Platinum and Gold Supported on Transition Metal Nitrides for Hydrogen Evolution in an Alkaline Electrolyte
As the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has emerged as a promising technology. Alkaline electrolyzers typically exhibit lower current densities than acidic electrolyzers due to the slow kin...
Saved in:
Published in | Energy & fuels Vol. 39; no. 11; pp. 5587 - 5593 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.03.2025
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
ISSN | 0887-0624 1520-5029 1520-5029 |
DOI | 10.1021/acs.energyfuels.5c00198 |
Cover
Abstract | As the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has emerged as a promising technology. Alkaline electrolyzers typically exhibit lower current densities than acidic electrolyzers due to the slow kinetics of the hydrogen evolution reaction (HER) under alkaline conditions. This work developed Pt- and Au-modified transition metal nitride (TMN) thin films for improving alkaline HER kinetics. One monolayer Pt–VN, Pt–Mo2N, and Pt–TiN were the most promising thin-film catalysts, with alkaline HER activity approaching that of a bulk Pt foil. Additionally, the Gibbs free energy of adsorbed hydrogen was identified as a useful descriptor for alkaline HER activity on TMN and TMN-supported catalysts and has the potential to guide future studies on TMN-based catalysts for enhancing alkaline HER. For practical applications, the thin-film catalysts were then extended to Pt- and Au-modified TMN powders for alkaline HER. Both 5 wt % Pt/TiN and 2 wt % Pt/TiN powders exhibited lower overpotentials at 5 mA/cm2 when normalized by the Pt electrochemical surface area than the commercial 5 wt % Pt/C benchmark, suggesting a Pt–TiN synergy that creates opportunities for more cost-effective alkaline HER cathodes. Moreover, 20 wt % Au/Mo2N also displayed an enhancement in HER activity when compared to the commercial 20 wt % Au/C benchmark. |
---|---|
AbstractList | As the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has emerged as a promising technology. Alkaline electrolyzers typically exhibit lower current densities than acidic electrolyzers due to the slow kinetics of the hydrogen evolution reaction (HER) under alkaline conditions. This work developed Pt- and Au-modified transition metal nitride (TMN) thin films for improving alkaline HER kinetics. One monolayer Pt–VN, Pt–Mo₂N, and Pt–TiN were the most promising thin-film catalysts, with alkaline HER activity approaching that of a bulk Pt foil. Additionally, the Gibbs free energy of adsorbed hydrogen was identified as a useful descriptor for alkaline HER activity on TMN and TMN-supported catalysts and has the potential to guide future studies on TMN-based catalysts for enhancing alkaline HER. For practical applications, the thin-film catalysts were then extended to Pt- and Au-modified TMN powders for alkaline HER. Both 5 wt % Pt/TiN and 2 wt % Pt/TiN powders exhibited lower overpotentials at 5 mA/cm² when normalized by the Pt electrochemical surface area than the commercial 5 wt % Pt/C benchmark, suggesting a Pt–TiN synergy that creates opportunities for more cost-effective alkaline HER cathodes. Moreover, 20 wt % Au/Mo₂N also displayed an enhancement in HER activity when compared to the commercial 20 wt % Au/C benchmark. As the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has emerged as a promising technology. Alkaline electrolyzers typically exhibit lower current densities than acidic electrolyzers due to the slow kinetics of the hydrogen evolution reaction (HER) under alkaline conditions. This work developed Pt- and Au-modified transition metal nitride (TMN) thin films for improving alkaline HER kinetics. One monolayer Pt–VN, Pt–Mo2N, and Pt–TiN were the most promising thin-film catalysts, with alkaline HER activity approaching that of a bulk Pt foil. Additionally, the Gibbs free energy of adsorbed hydrogen was identified as a useful descriptor for alkaline HER activity on TMN and TMN-supported catalysts and has the potential to guide future studies on TMN-based catalysts for enhancing alkaline HER. For practical applications, the thin-film catalysts were then extended to Pt- and Au-modified TMN powders for alkaline HER. Both 5 wt % Pt/TiN and 2 wt % Pt/TiN powders exhibited lower overpotentials at 5 mA/cm2 when normalized by the Pt electrochemical surface area than the commercial 5 wt % Pt/C benchmark, suggesting a Pt–TiN synergy that creates opportunities for more cost-effective alkaline HER cathodes. Moreover, 20 wt % Au/Mo2N also displayed an enhancement in HER activity when compared to the commercial 20 wt % Au/C benchmark. Here, as the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has emerged as a promising technology. Alkaline electrolyzers typically exhibit lower current densities than acidic electrolyzers due to the slow kinetics of the hydrogen evolution reaction (HER) under alkaline conditions. This work developed Pt- and Au-modified transition metal nitride (TMN) thin films for improving alkaline HER kinetics. One monolayer Pt–VN, Pt–Mo2N, and Pt–TiN were the most promising thin-film catalysts, with alkaline HER activity approaching that of a bulk Pt foil. Additionally, the Gibbs free energy of adsorbed hydrogen was identified as a useful descriptor for alkaline HER activity on TMN and TMN-supported catalysts and has the potential to guide future studies on TMN-based catalysts for enhancing alkaline HER. For practical applications, the thin-film catalysts were then extended to Pt- and Au-modified TMN powders for alkaline HER. Both 5 wt % Pt/TiN and 2 wt % Pt/TiN powders exhibited lower overpotentials at 5 mA/cm2 when normalized by the Pt electrochemical surface area than the commercial 5 wt % Pt/C benchmark, suggesting a Pt–TiN synergy that creates opportunities for more cost-effective alkaline HER cathodes. Moreover, 20 wt % Au/Mo2N also displayed an enhancement in HER activity when compared to the commercial 20 wt % Au/C benchmark. |
Author | Nichols, Nathaniel N. Kang, Sinwoo Zhao, Hanjun Han, Xue Chen, Jingguang G. Kattel, Shyam |
AuthorAffiliation | Department of Chemical Engineering Chemistry Division Department of Physics |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Chemistry Division – name: Department of Physics |
Author_xml | – sequence: 1 givenname: Nathaniel N. surname: Nichols fullname: Nichols, Nathaniel N. organization: Department of Chemical Engineering – sequence: 2 givenname: Xue surname: Han fullname: Han, Xue organization: Chemistry Division – sequence: 3 givenname: Sinwoo orcidid: 0000-0001-8069-891X surname: Kang fullname: Kang, Sinwoo organization: Chemistry Division – sequence: 4 givenname: Hanjun surname: Zhao fullname: Zhao, Hanjun organization: Department of Chemical Engineering – sequence: 5 givenname: Shyam orcidid: 0000-0002-5843-5889 surname: Kattel fullname: Kattel, Shyam organization: Department of Physics – sequence: 6 givenname: Jingguang G. orcidid: 0000-0002-9592-2635 surname: Chen fullname: Chen, Jingguang G. email: jgchen@columbia.edu organization: Chemistry Division |
BackLink | https://www.osti.gov/biblio/2549224$$D View this record in Osti.gov |
BookMark | eNqFkU1vGyEQhlGVSnXS_oainHpZd5ZdluUYRW5SKR-Vmp4RhiHFweACG8n_Pus4h95ymjk876sZPafkJKaIhHxtYdkCa79rU5YYMT_u3YShLLkBaOX4gSxazqDhwOQJWcA4igYG1n8ip6VsAGDoRr4gm19BVx-nLdXR0qsULP097XYpV7Q0RfqQdSy--nm9xaoDvfM1e4uFupTp9d7m9IiRrp5TmF4pH-cmehGedPAR6SqgqTmFfcXP5KPToeCXt3lG_vxYPVxeNzf3Vz8vL24azTpRm2HNBuzNmvdMCGdQCs0EmHF0wDtrhTmslsu1cyCldN2ajbxjOA68ZQxsd0bOj72pVK-K8RXNX5NinC9RjPeSsX6Gvh2hXU7_JixVbX0xGIKOmKaiOgbABileUXFETU6lZHRql_1W571qQR0UqFmB-k-BelMwJ7tj8gBs0pTj_Pe7qRfYXZNa |
Cites_doi | 10.1016/j.surfcoat.2010.08.082 10.1149/1.2359692 10.1016/j.egyr.2022.10.127 10.1016/j.ijhydene.2016.01.167 10.1016/j.ijhydene.2020.06.186 10.1021/cr950232u 10.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.0.CO;2-7 10.1107/S0909049505012719 10.1238/Physica.Topical.115a01007 10.1016/0927-0256(96)00008-0 10.1039/c3ee00045a 10.1021/acsmaterialsau.1c00067 10.1016/j.joule.2017.07.002 10.1016/j.checat.2023.100867 10.1038/s41467-019-11352-0 10.1039/C5EE02657A 10.1063/1.4960806 10.1021/ja208656v 10.1007/978-94-009-0917-5_4 10.1088/2515-7655/acbe1b 10.1103/PhysRevB.48.13115 10.1039/c1ee01851e 10.1016/j.jallcom.2007.09.110 10.1002/celc.202001436 10.1039/C7TA01907F 10.1021/acscatal.8b03990 10.1002/anie.202110352 10.1016/j.tsf.2019.06.051 10.1039/c3ee41006d 10.1016/j.susc.2006.12.010 10.1021/jacsau.4c00898 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) |
CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) |
DBID | AAYXX CITATION 7S9 L.6 OTOTI |
DOI | 10.1021/acs.energyfuels.5c00198 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5029 |
EndPage | 5593 |
ExternalDocumentID | 2549224 10_1021_acs_energyfuels_5c00198 b156852508 |
GroupedDBID | -~X .DC 4.4 55A 5GY 5VS 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F ZCA ~02 AAYXX ABBLG ABLBI CITATION 7S9 L.6 OTOTI |
ID | FETCH-LOGICAL-a237t-6b26e4cb54277fce97a270c88f053dd7cc88fd59bff0999f3b28532e8651220d3 |
IEDL.DBID | ACS |
ISSN | 0887-0624 1520-5029 |
IngestDate | Mon Apr 14 02:30:57 EDT 2025 Wed Jul 02 04:41:06 EDT 2025 Tue Jul 01 05:17:36 EDT 2025 Fri Mar 21 03:24:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a237t-6b26e4cb54277fce97a270c88f053dd7cc88fd59bff0999f3b28532e8651220d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF) BNL-227967-2025-JAAM SC0012704; SC00234430; SC0012653; SC0012335 USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB) |
ORCID | 0000-0002-5843-5889 0000-0002-9592-2635 0000-0001-8069-891X 0000000258435889 000000018069891X 0000000295922635 0000000221909227 |
PQID | 3200269724 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_2549224 proquest_miscellaneous_3200269724 crossref_primary_10_1021_acs_energyfuels_5c00198 acs_journals_10_1021_acs_energyfuels_5c00198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-06 |
PublicationDateYYYYMMDD | 2025-03-06 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Energy & fuels |
PublicationTitleAlternate | Energy Fuels |
PublicationYear | 2025 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 Moulder J. F. (ref23/cit23) 1992 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref21/cit21 doi: 10.1016/j.surfcoat.2010.08.082 – ident: ref2/cit2 – ident: ref9/cit9 – ident: ref24/cit24 doi: 10.1149/1.2359692 – ident: ref6/cit6 doi: 10.1016/j.egyr.2022.10.127 – ident: ref27/cit27 doi: 10.1016/j.ijhydene.2016.01.167 – ident: ref33/cit33 doi: 10.1016/j.ijhydene.2020.06.186 – ident: ref11/cit11 doi: 10.1021/cr950232u – ident: ref4/cit4 – ident: ref15/cit15 doi: 10.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.0.CO;2-7 – ident: ref31/cit31 doi: 10.1107/S0909049505012719 – ident: ref32/cit32 doi: 10.1238/Physica.Topical.115a01007 – ident: ref35/cit35 doi: 10.1016/0927-0256(96)00008-0 – ident: ref28/cit28 doi: 10.1039/c3ee00045a – ident: ref25/cit25 doi: 10.1021/acsmaterialsau.1c00067 – ident: ref1/cit1 doi: 10.1016/j.joule.2017.07.002 – ident: ref12/cit12 doi: 10.1016/j.checat.2023.100867 – ident: ref8/cit8 – ident: ref30/cit30 doi: 10.1038/s41467-019-11352-0 – ident: ref3/cit3 doi: 10.1039/C5EE02657A – ident: ref20/cit20 doi: 10.1063/1.4960806 – ident: ref16/cit16 doi: 10.1021/ja208656v – ident: ref14/cit14 doi: 10.1007/978-94-009-0917-5_4 – volume-title: Handbook of X-ray Photoelectron Spectroscopy year: 1992 ident: ref23/cit23 – ident: ref26/cit26 doi: 10.1088/2515-7655/acbe1b – ident: ref36/cit36 doi: 10.1103/PhysRevB.48.13115 – ident: ref10/cit10 doi: 10.1039/c1ee01851e – ident: ref19/cit19 doi: 10.1016/j.jallcom.2007.09.110 – ident: ref5/cit5 doi: 10.1002/celc.202001436 – ident: ref7/cit7 doi: 10.1039/C7TA01907F – ident: ref34/cit34 doi: 10.1021/acscatal.8b03990 – ident: ref29/cit29 doi: 10.1002/anie.202110352 – ident: ref22/cit22 doi: 10.1016/j.tsf.2019.06.051 – ident: ref17/cit17 doi: 10.1039/c3ee41006d – ident: ref18/cit18 doi: 10.1016/j.susc.2006.12.010 – ident: ref13/cit13 doi: 10.1021/jacsau.4c00898 |
SSID | ssj0006385 |
Score | 2.4736562 |
Snippet | As the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis has... Here, as the urgency to reduce reliance on fossil fuels increases due to carbon dioxide emissions, hydrogen produced by renewably powered water electrolysis... |
SourceID | osti proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 5587 |
SubjectTerms | carbon dioxide Catalysis and Kinetics Catalysts cost effectiveness electrochemistry electrolysis electrolytes energy Evolution reactions foil GEOSCIENCES Gibbs free energy Gold Granular materials hydrogen Hydrogen evolution reaction hydrogen production nitrides Platinum surface area Thin films Transition metal nitrides X-ray absorption spectroscopy |
Title | Platinum and Gold Supported on Transition Metal Nitrides for Hydrogen Evolution in an Alkaline Electrolyte |
URI | http://dx.doi.org/10.1021/acs.energyfuels.5c00198 https://www.proquest.com/docview/3200269724 https://www.osti.gov/biblio/2549224 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS9xAEMcHe31ofaitrXjayhb62FzvNptk8yjH6SEoYiv4tuxPuHpN5JII-tc7k0uKRaTtWwjJkuzM7nyS_e4MwJfY5l5ywyOTuxAJG-LIaAQ5bmWmhXZ5aug_5OlZOr8UJ1fJ1QZMnlnB55Nv2lYj3-6DCw2Gi1FiCUvkC3jJU4w2REPT778nX3SnpE_uOU656CVdzzdEYclWf4SlQYnD68nk3Eacoy246PftrIUm16OmNiN7_zSN47-_zFt40_EnO1w7zDvY8MU2vJr2Zd-2YfNRhsL38POctHJF84vpwrHjcukY1QElha5jZcHaUNeqvtipR45nZ4t6tXC-YgjDbH7nViV6KJvddh7OFgW2xA6X15r4ls3WVXiWd7X_AJdHsx_TedSVZ4g0j7M6Sg1PvbAmETzLgvV5pnk2tlIGHNjOZZYOXZKbEAhDQ2w4sgH3MkXI4GMX78CgKAu_CywYLaQNGq-UAhuS3vpYWo4wHTROO0P4ij2nuuFVqXblnE8UnXzUnarrziGMe2Oqm3XSjr_fsk9GV8gdlDzXksrI1oo-nxFyhvC59wWF5qA1FV34sqlUTCKXNM-42Pu_Z9yH15xKCbfFHD_CoF41_hPyTW0OWo9-AEk5-2U |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcCg98CggQnksEkcc0vXaXh-jKCVAEyHRSuW02qcUGuwqtpHKr2fGsUsBIQQ3a2WP1juzO5-9384H8DK2uZfc8MjkLkTChjgyGoEctzLTQrs8NfQfcrFM56fi3VlytgOyPwuDnajQUtVu4v-oLnD4mtp8exwuNJg1RokldCJvwM0kFSmJNkymH6_WYIyqpK_xOU656JldfzZE2clWP2WnQYmz7Lc1uk08R3fg01WXW77J-aipzch--6Wa4_-801243aFRNtmGzz3Y8cU-7E57Ebh92LtWr_A-fP5AzLmi-cJ04dibcu0YqYISX9exsmBt4ms5YGzhEdWz5arerJyvGEJjNr90mxLjlc2-dvHOVgVaYpP1uSa0y2ZbTZ71Ze0fwOnR7GQ6jzqxhkjzOKuj1PDUC2sSwbMsWJ9nmmdjK2XAae5cZunSJbkJgUBpiA1HpMC9TBFy8LGLH8KgKAv_CFgwWkgbNN4pBRqS3vpYWo7QOmhchIbwCkdOdZOtUu0-Oj9U1HhtOFU3nEMY9z5VF9sSHn9_5IB8rxCFUCldS5wjWyv6mEbIM4QXfUgodAftsOjCl02lYqK8pHnGxeN_6-Nz2J2fLI7V8dvl-wO4xUlkuJV5fAKDetP4p4h8avOsDfLvbsgD1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VIHE8FCigpi2wSDziNFlfa4mXKCSEo1ElqNQXtNpTCk3tKraR2l_PjGNXBYQQvFkre7SeY-ezd3Y-gFehyZzgmgc6sz6IjA8DrRDIcSNSFSmbJZr-Qx4tkvlJ9OE0Pt2CN91ZGJxEiZLKZhOfovrC-rbDwOiQxl1zJM7XmDkGsSGEIm7BbYQlIyJuGE8-X6_D6Flx1-dzmPCoq-76syDKUKb8KUP1Coy039bpJvnMHsDX62k3NSdng7rSA3P1S0fH_32vh7DdolI23rjRI9hy-Q7cnXRkcDtw_0bfwsfw7Zgq6PL6nKncsnfFyjJiB6W6XcuKnDUJsKkFY0cO0T1bLKv10rqSIURm80u7LtBv2fR76_dsmaMkNl6dKUK9bLrh5lldVu4JnMymXybzoCVtCBQP0ypINE9cZHQc8TT1xmWp4unQCOEx3K1NDV3aONPeEzj1oeaIGLgTaEHOhzZ8Cr28yN0uMK9VJIxXeKeIUJBwxoXCcITYXuFi1IfXqDnZBl0pm_10PpI0eEOdslVnH4adXeXFppXH3x_ZJ_tLRCPUUtdQ7ZGpJH1UI_Tpw8vOLSSag3ZaVO6KupQhlb4kWcqjvX-b4wu4c_x2Jj-9X3zch3ucuIYbtscD6FXr2j1DAFTp542f_wCTaAZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platinum+and+Gold+Supported+on+Transition+Metal+Nitrides+for+Hydrogen+Evolution+in+an+Alkaline+Electrolyte&rft.jtitle=Energy+%26+fuels&rft.au=Nichols%2C+Nathaniel+N.&rft.au=Han%2C+Xue&rft.au=Kang%2C+Sinwoo&rft.au=Zhao%2C+Hanjun&rft.date=2025-03-06&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=39&rft.issue=11&rft.spage=5587&rft.epage=5593&rft_id=info:doi/10.1021%2Facs.energyfuels.5c00198&rft.externalDocID=b156852508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |