Optimization and Machine Learning Optimization for Machine Learning and Machine Learning for Optimization

Machine learning and optimization techniques are revolutionizing our world. Other types of information technology have not progressed as rapidly in recent years, in terms of real impact. The aim of this book is to present some of the innovative techniques in the field of optimization and machine lea...

Full description

Saved in:
Bibliographic Details
Main Author Rachid Chelouah, Patrick Siarry
Format eBook
LanguageEnglish
Published Newark Wiley 2022
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition1
Subjects
Online AccessGet full text
ISBN1119902878
9781119902874
1789450713
9781789450712

Cover

Table of Contents:
  • Chapter 5. An Interactive Attention Network with Stacked Ensemble Machine Learning Models for Recommendations -- 5.1. Introduction -- 5.2. Related work -- 5.2.1. Attention network mechanism in recommender systems -- 5.2.2. Stacked machine learning for optimization -- 5.3. Interactive personalized recommender -- 5.3.1. Notation -- 5.3.2. The interactive attention network recommender -- 5.3.3. The stacked content-based filtering recommender -- 5.4. Experimental settings -- 5.4.1. The datasets -- 5.4.2. Evaluation metrics -- 5.4.3. Baselines -- 5.5. Experiments and discussion -- 5.5.1. Hyperparameter analysis -- 5.5.2. Performance comparison with the baselines -- 5.6. Conclusion -- 5.7. References -- Chapter 6. A Comparison of Machine Learning and Deep Learning Models with Advanced Word Embeddings: The Case of Internal Audit Reports -- 6.1. Introduction -- 6.2. Related work -- 6.2.1. Word embedding -- 6.2.2. Deep learning models -- 6.3. Experiments and evaluation -- 6.4. Conclusion and future work -- 6.5. References -- Chapter 7. Hybrid Approach based on Multi-agent System and Fuzzy Logic for Mobile Robot Autonomous Navigation -- 7.1. Introduction -- 7.2. Related works -- 7.2.1. Classical approaches -- 7.2.2. Advanced methods -- 7.3. Problem position -- 7.4. Developed control architecture -- 7.4.1. Agents description -- 7.5. Navigation principle by fuzzy logic -- 7.5.1. Fuzzy logic overview -- 7.5.2. Description of simulated robot -- 7.5.3. Strategy of navigation -- 7.5.4. Fuzzy controller agent -- 7.6. Simulation and results -- 7.7. Conclusion -- 7.8. References -- Chapter 8. Intrusion Detection with Neural Networks: A Tutorial -- 8.1. Introduction -- 8.1.1. Intrusion detection systems -- 8.1.2. Artificial neural networks -- 8.1.3. The NSL-KDD dataset -- 8.2. Dataset analysis -- 8.2.1. Dataset summary -- 8.2.2. Features
  • 3.4. Theoretical fundamentals of feature selection -- 3.4.1. Feature selection definition -- 3.4.2. Feature selection methods -- 3.4.3. Filter method -- 3.4.4. Wrapper method -- 3.4.5. Binary feature selection movement -- 3.4.6. Benefits of feature selection for machine learning classification algorithms -- 3.5. Mathematical modeling of the feature selection optimization problem -- 3.5.1. Optimization problem definition -- 3.5.2. Binary discrete search space -- 3.5.3. Objective functions for the feature selection -- 3.6. Adaptation of metaheuristics for optimization in a binary search space -- 3.6.1. Module M1 -- 3.6.2. Module M2 -- 3.7. Adaptation of the grey wolf algorithm to feature selection in a binary search space -- 3.7.1. First algorithm bGWO1 -- 3.7.2. Second algorithm bGWO2 -- 3.7.3. Algorithm 2: first approach of the binary GWO -- 3.7.4. Algorithm 3: second approach of the binary GWO -- 3.8. Experimental implementation of bGWO1 and bGWO2 and discussion -- 3.9. Conclusion -- 3.10. References -- Chapter 4. Solving the Mixed-model Assembly Line Balancing Problem by using a Hybrid Reactive Greedy Randomized Adaptive Search Procedure -- 4.1. Introduction -- 4.2. Related works from the literature -- 4.3. Problem description and mathematical formulation -- 4.3.1. Problem description -- 4.3.2. Mathematical formulation -- 4.4. Basic greedy randomized adaptive search procedure -- 4.5. Reactive greedy randomized adaptive search procedure -- 4.6. Hybrid reactive greedy randomized adaptive search procedure for the mixed model assembly line balancing problem type-2 -- 4.6.1. The proposed construction phase -- 4.6.2. The local search phase -- 4.7. Experimental examples -- 4.7.1. Results and discussion -- 4.8. Conclusion -- 4.9. References -- Part 2. Machine Learning
  • Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- Part 1. Optimization -- Chapter 1. Vehicle Routing Problems with Loading Constraints: An Overview of Variants and Solution Methods -- 1.1. Introduction -- 1.2. The capacitated vehicle routing problem with two-dimensional loading constraints -- 1.2.1. Solution methods -- 1.2.2. Problem description -- 1.2.3. The 2L-CVRP variants -- 1.2.4. Computational analysis -- 1.3. The capacitated vehicle routing problem with threedimensional loading constraints -- 1.3.1. Solution methods -- 1.3.2. Problem description -- 1.3.3. 3L-CVRP variants -- 1.3.4. Computational analysis -- 1.4. Perspectives on future research -- 1.5. References -- Chapter 2. MAS-aware Approach for QoS-based IoT Workflow Scheduling in Fog-Cloud Computing -- 2.1. Introduction -- 2.2. Related works -- 2.3. Problem formulation -- 2.3.1. IoT-workflow modeling -- 2.3.2. Resources modeling -- 2.3.3. QoS-based workflow scheduling modeling -- 2.4. MAS-GA-based approach for IoT workflow scheduling -- 2.4.1. Architecture model -- 2.4.2. Multi-agent system model -- 2.4.3. MAS-based workflow scheduling process -- 2.5. GA-based workflow scheduling plan -- 2.5.1. Solution encoding -- 2.5.2. Fitness function -- 2.5.3. Mutation operator -- 2.6. Experimental study and analysis of the results -- 2.6.1. Experimental results -- 2.7. Conclusion -- 2.8. References -- Chapter 3. Solving Feature Selection Problems Built on Populationbased Metaheuristic Algorithms -- 3.1. Introduction -- 3.2. Algorithm inspiration -- 3.2.1. Wolf pack hierarchy -- 3.2.2. The four phases of pack hunting -- 3.3. Mathematical modeling -- 3.3.1. Pack hierarchy -- 3.3.2. Four phases of hunt modeling -- 3.3.3. Research phase - exploration -- 3.3.4. Attack phase - exploitation -- 3.3.5. Grey wolf optimization algorithm pseudocode
  • 8.2.3. Binary feature distribution -- 8.2.4. Categorical features distribution -- 8.2.5. Numerical data distribution -- 8.2.6. Correlation matrix -- 8.3. Data preparation -- 8.3.1. Data cleaning -- 8.3.2. Categorical columns encoding -- 8.3.3. Normalization -- 8.4. Feature selection -- 8.4.1. Tree-based selection -- 8.4.2. Univariate selection -- 8.5. Model design -- 8.5.1. Project environment -- 8.5.2. Building the neural network -- 8.5.3. Learning hyperparameters -- 8.5.4. Epochs -- 8.5.5. Batch size -- 8.5.6. Dropout layers -- 8.5.7. Activation functions -- 8.6. Results comparison -- 8.6.1. Evaluation metrics -- 8.6.2. Preliminary models -- 8.6.3. Adding dropout -- 8.6.4. Adding more layers -- 8.6.5. Adding feature selection -- 8.7. Deployment in a network -- 8.7.1. Sensors -- 8.7.2. Model choice -- 8.7.3. Model deployment -- 8.7.4. Model adaptation -- 8.8. Future work -- 8.9. References -- List of Authors -- Index -- EULA