybzoCVtCBQP0ypINE9cZHQc8TT1xmWp4unQCOEx3K1NDV3aONPeEzj1oeaIGLgTaEHOhzZ8Cr28yN0uMK9VJIxXeKeIUJBwxoXCcITYXuFi1IfXqDnZBl0pm_10PpI0eEOdslVnH4adXeXFppXH3x_ZJ_tLRCPUUtdQ7ZGpJH1UI_Tpw8vOLSSag3ZaVO6KupQhlb4kWcqjvX-b4wu4c_x2Jj-9X3zch3ucuIYbtscD6FXr2j1DAFTp542f_wCTaAZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platinum+and+Gold+Supported+on+Transition+Metal+Nitrides+for+Hydrogen+Evolution+in+an+Alkaline+Electrolyte&rft.jtitle=Energy+%26+fuels&rft.au=Nichols%2C+Nathaniel+N.&rft.au=Han%2C+Xue&rft.au=Kang%2C+Sinwoo&rft.au=Zhao%2C+Hanjun&rft.date=2025-03-06&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=39&rft.issue=11&rft.spage=5587&rft.epage=5593&rft_id=info:doi/10.1021%2Facs.energyfuels.5c00198&rft.externalDocID=b156852508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon