A Systematic Literature Review on Automated Software Vulnerability Detection Using Machine Learning

In recent years, numerous Machine Learning (ML) models, including Deep Learning (DL) and classic ML models, have been developed to detect software vulnerabilities. However, there is a notable lack of comprehensive and systematic surveys that summarize, classify, and analyze the applications of these...

Full description

Saved in:
Bibliographic Details
Published inACM computing surveys Vol. 57; no. 3; pp. 1 - 36
Main Authors Shiri Harzevili, Nima, Boaye Belle, Alvine, Wang, Junjie, Wang, Song, Jiang, Zhen Ming (Jack), Nagappan, Nachiappan
Format Journal Article
LanguageEnglish
Published New York, NY ACM 01.03.2025
Association for Computing Machinery
Subjects
Online AccessGet full text
ISSN0360-0300
1557-7341
DOI10.1145/3699711

Cover

Abstract In recent years, numerous Machine Learning (ML) models, including Deep Learning (DL) and classic ML models, have been developed to detect software vulnerabilities. However, there is a notable lack of comprehensive and systematic surveys that summarize, classify, and analyze the applications of these ML models in software vulnerability detection. This absence may lead to critical research areas being overlooked or under-represented, resulting in a skewed understanding of the current state of the art in software vulnerability detection. To close this gap, we propose a comprehensive and systematic literature review that characterizes the different properties of ML-based software vulnerability detection systems using six major Research Questions (RQs). Using a custom web scraper, our systematic approach involves extracting a set of studies from four widely used online digital libraries: ACM Digital Library, IEEE Xplore, ScienceDirect, and Google Scholar. We manually analyzed the extracted studies to filter out irrelevant work unrelated to software vulnerability detection, followed by creating taxonomies and addressing RQs. Our analysis indicates a significant upward trend in applying ML techniques for software vulnerability detection over the past few years, with many studies published in recent years. Prominent conference venues include the International Conference on Software Engineering (ICSE), the International Symposium on Software Reliability Engineering (ISSRE), the Mining Software Repositories (MSR) conference, and the ACM International Conference on the Foundations of Software Engineering (FSE), whereas Information and Software Technology (IST), Computers & Security (C&S), and Journal of Systems and Software (JSS) are the leading journal venues. Our results reveal that 39.1% of the subject studies use hybrid sources, whereas 37.6% of the subject studies utilize benchmark data for software vulnerability detection. Code-based data are the most commonly used data type among subject studies, with source code being the predominant subtype. Graph-based and token-based input representations are the most popular techniques, accounting for 57.2% and 24.6% of the subject studies, respectively. Among the input embedding techniques, graph embedding and token vector embedding are the most frequently used techniques, accounting for 32.6% and 29.7% of the subject studies. Additionally, 88.4% of the subject studies use DL models, with recurrent neural networks and graph neural networks being the most popular subcategories, whereas only 7.2% use classic ML models. Among the vulnerability types covered by the subject studies, CWE-119, CWE-20, and CWE-190 are the most frequent ones. In terms of tools used for software vulnerability detection, Keras with TensorFlow backend and PyTorch libraries are the most frequently used model-building tools, accounting for 42 studies for each. In addition, Joern is the most popular tool used for code representation, accounting for 24 studies. Finally, we summarize the challenges and future directions in the context of software vulnerability detection, providing valuable insights for researchers and practitioners in the field.
AbstractList In recent years, numerous Machine Learning (ML) models, including Deep Learning (DL) and classic ML models, have been developed to detect software vulnerabilities. However, there is a notable lack of comprehensive and systematic surveys that summarize, classify, and analyze the applications of these ML models in software vulnerability detection. This absence may lead to critical research areas being overlooked or under-represented, resulting in a skewed understanding of the current state of the art in software vulnerability detection. To close this gap, we propose a comprehensive and systematic literature review that characterizes the different properties of ML-based software vulnerability detection systems using six major Research Questions (RQs). Using a custom web scraper, our systematic approach involves extracting a set of studies from four widely used online digital libraries: ACM Digital Library, IEEE Xplore, ScienceDirect, and Google Scholar. We manually analyzed the extracted studies to filter out irrelevant work unrelated to software vulnerability detection, followed by creating taxonomies and addressing RQs. Our analysis indicates a significant upward trend in applying ML techniques for software vulnerability detection over the past few years, with many studies published in recent years. Prominent conference venues include the International Conference on Software Engineering (ICSE), the International Symposium on Software Reliability Engineering (ISSRE), the Mining Software Repositories (MSR) conference, and the ACM International Conference on the Foundations of Software Engineering (FSE), whereas Information and Software Technology (IST), Computers & Security (C&S), and Journal of Systems and Software (JSS) are the leading journal venues. Our results reveal that 39.1% of the subject studies use hybrid sources, whereas 37.6% of the subject studies utilize benchmark data for software vulnerability detection. Code-based data are the most commonly used data type among subject studies, with source code being the predominant subtype. Graph-based and token-based input representations are the most popular techniques, accounting for 57.2% and 24.6% of the subject studies, respectively. Among the input embedding techniques, graph embedding and token vector embedding are the most frequently used techniques, accounting for 32.6% and 29.7% of the subject studies. Additionally, 88.4% of the subject studies use DL models, with recurrent neural networks and graph neural networks being the most popular subcategories, whereas only 7.2% use classic ML models. Among the vulnerability types covered by the subject studies, CWE-119, CWE-20, and CWE-190 are the most frequent ones. In terms of tools used for software vulnerability detection, Keras with TensorFlow backend and PyTorch libraries are the most frequently used model-building tools, accounting for 42 studies for each. In addition, Joern is the most popular tool used for code representation, accounting for 24 studies. Finally, we summarize the challenges and future directions in the context of software vulnerability detection, providing valuable insights for researchers and practitioners in the field.
In recent years, numerous Machine Learning (ML) models, including Deep Learning (DL) and classic ML models, have been developed to detect software vulnerabilities. However, there is a notable lack of comprehensive and systematic surveys that summarize, classify, and analyze the applications of these ML models in software vulnerability detection. This absence may lead to critical research areas being overlooked or under-represented, resulting in a skewed understanding of the current state of the art in software vulnerability detection. To close this gap, we propose a comprehensive and systematic literature review that characterizes the different properties of ML-based software vulnerability detection systems using six major Research Questions (RQs). Using a custom web scraper, our systematic approach involves extracting a set of studies from four widely used online digital libraries: ACM Digital Library, IEEE Xplore, ScienceDirect, and Google Scholar. We manually analyzed the extracted studies to filter out irrelevant work unrelated to software vulnerability detection, followed by creating taxonomies and addressing RQs. Our analysis indicates a significant upward trend in applying ML techniques for software vulnerability detection over the past few years, with many studies published in recent years. Prominent conference venues include the International Conference on Software Engineering (ICSE), the International Symposium on Software Reliability Engineering (ISSRE), the Mining Software Repositories (MSR) conference, and the ACM International Conference on the Foundations of Software Engineering (FSE), whereas Information and Software Technology (IST), Computers & Security (C&S), and Journal of Systems and Software (JSS) are the leading journal venues. Our results reveal that 39.1% of the subject studies use hybrid sources, whereas 37.6% of the subject studies utilize benchmark data for software vulnerability detection. Code-based data are the most commonly used data type among subject studies, with source code being the predominant subtype. Graph-based and token-based input representations are the most popular techniques, accounting for 57.2% and 24.6% of the subject studies, respectively. Among the input embedding techniques, graph embedding and token vector embedding are the most frequently used techniques, accounting for 32.6% and 29.7% of the subject studies. Additionally, 88.4% of the subject studies use DL models, with recurrent neural networks and graph neural networks being the most popular subcategories, whereas only 7.2% use classic ML models. Among the vulnerability types covered by the subject studies, CWE-119, CWE-20, and CWE-190 are the most frequent ones. In terms of tools used for software vulnerability detection, Keras with TensorFlow backend and PyTorch libraries are the most frequently used model-building tools, accounting for 42 studies for each. In addition, Joern is the most popular tool used for code representation, accounting for 24 studies. Finally, we summarize the challenges and future directions in the context of software vulnerability detection, providing valuable insights for researchers and practitioners in the field.
ArticleNumber 55
Author Boaye Belle, Alvine
Jiang, Zhen Ming (Jack)
Shiri Harzevili, Nima
Wang, Song
Wang, Junjie
Nagappan, Nachiappan
Author_xml – sequence: 1
  givenname: Nima
  orcidid: 0000-0003-0484-3972
  surname: Shiri Harzevili
  fullname: Shiri Harzevili, Nima
  email: nshiri@yorku.ca
  organization: , , ,
– sequence: 2
  givenname: Alvine
  orcidid: 0000-0001-7533-7212
  surname: Boaye Belle
  fullname: Boaye Belle, Alvine
  email: alvine.belle@lassonde.yorku.ca
  organization: , , ,
– sequence: 3
  givenname: Junjie
  orcidid: 0000-0002-9941-6713
  surname: Wang
  fullname: Wang, Junjie
  email: junjie@iscas.ac.cn
  organization: , , ,
– sequence: 4
  givenname: Song
  orcidid: 0000-0003-0617-2877
  surname: Wang
  fullname: Wang, Song
  email: wangsong@yorku.ca
  organization: , , ,
– sequence: 5
  givenname: Zhen Ming (Jack)
  orcidid: 0000-0002-3063-3197
  surname: Jiang
  fullname: Jiang, Zhen Ming (Jack)
  email: zmjiang@cse.yorku.ca
  organization: , , ,
– sequence: 6
  givenname: Nachiappan
  orcidid: 0000-0003-1358-4124
  surname: Nagappan
  fullname: Nagappan, Nachiappan
  email: nachiappan.nagappan@gmail.com
  organization: , , ,
BookMark eNo90N9LwzAQB_AgE9ym-O5TwAefqrmmSdvHMX9CRXDO15JmV83Y0pmkjv33RjZ9OA7u--EObkQGtrNIyDmwa4BM3HBZljnAERmCEHmS8wwGZMi4ZAnjjJ2QkfdLxliagRwSPaGznQ-4VsFoWpmAToXeIX3Fb4Nb2lk66UMXY1zQWdeGrYrhe7-yETZmZcKO3mJAHUykc2_sB31W-tNYpBUqZ-PglBy3auXx7NDHZH5_9zZ9TKqXh6fppEpUyrOQSMahyVjTslQseA4SilwCl6JBHWvBpS7KDFA1Laq0LDIm0kaIqBqRas35mFzu925c99WjD_Wy652NJ2sOuQAoCl5GdbVX2nXeO2zrjTNr5XY1sPr3g_Xhg1Fe7KXS63_0F_4AxnVsSA
Cites_doi 10.1109/SP.2014.44
10.1145/3360588
10.1145/1273442.1250746
10.1145/3540250.3549165
10.1109/BigData50022.2020.9377803
10.1109/TDSC.2020.2984505
10.1162/neco.2006.18.7.1527
10.1016/j.infsof.2023.107328
10.1007/s11219-019-09467-0
10.1109/DSN53405.2022.00026
10.1109/TII.2018.2821768
10.1109/ASE56229.2023.00084
10.1145/3597503.3639117
10.1016/j.jisa.2022.103293
10.1109/QRS-C60940.2023.00078
10.1016/j.future.2022.04.008
10.1109/TrustCom56396.2022.00046
10.1109/ISSRE59848.2023.00024
10.1145/3641846
10.1016/j.ins.2020.11.053
10.1109/TSE.2023.3317209
10.1109/ETNCC59188.2023.10284955
10.1109/TSE.2018.2881961
10.1109/JPROC.2020.2993293
10.1016/j.jisa.2023.103555
10.1145/3360588
10.1109/MSR59073.2023.00052
10.14722/ndss.2023.23263
10.1109/TIFS.2024.3392536
10.1109/TKDE.2023.3333371
10.1145/3468264.3468597
10.1109/TDSC.2021.3076142
10.1016/j.infsof.2018.10.001
10.1109/ICECCS.2019.00012
10.1109/TDSC.2021.3051525
10.1109/TSE.2023.3340267
10.1007/978-3-319-92624-7_1
10.1145/1292414.1292416
10.1145/3429444
10.1109/TrustCom56396.2022.00070
10.1016/j.cose.2023.103247
10.1016/j.cose.2024.103787
10.1145/3276517
10.1016/j.compeleceng.2023.108766
10.1145/2508859.2516665
10.1109/TSE.2023.3285910
10.1016/j.neucom.2021.05.043
10.1016/j.jss.2023.111699
10.24963/ijcai.2019/648
10.1016/j.cose.2022.102823
10.1145/2884781.2884804
10.1145/2382196.2382284
10.1109/ISSRE59848.2023.00030
10.1145/3540250.3558927
10.1109/ISSRE52982.2021.00047
10.1016/j.cose.2024.103732
10.1016/j.jisa.2023.103484
10.1145/3524842.3527949
10.1007/978-3-030-47436-2_13
10.1109/TSE.2022.3140868
10.1016/j.infsof.2024.107442
10.1016/j.infsof.2020.106289
10.1016/j.jss.2023.111705
10.1016/j.comnet.2024.110238
10.1016/j.cose.2023.103508
10.1145/3436877
10.1109/COMST.2018.2885561
10.1016/j.cose.2021.102286
10.1109/TIFS.2020.3044773
10.1109/ISSRE52982.2021.00020
10.1016/j.infsof.2015.03.007
10.1016/j.infsof.2023.107290
10.1109/TIFS.2021.3050051
10.1145/3529757
10.1145/3510003.3510219
10.1109/GLOCOM.2017.8254428
10.1145/3611643.3616346
10.1109/ICSE48619.2023.00189
10.1109/DSAA54385.2022.10032337
10.1016/j.jss.2023.111775
10.24963/ijcai.2019/937
10.1145/3477535
10.1016/j.cose.2023.103469
10.1109/ICECCS.2019.00011
10.1109/QRS.2017.42
10.1145/3230833.3230856
10.1109/BigData47090.2019.9006514
10.1016/j.jss.2024.112039
10.24963/ijcai.2020/454
10.1016/j.infsof.2023.107246
10.1109/ISSRE52982.2021.00054
10.1109/TSE.2014.2340398
10.1006/csla.1999.0128
10.1016/j.jisa.2023.103423
10.1109/TSE.2021.3087402
10.1016/j.asoc.2024.111556
10.1109/ICSE48619.2023.00022
10.1145/3597503.3623345
10.1145/3422622
10.1109/TIFS.2024.3374219
10.1109/TSE.2018.2877612
10.1016/j.jss.2023.111706
10.1016/j.asoc.2018.04.020
10.1016/j.infsof.2021.106809
10.1109/ASE56229.2023.00181
10.1109/SEAA51224.2020.00085
10.1109/IJCNN55064.2022.9892280
10.1016/j.array.2019.100011
10.1109/MSR.2019.00016
10.1016/j.knosys.2022.108852
10.1109/ICMLA.2018.00120
10.1109/ICSE48619.2023.00088
10.1016/j.infsof.2023.107371
10.1016/j.eswa.2023.121865
10.1145/3379597.3387461
10.1109/ISSRE59848.2023.00042
10.1016/j.cose.2021.102308
10.1109/BigData59044.2023.10386771
10.1016/j.jss.2024.112014
10.1109/ICSE43902.2021.00040
10.1109/MCSoC60832.2023.00053
10.1145/3551349.3560428
10.1016/j.infsof.2024.107406
10.1016/j.cose.2022.103023
10.1016/j.infsof.2024.107453
10.1016/j.knosys.2020.106646
10.1109/ICSE48619.2023.00191
10.1016/j.cose.2023.103341
10.1016/j.infsof.2023.107219
10.1016/j.jss.2020.110616
10.1109/ICSE48619.2023.00190
10.1016/j.jss.2024.112031
10.1016/j.cose.2021.102417
10.1007/s10703-005-3401-0
10.1145/3457337.3457841
10.1145/3585386
10.1109/TSE.2022.3207149
10.1145/3106237.3117771
10.1145/3533767.3534371
10.1016/j.jss.2018.12.001
10.1049/iet-sen.2020.0084
10.1201/b20091
10.1016/j.jss.2023.111623
10.1109/TDSC.2019.2954088
10.1016/j.infsof.2021.106576
10.1016/j.infsof.2023.107168
10.1109/ESEM.2013.19
10.1016/j.jss.2023.111919
10.1038/s41598-024-56871-z
10.24963/ijcai.2017/214
10.1145/2810103.2813604
10.1109/MSR59073.2023.00018
10.1109/ACCESS.2020.3034766
10.1016/j.jss.2023.111772
10.1109/ICSE48619.2023.00129
10.1016/j.cose.2022.103017
10.1145/2420950.2421003
10.1016/j.jss.2022.111550
10.1145/1348250.1348254
10.1109/SANER53432.2022.00114
10.1145/3092566
10.1016/j.ins.2023.03.132
10.1016/j.eswa.2023.121764
10.1145/3664602
10.1007/978-3-030-68110-4_7
10.1016/j.engappai.2024.108296
ContentType Journal Article
Copyright Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Copyright Association for Computing Machinery Mar 2025
Copyright_xml – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
– notice: Copyright Association for Computing Machinery Mar 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1145/3699711
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate A Systematic Literature Review on Automated Software Vulnerability Detection Using Machine Learning
EISSN 1557-7341
EndPage 36
ExternalDocumentID 10_1145_3699711
3699711
GroupedDBID --Z
-DZ
-~X
.DC
23M
4.4
5GY
5VS
6J9
85S
8US
8VB
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ACNCT
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AEMOZ
AENEX
AENSD
AETEA
AFWIH
AFWXC
AGHSJ
AHQJS
AIAGR
AIKLT
AKRVB
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
FEDTE
GUFHI
HGAVV
H~9
IAO
ICD
IEA
IGS
IOF
K1G
LHSKQ
N95
P1C
P2P
PQQKQ
QWB
RNS
ROL
RXW
TAE
TH9
U5U
UKR
UPT
WH7
X6Y
XH6
XSW
XZL
YXB
ZCA
ZL0
77I
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-a234t-6031b40bf025d371618761365bec5bed36c8941eabfea2984052b55187b52cc33
ISSN 0360-0300
IngestDate Mon Jun 30 12:14:10 EDT 2025
Wed Oct 01 05:59:18 EDT 2025
Wed Jun 25 16:30:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
software security
software bug detection
Source code
machine learning
software vulnerability detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a234t-6031b40bf025d371618761365bec5bed36c8941eabfea2984052b55187b52cc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9941-6713
0000-0002-3063-3197
0000-0003-0484-3972
0000-0001-7533-7212
0000-0003-0617-2877
0000-0003-1358-4124
OpenAccessLink https://dl.acm.org/doi/10.1145/3699711
PQID 3175118839
PQPubID 47570
PageCount 36
ParticipantIDs proquest_journals_3175118839
crossref_primary_10_1145_3699711
acm_primary_3699711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: Baltimore
PublicationTitle ACM computing surveys
PublicationTitleAbbrev ACM CSUR
PublicationYear 2025
Publisher ACM
Association for Computing Machinery
Publisher_xml – name: ACM
– name: Association for Computing Machinery
References (Bib0036) 2023; 130
(Bib0089) 2021
(Bib0148) 2023; 125
(Bib0149) 2022; 144
(Bib0154) 2024
(Bib0132) 2024; 139
(Bib0002) 2021; 213
(Bib0015) 2020; 167
(Bib0187) 2020
(Bib0091) 2023; 204
(Bib0059) 2023
(Bib0104) 2022
(Bib0174) 2023
(Bib0117) 2017
(Bib0167) 2005; 27
(Bib0019) 2020
(Bib0029) 2022
(Bib0151) 2024
(Bib0092) 2024; 238
(Bib0139) 2020; 123
(Bib0141) 2023
(Bib0134) 2023; 73
(Bib0003) 2021
(Bib0096) 2021
(Bib0053) 2023
(Bib0046) 2023
(Bib0111) 2022
(Bib0076) 2024
(Bib0159) 2022; 69
(Bib0021) 2019
(Bib0083) 2022
(Bib0056) 2019
(Bib0099) 2016
(Bib0017) 2024; 171
(Bib0057) 2024; 158
(Bib0143) 2023; 202
(Bib0157) 2024
(Bib0124) 2020; 14
(Bib0040) 2017; 50
(Bib0041) 2021; 553
(Bib0177) 2022
(Bib0137) 2022
(Bib0087) 2019; 18
(Bib0001) 2019
(Bib0033) 2020; 28
(Bib0152) 2023; 134
(Bib0055) 2006; 18
(Bib0086) 2020; 108
(Bib0106) 2024
(Bib0054) 2022
(Bib0072) 2022; 55
(Bib0063) 2021; 106
(Bib0060) 2024; 14
(Bib0070) 2018
(Bib0169) 2023
(Bib0008) 2024; 209
(Bib0067) 2019
(Bib0024) 2023
(Bib0079) 2019; 3
(Bib0098) 2024; 212
(Bib0038) 2022
(Bib0048) 2022
(Bib0122) 2014; 40
(Bib0113) 2023
(Bib0081) 2023
(Bib0090) 2021; 31
(Bib0129) 2024
(Bib0190) 2021; 30
(Bib0127) 2023; 160
(Bib0133) 2018; 21
(Bib0186) 2022; 248
(Bib0049) 2022; 134
Bib0006
(Bib0135) 2024
(Bib0173) 2020; 8
(Bib0093) 2022
(Bib0044) 2020; 63
(Bib0045) 2023; 135
(Bib0100) 2020
(Bib0010) 2021; 136
(Bib0031) 2023; 158
(Bib0158) 2024
(Bib0030) 2023; 163
(Bib0043) 2019
(Bib0014) 2019
(Bib0112) 2022
(Bib0142) 2020; 16
(Bib0039) 2024; 33
(Bib0180) 2021
(Bib0075) 2023; 26
(Bib0147) 2023
(Bib0061) 2022; 49
(Bib0107) 2020
(Bib0037) 2020
(Bib0066) 2018
(Bib0071) 2018
(Bib0077) 2023; 125
(Bib0101) 2013
(Bib0026) 2018; 47
(Bib0082) 2023
(Bib0085) 2018
(Bib0136) 2023; 199
(Bib0035) 2013
(Bib0005) 2012
(Bib0183) 2019
(Bib0163) 2013
(Bib0126) 2019; 106
(Bib0128) 2020
(Bib0016) 2023; 204
(Bib0160) 2014
(Bib0020) 2021; 30
(Bib0125) 2023
(Bib0140) 2024; 238
(Bib0153) 2021
(Bib0176) 2023; 75
(Bib0065) 2007
(Bib0120) 2023; 109
(Bib0182) 2023; 77
(Bib0105) 2023
(Bib0110) 2023
(Bib0146) 2016
(Bib0013) 2023; 202
(Bib0051) 2021; 460
(Bib0080) 2019; 3
(Bib0018) 1999; 13
(Bib0168) 2023
(Bib0078) 2021
(Bib0130) 2022
(Bib0064) 2023; 636
(Bib0175) 2024; 167
(Bib0088) 2018; 14
(Bib0188) 2022
(Bib0170) 2023
(Bib0144) 2024; 133
(Bib0095) 2020
(Bib0185) 2023
(Bib0004) 2021
(Bib0150) 2023
(Bib0042) 2007
(Bib0108) 2024; 169
(Bib0166) 2017
(Bib0165) 2022
(Bib0131) 2021; 110
(Bib0012) 2022
(Bib0007) 2023; 195
(Bib0052) 2023
(Bib0179) 2021
(Bib0172) 2021
(Bib0171) 2023; 202
(Bib0011) 2022
(Bib0032) 2024; 213
(Bib0084) 2022
(Bib0181) 2023; 160
(Bib0103) 2022
(Bib0119) 2022; 9
(Bib0068) 2024
(Bib0025) 2008; 17
(Bib0027) 2018; 47
(Bib0028) 2020
(Bib0109) 2024
(Bib0123) 2008; 39
(Bib0164) 2021; 108
(Bib0102) 2007; 42
(Bib0114) 2019; 150
(Bib0115) 2015
(Bib0162) 2011
(Bib0047) 2022; 121
(Bib0156) 2023
(Bib0058) 2021; 16
(Bib0073) 2021
(Bib0138) 2023; 132
(Bib0074) 2017
(Bib0184) 2017
(Bib0178) 2024
(Bib0118) 2018; 2
(Bib0050) 2018; 69
(Bib0189) 2019; 18
(Bib0009) 2023; 164
(Bib0034) 2019
(Bib0023) 2017
(Bib0094) 2019; 28
(Bib0069) 2019; 3
(Bib0116) 2015; 64
(Bib0155) 2022
(Bib0097) 2023
(Bib0121) 2018
(Bib0022) 2022
(Bib0161) 2012
(Bib0145) 2018; 46
(Bib0062) 2023
e_1_3_2_28_2
e_1_3_2_191_2
e_1_3_2_172_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_123_2
e_1_3_2_146_2
e_1_3_2_169_2
e_1_3_2_104_2
e_1_3_2_142_2
e_1_3_2_165_2
e_1_3_2_188_2
e_1_3_2_81_2
e_1_3_2_127_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_161_2
e_1_3_2_184_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_180_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_112_2
e_1_3_2_135_2
e_1_3_2_158_2
e_1_3_2_92_2
e_1_3_2_154_2
e_1_3_2_177_2
e_1_3_2_50_2
e_1_3_2_116_2
e_1_3_2_139_2
e_1_3_2_48_2
e_1_3_2_190_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_171_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_145_2
e_1_3_2_126_2
e_1_3_2_168_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_141_2
e_1_3_2_187_2
e_1_3_2_122_2
e_1_3_2_164_2
Dinella Elizabeth (e_1_3_2_29_2) 2020
e_1_3_2_149_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
Suciu Octavian (e_1_3_2_131_2) 2022
Schütze Hinrich (e_1_3_2_124_2) 2008
e_1_3_2_183_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_160_2
e_1_3_2_13_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_134_2
e_1_3_2_93_2
e_1_3_2_115_2
e_1_3_2_157_2
e_1_3_2_130_2
e_1_3_2_176_2
e_1_3_2_70_2
Kim Taegyu (e_1_3_2_68_2) 2019
e_1_3_2_111_2
e_1_3_2_153_2
Le Tue (e_1_3_2_72_2) 2018
e_1_3_2_138_2
Phan Anh Viet (e_1_3_2_118_2) 2017
e_1_3_2_119_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_151_2
e_1_3_2_170_2
e_1_3_2_22_2
e_1_3_2_45_2
Le Triet Huynh Minh (e_1_3_2_74_2) 2021
e_1_3_2_125_2
e_1_3_2_148_2
e_1_3_2_167_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_121_2
e_1_3_2_144_2
e_1_3_2_186_2
e_1_3_2_106_2
e_1_3_2_129_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_140_2
e_1_3_2_182_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_114_2
e_1_3_2_137_2
e_1_3_2_156_2
e_1_3_2_179_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_133_2
e_1_3_2_152_2
e_1_3_2_175_2
e_1_3_2_90_2
e_1_3_2_27_2
(e_1_3_2_36_2) 2013
e_1_3_2_150_2
e_1_3_2_173_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_147_2
e_1_3_2_189_2
e_1_3_2_61_2
e_1_3_2_120_2
e_1_3_2_166_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_143_2
e_1_3_2_185_2
e_1_3_2_109_2
e_1_3_2_105_2
e_1_3_2_128_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
Yamaguchi Fabian (e_1_3_2_163_2) 2011
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_162_2
(e_1_3_2_66_2) 2007
e_1_3_2_181_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_113_2
e_1_3_2_159_2
e_1_3_2_136_2
e_1_3_2_178_2
e_1_3_2_155_2
e_1_3_2_132_2
e_1_3_2_174_2
e_1_3_2_117_2
References_xml – volume: 39
  year: 2008
  ident: Bib0123
  publication-title: Introduction to Information Retrieval
– volume: 139
  start-page: 103732
  year: 2024
  ident: Bib0132
  article-title: VDTriplet: Vulnerability detection with graph semantics using triplet model
  publication-title: Computers & Security
– start-page: 27
  year: 2023
  end-page: 38
  ident: Bib0053
  article-title: Characterizing and understanding software security vulnerabilities in machine learning libraries
  publication-title: Proceedings of the 20th International Conference on Mining Software Repositories (MSR’23)
– year: 2007
  ident: Bib0065
  publication-title: Guidelines for Performing Systematic Literature Reviews in Software Engineering
– year: 2022
  ident: Bib0083
  article-title: VulDeeLocator: A deep learning-based fine-grained vulnerability detector
  publication-title: IEEE Transactions on Dependable and Secure Computing
– year: 2022
  ident: Bib0188
  article-title: mVulPreter: A multi-granularity vulnerability detection system with interpretations
  publication-title: IEEE Transactions on Dependable and Secure Computing.
– year: 2022
  ident: Bib0155
  article-title: VulCNN: An image-inspired scalable vulnerability detection system
– year: 2018
  ident: Bib0071
  article-title: Maximal divergence sequential autoencoder for binary software vulnerability detection
  publication-title: Proceedings of the 2018 International Conference on Learning Representations (ICLR’18)
– volume: 123
  start-page: 106289
  year: 2020
  ident: Bib0139
  article-title: BVDetector: A program slice-based binary code vulnerability intelligent detection system
– volume: 18
  start-page: 2224
  issue: 5
  year: 2019
  end-page: 2236
  ident: Bib0189
  article-title: muVulDeePecker: A deep learning-based system for multiclass vulnerability detection
  publication-title: IEEE Transactions on Dependable and Secure Computing
– volume: 13
  start-page: 359
  issue: 4
  year: 1999
  end-page: 394
  ident: Bib0018
  article-title: An empirical study of smoothing techniques for language modeling
  publication-title: Computer Speech & Language
– volume: 238
  start-page: 121764
  year: 2024
  ident: Bib0092
  article-title: Detect software vulnerabilities with weight biases via graph neural networks
  publication-title: Expert Systems with Applications
– volume: 160
  start-page: 107219
  year: 2023
  ident: Bib0127
  article-title: HGIVul: Detecting inter-procedural vulnerabilities based on hypergraph convolution
  publication-title: Information and Software Technology
– volume: 69
  start-page: 103293
  year: 2022
  ident: Bib0159
  article-title: Detecting code vulnerabilities by learning from large-scale open source repositories
  publication-title: Journal of Information Security and Applications
– volume: 75
  start-page: 103484
  year: 2023
  ident: Bib0176
  article-title: SVScanner: Detecting smart contract vulnerabilities via deep semantic extraction
  publication-title: Journal of Information Security and Applications
– start-page: 672
  year: 2022
  end-page: 683
  ident: Bib0111
  article-title: The best of both worlds: Integrating semantic features with expert features for defect prediction and localization
  publication-title: Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’22)
– year: 2023
  ident: Bib0125
  article-title: Smarter contracts: Detecting vulnerabilities in smart contracts with deep transfer learning
  publication-title: Proceedings of the 2023 Network and Distributed Security Symposium (NDSS’23)
– start-page: 164
  year: 2020
  end-page: 177
  ident: Bib0107
  article-title: Deep cost-sensitive kernel machine for binary software vulnerability detection
– volume: 199
  start-page: 111623
  year: 2023
  ident: Bib0136
  article-title: CSGVD: A deep learning approach combining sequence and graph embedding for source code vulnerability detection
  publication-title: Journal of Systems and Software
– start-page: 131
  year: 2023
  end-page: 139
  ident: Bib0141
  article-title: Software vulnerability detection via doc2vec with path representations
  publication-title: Proceedings of the 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C’23)
– volume: 28
  start-page: 1329
  issue: 7
  year: 2019
  end-page: 1343
  ident: Bib0094
  article-title: DeepBalance: Deep-learning and fuzzy oversampling for vulnerability detection
  publication-title: IEEE Transactions on Fuzzy Systems
– start-page: 112014
  year: 2024
  ident: Bib0106
  article-title: Code-centric learning-based just-in-time vulnerability detection
  publication-title: Journal of Systems and Software
– start-page: 1
  year: 2024
  end-page: 13
  ident: Bib0135
  article-title: GPTScan: Detecting logic vulnerabilities in smart contracts by combining GPT with program analysis
  publication-title: Proceedings of the 46th International Conference on Software Engineering (ICSE’24)
– year: 2024
  ident: Bib0157
  article-title: Vulnerability detection based on enhanced graph representation learning
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 65
  year: 2013
  end-page: 74
  ident: Bib0101
  article-title: When a patch goes bad: Exploring the properties of vulnerability-contributing commits
  publication-title: Proceedings of the 2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’13)
– start-page: 102
  year: 2020
  end-page: 116
  ident: Bib0037
  article-title: The random neural network as a bonding model for software vulnerability prediction
  publication-title: Modelling, Analysis, and Simulation of Computer and Telecommunication Systems
– volume: 108
  start-page: 1825
  issue: 10
  year: 2020
  end-page: 1848
  ident: Bib0086
  article-title: Software vulnerability detection using deep neural networks: A survey
  publication-title: Proceedings of the IEEE
– year: 2022
  ident: Bib0112
  article-title: Open science in software engineering: A study on deep learning-based vulnerability detection
  publication-title: IEEE Transactions on Software Engineering
– volume: 9
  issue: 1
  year: 2022
  ident: Bib0119
  article-title: Threat and vulnerability management life cycle in operating systems: A systematic review
  publication-title: Journal of Multidisciplinary Engineering Science and Technology
– volume: 2
  start-page: Article 147, 25 pages
  issue: OOPSLA
  year: 2018
  ident: Bib0118
  article-title: DeepBugs: A learning approach to name-based bug detection
  publication-title: Proceedings of the ACM on Programming Languages
– volume: 144
  start-page: 106809
  year: 2022
  ident: Bib0149
  article-title: VUDENC: Vulnerability detection with deep learning on a natural codebase for Python
  publication-title: Information and Software Technology
– volume: 16
  start-page: 2144
  year: 2021
  end-page: 2156
  ident: Bib0058
  article-title: Hunting vulnerable smart contracts via graph embedding based bytecode matching
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 64
  start-page: 1
  year: 2015
  end-page: 18
  ident: Bib0116
  article-title: Guidelines for conducting systematic mapping studies in software engineering: An update
  publication-title: Information and Software Technology
– year: 2018
  ident: Bib0085
  article-title: VulDeePecker: A deep learning-based system for vulnerability detection
  publication-title: Proceedings of the 2018 Network and Distributed Systems Security Symposium (NDSS’18).
– volume: 125
  start-page: 103023
  year: 2023
  ident: Bib0148
  article-title: BinVulDet: Detecting vulnerability in binary program via decompiled pseudo code and BiLSTM-attention
  publication-title: Computers & Security
– start-page: 757
  year: 2018
  end-page: 762
  ident: Bib0121
  article-title: Automated vulnerability detection in source code using deep representation learning
  publication-title: Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA’18)
– volume: 47
  start-page: 67
  issue: 1
  year: 2018
  end-page: 85
  ident: Bib0027
  article-title: Automatic feature learning for predicting vulnerable software components
  publication-title: IEEE Transactions on Software Engineering
– volume: 8
  start-page: 197158
  year: 2020
  end-page: 197172
  ident: Bib0173
  article-title: Software vulnerability analysis and discovery using deep learning techniques: A survey
  publication-title: IEEE Access
– start-page: 717
  year: 2021
  end-page: 729
  ident: Bib0073
  article-title: DeepCVA: Automated commit-level vulnerability assessment with deep multi-task learning
  publication-title: Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering (ASE’21)
– volume: 109
  start-page: 108766
  year: 2023
  ident: Bib0120
  article-title: Smart contract vulnerability detection based on a semantic code structure and a self-designed neural network
  publication-title: Computers and Electrical Engineering
– volume: 30
  start-page: 1
  issue: 2
  year: 2021
  end-page: 31
  ident: Bib0190
  article-title: Interpreting deep learning-based vulnerability detector predictions based on heuristic searching
  publication-title: ACM Transactions on Software Engineering and Methodology
– start-page: 1
  year: 2022
  end-page: 10
  ident: Bib0104
  article-title: MANDO: Multi-level heterogeneous graph embeddings for fine-grained detection of smart contract vulnerabilities
  publication-title: Proceedings of the 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA’22)
– start-page: 1
  year: 2024
  end-page: 13
  ident: Bib0129
  article-title: Dataflow analysis-inspired deep learning for efficient vulnerability detection
  publication-title: Proceedings of the 46th International Conference on Software Engineering (ICSE’24)
– start-page: 3252
  year: 2019
  end-page: 3259
  ident: Bib0001
  article-title: Can machine/deep learning classifiers detect zero-day malware with high accuracy?
  publication-title: Proceedings of the 2019 IEEE International Conference on Big Data (Big Data’19)
– start-page: 519
  year: 2022
  end-page: 531
  ident: Bib0022
  article-title: Path-sensitive code embedding via contrastive learning for software vulnerability detection
  publication-title: Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’22)
– start-page: 47
  year: 2021
  end-page: 59
  ident: Bib0004
  article-title: Eth2Vec: Learning contract-wide code representations for vulnerability detection on Ethereum smart contracts
  publication-title: Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure (BSCI’21)
– year: 2021
  ident: Bib0096
  article-title: Smart contract vulnerability detection: From pure neural network to interpretable graph feature and expert pattern fusion
  publication-title: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI’21)
– year: 2022
  ident: Bib0038
  article-title: LineVul: A transformer-based line-level vulnerability prediction
– start-page: 1024
  year: 2023
  end-page: 1036
  ident: Bib0081
  article-title: Commit-level, neural vulnerability detection and assessment
  publication-title: Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’23)
– start-page: 957
  year: 2023
  end-page: 969
  ident: Bib0113
  article-title: Fine-grained commit-level vulnerability type prediction by CWE tree structure
  publication-title: Proceedings of the 45th International Conference on Software Engineering (ICSE’23)
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  end-page: 144
  ident: Bib0044
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
– volume: 40
  start-page: 993
  issue: 10
  year: 2014
  end-page: 1006
  ident: Bib0122
  article-title: Predicting vulnerable software components via text mining
  publication-title: IEEE Transactions on Software Engineering
– volume: 47
  start-page: 67
  issue: 1
  year: 2018
  end-page: 85
  ident: Bib0026
  article-title: Automatic feature learning for predicting vulnerable software components
  publication-title: IEEE Transactions on Software Engineering
– volume: 460
  start-page: 309
  year: 2021
  end-page: 330
  ident: Bib0051
  article-title: Analysis and modeling conditional mutual dependency of metrics in software defect prediction using latent variables
  publication-title: Neurocomputing
– volume: 202
  start-page: 111699
  year: 2023
  ident: Bib0171
  article-title: Optimizing smart contract vulnerability detection via multi-modality code and entropy embedding
  publication-title: Journal of Systems and Software
– start-page: 69
  year: 2021
  end-page: 79
  ident: Bib0172
  article-title: GCN2defect: Graph convolutional networks for SMOTETomek-based software defect prediction
  publication-title: Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE’21)
– volume: 202
  start-page: 111706
  year: 2023
  ident: Bib0143
  article-title: LCVD: Loop-oriented code vulnerability detection via graph neural network
  publication-title: Journal of Systems and Software
– volume: 212
  start-page: 112031
  year: 2024
  ident: Bib0098
  article-title: GRACE: Empowering LLM-based software vulnerability detection with graph structure and in-context learning
  publication-title: Journal of Systems and Software
– year: 2020
  ident: Bib0028
  article-title: Hoppity: Learning graph transformations to detect and fix bugs in programs
  publication-title: Proceedings of the 2020 International Conference on Learning Representations (ICLR’20)
– volume: 69
  start-page: 516
  year: 2018
  end-page: 527
  ident: Bib0050
  article-title: Mixture of latent multinomial naive Bayes classifier
  publication-title: Applied Soft Computing
– start-page: 292
  year: 2021
  end-page: 303
  ident: Bib0078
  article-title: Vulnerability detection with fine-grained interpretations
  publication-title: Proceedings of the 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’21)
– start-page: 513
  year: 2020
  end-page: 516
  ident: Bib0128
  article-title: Using machine learning to identify code fragments for manual review
  publication-title: Proceedings of the 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA’20)
– volume: 204
  start-page: 111775
  year: 2023
  ident: Bib0091
  article-title: Vulnerable smart contract function locating based on multi-relational nested graph convolutional network
  publication-title: Journal of Systems and Software
– volume: 238
  start-page: 121865
  year: 2024
  ident: Bib0140
  article-title: Enhancing vulnerability detection via AST decomposition and neural sub-tree encoding
  publication-title: Expert Systems with Applications
– volume: 167
  start-page: 110616
  year: 2020
  ident: Bib0015
  article-title: An automatic software vulnerability classification framework using term frequency-inverse gravity moment and feature selection
  publication-title: Journal of Systems and Software
– start-page: 2262
  year: 2023
  end-page: 2274
  ident: Bib0170
  article-title: Enhancing deep learning-based vulnerability detection by building behavior graph model
  publication-title: Proceedings of the 45th International Conference on Software Engineering (ICSE’23)
– start-page: 27865
  year: 2021
  end-page: 27876
  ident: Bib0003
  article-title: Self-supervised bug detection and repair
– year: 2016
  ident: Bib0099
  publication-title: Software Quality Assurance: Integrating Testing, Security, and Audit
– volume: 163
  year: 2023
  ident: Bib0030
  article-title: DeKeDVer: A deep learning-based multi-type software vulnerability classification framework using vulnerability description and source code
  publication-title: Information and Software Technology
– volume: 21
  start-page: 1744
  issue: 2
  year: 2018
  end-page: 1772
  ident: Bib0133
  article-title: Data-driven cybersecurity incident prediction: A survey
  publication-title: IEEE Communications Surveys & Tutorials
– start-page: 1
  year: 2018
  end-page: 10
  ident: Bib0070
  article-title: Discovering software vulnerabilities using data-flow analysis and machine learning
  publication-title: Proceedings of the 13th International Conference on Availability, Reliability, and Security (ARES’18)
– volume: 132
  start-page: 103341
  year: 2023
  ident: Bib0138
  article-title: Vulnerability detection through cross-modal feature enhancement and fusion
  publication-title: Computers & Security
– volume: 213
  start-page: 112039
  year: 2024
  ident: Bib0032
  article-title: A vulnerability severity prediction method based on bimodal data and multi-task learning
  publication-title: Journal of Systems and Software
– volume: 209
  start-page: 111919
  year: 2024
  ident: Bib0008
  article-title: Fine-grained smart contract vulnerability detection by heterogeneous code feature learning and automated dataset construction
  publication-title: Journal of Systems and Software
– start-page: 312
  year: 2023
  end-page: 316
  ident: Bib0046
  article-title: Reentrancy vulnerability detection based on graph convolutional networks and expert patterns
  publication-title: Proceedings of the 2023 IEEE 16th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC’23)
– start-page: 499
  year: 2013
  end-page: 510
  ident: Bib0163
  article-title: Chucky: Exposing missing checks in source code for vulnerability discovery
  publication-title: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security (CCS’13)
– start-page: 110238
  year: 2024
  ident: Bib0178
  article-title: DA-GNN: A smart contract vulnerability detection method based on dual attention graph neural network
  publication-title: Computer Networks
– year: 2022
  ident: Bib0084
  article-title: SySeVR: A framework for using deep learning to detect software vulnerabilities
  publication-title: IEEE Transactions on Dependable and Secure Computing
– start-page: 914
  year: 2017
  end-page: 919
  ident: Bib0184
  article-title: Automated identification of security issues from commit messages and bug reports
  publication-title: Proceedings of the 2017 11th ACM Joint Meeting on Foundations of Software Engineering (FSE’17)
– volume: 158
  year: 2023
  ident: Bib0031
  article-title: SedSVD: Statement-level software vulnerability detection based on relational graph convolutional network with subgraph embedding
  publication-title: Information and Software Technology
– start-page: 1
  year: 2007
  ident: Bib0042
  article-title: Random testing for security: Blackbox vs. whitebox fuzzing
  publication-title: Proceedings of the 2nd International Conference on Random Testing, Co-Located with the 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE’07)
– start-page: 590
  year: 2014
  end-page: 604
  ident: Bib0160
  article-title: Modeling and discovering vulnerabilities with code property graphs
  publication-title: Proceedings of the 2014 IEEE Symposium on Security and Privacy
  doi: 10.1109/SP.2014.44
– volume: 3
  start-page: 30
  year: 2019
  ident: Bib0079
  article-title: Improving bug detection via context-based code representation learning and attention-based neural networks
  publication-title: Proceedings of the ACM on Programming Languages
  doi: 10.1145/3360588
– start-page: 274
  year: 2022
  end-page: 282
  ident: Bib0093
  article-title: CPGBERT: An effective model for defect detection by learning program semantics via code property graph
  publication-title: Proceedings of the 2022 IEEE International Conference on Trust, Security, and Privacy in Computing and Communications (TrustCom’22)
– year: 2020
  ident: Bib0095
  article-title: CD-VulD: Cross-domain vulnerability discovery based on deep domain adaptation
  publication-title: IEEE Transactions on Dependable and Secure Computing
– volume: 110
  start-page: 102417
  year: 2021
  ident: Bib0131
  article-title: VDSimilar: Vulnerability detection based on code similarity of vulnerabilities and patches
  publication-title: Computers & Security
– start-page: 378
  year: 2021
  end-page: 389
  ident: Bib0153
  article-title: Peculiar: Smart contract vulnerability detection based on crucial data flow graph and pre-training techniques
  publication-title: Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE’21)
– volume: 202
  start-page: 111705
  year: 2023
  ident: Bib0013
  article-title: Smart contract vulnerability detection based on semantic graph and residual graph convolutional networks with edge attention
  publication-title: Journal of Systems and Software
– volume: 16
  start-page: 1943
  year: 2020
  end-page: 1958
  ident: Bib0142
  article-title: Combining graph-based learning with automated data collection for code vulnerability detection
  publication-title: IEEE Transactions on Information Forensics and Security
– year: 2017
  ident: Bib0023
  article-title: End-to-end prediction of buffer overruns from raw source code via neural memory networks
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17)
– start-page: 425
  year: 2019
  end-page: 442
  ident: Bib0067
  article-title: RVFuzzer: Finding input validation bugs in robotic vehicles through control-guided testing
  publication-title: Proceedings of the 28th USENIX Conference on Security Symposium (SEC’19)
– volume: 33
  start-page: 1
  issue: 5
  year: 2024
  end-page: 55
  ident: Bib0039
  article-title: sGuard+: Machine learning guided rule-based automated vulnerability repair on smart contracts
  publication-title: ACM Transactions on Software Engineering and Methodology
– volume: 106
  start-page: 102308
  year: 2021
  ident: Bib0063
  article-title: AutoVAS: An automated vulnerability analysis system with a deep learning approach
  publication-title: Computers & Security
– volume: 49
  start-page: 44
  issue: 1
  year: 2022
  end-page: 63
  ident: Bib0061
  article-title: The secret life of software vulnerabilities: A large-scale empirical study
  publication-title: IEEE Transactions on Software Engineering
– volume: 3
  year: 2019
  ident: Bib0080
  article-title: Improving bug detection via context-based code representation learning and attention-based neural networks
  publication-title: Proceedings of the ACM on Programming Languages
– volume: 108
  start-page: 102286
  year: 2021
  ident: Bib0164
  article-title: HAN-BSVD: A hierarchical attention network for binary software vulnerability detection
  publication-title: Computers & Security
– start-page: 1162
  year: 2023
  end-page: 1174
  ident: Bib0059
  article-title: An empirical study on fine-tuning large language models of code for automated program repair
  publication-title: Proceedings of the 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE’23)
– year: 2024
  ident: Bib0154
  article-title: UltraVCS: Ultra-fine-grained variable-based code slicing for automated vulnerability detection
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 6503
  year: 2019
  end-page: 6505
  ident: Bib0014
  article-title: VEST: A system for vulnerability exploit scoring & timing
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19)
– start-page: 4665
  year: 2019
  end-page: 4671
  ident: Bib0034
  article-title: VulSniper: Focus your attention to shoot fine-grained vulnerabilities
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19)
– volume: 636
  start-page: 118907
  year: 2023
  ident: Bib0064
  article-title: A novel extended multimodal AI framework towards vulnerability detection in smart contracts
  publication-title: Information Sciences
– start-page: 795
  year: 2023
  end-page: 806
  ident: Bib0052
  article-title: Automatic static vulnerability detection for machine learning libraries: Are we there yet?
  publication-title: Proceedings of the 2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE’23)
– volume: 169
  start-page: 107406
  year: 2024
  ident: Bib0108
  article-title: Context-based statement-level vulnerability localization
  publication-title: Information and Software Technology
– volume: 31
  start-page: 1
  issue: 1
  year: 2021
  end-page: 46
  ident: Bib0090
  article-title: On the reproducibility and replicability of deep learning in software engineering
  publication-title: ACM Transactions on Software Engineering and Methodology
– volume: 125
  start-page: 103017
  year: 2023
  ident: Bib0077
  article-title: Cross-domain vulnerability detection using graph embedding and domain adaptation
  publication-title: Computers & Security
– start-page: 1
  year: 2022
  end-page: 13
  ident: Bib0177
  article-title: Reentrancy vulnerability detection and localization: A deep learning based two-phase approach
  publication-title: Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering (ASE’22)
– start-page: 596
  year: 2022
  end-page: 607
  ident: Bib0054
  article-title: LineVD: Statement-level vulnerability detection using graph neural networks
  publication-title: Proceedings of the 19th International Conference on Mining Software Repositories (MSR’22)
– start-page: 377
  year: 2022
  end-page: 394
  ident: Bib0130
  article-title: Expected exploitability: Predicting the development of functional vulnerability exploits
  publication-title: Proceedings of the 31st USENIX Security Symposium (Security’22)
– start-page: 426
  year: 2015
  end-page: 437
  ident: Bib0115
  article-title: VCCFinder: Finding potential vulnerabilities in open-source projects to assist code audits
  publication-title: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security
– volume: 164
  start-page: 107328
  year: 2023
  ident: Bib0009
  article-title: A software vulnerability detection method based on deep learning with complex network analysis and subgraph partition
  publication-title: Information and Software Technology
– volume: 17
  start-page: Article 8, 37 pages
  issue: 2
  year: 2008
  ident: Bib0025
  article-title: DSD-Crasher: A hybrid analysis tool for bug finding
  publication-title: ACM Transactions on Software Engineering and Methodology
– year: 2023
  ident: Bib0082
  article-title: VulHunter: Hunting vulnerable smart contracts at EVM bytecode-level via multiple instance learning
  publication-title: IEEE Transactions on Software Engineering
– volume: 195
  start-page: 111550
  year: 2023
  ident: Bib0007
  article-title: Combine sliced joint graph with graph neural networks for smart contract vulnerability detection
  publication-title: Journal of Systems and Software
– ident: Bib0006
– volume: 14
  start-page: 654
  issue: 6
  year: 2020
  end-page: 664
  ident: Bib0124
  article-title: Literature survey of deep learning-based vulnerability analysis on source code
  publication-title: IET Software
– volume: 55
  start-page: 1
  issue: 5
  year: 2022
  end-page: 39
  ident: Bib0072
  article-title: A survey on data-driven software vulnerability assessment and prioritization
  publication-title: ACM Computing Surveys
– start-page: 359
  year: 2012
  end-page: 368
  ident: Bib0161
  article-title: Generalized vulnerability extrapolation using abstract syntax trees
  publication-title: Proceedings of the 28th Annual Computer Security Applications Conference
– year: 2023
  ident: Bib0097
  article-title: Combining graph neural networks with expert knowledge for smart contract vulnerability detection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1736
  year: 2022
  end-page: 1740
  ident: Bib0103
  article-title: MANDO-GURU: Vulnerability detection for smart contract source code by heterogeneous graph embeddings
  publication-title: Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’22)
– volume: 73
  start-page: 103423
  year: 2023
  ident: Bib0134
  article-title: ASSBert: Active and semi-supervised bert for smart contract vulnerability detection
  publication-title: Journal of Information Security and Applications
– volume: 134
  start-page: 103469
  year: 2023
  ident: Bib0152
  article-title: SlicedLocator: Code vulnerability locator based on sliced dependence graph
  publication-title: Computers & Security
– start-page: 3283
  year: 2020
  end-page: 3290
  ident: Bib0187
  article-title: Smart contract vulnerability detection using graph neural network
  publication-title: Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI’20)
– year: 2011
  ident: Bib0162
  article-title: Vulnerability extrapolation: Assisted discovery of vulnerabilities using machine learning
  publication-title: Proceedings of the 5th USENIX Workshop on Offensive Technologies (WOOT’11)
– volume: 3
  start-page: 100011
  year: 2019
  ident: Bib0069
  article-title: A survey on vulnerability assessment tools and databases for cloud-based web applications
  publication-title: Array
– volume: 213
  start-page: 106646
  year: 2021
  ident: Bib0002
  article-title: Multi independent latent component extension of naive Bayes classifier
  publication-title: Knowledge-Based Systems
– start-page: 34
  year: 2019
  end-page: 45
  ident: Bib0056
  article-title: DeepJIT: An end-to-end deep learning framework for just-in-time defect prediction
  publication-title: Proceedings of the 16th International Conference on Mining Software Repositories (MSR’19)
– start-page: 457
  year: 2021
  end-page: 467
  ident: Bib0180
  article-title: Vu1SPG: Vulnerability detection based on slice property graph representation learning
  publication-title: Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE’21)
– volume: 42
  start-page: 89
  issue: 6
  year: 2007
  end-page: 100
  ident: Bib0102
  article-title: Valgrind: A framework for heavyweight dynamic binary instrumentation
  publication-title: ACM SIGPLAN Notices
– volume: 14
  start-page: 3289
  issue: 7
  year: 2018
  end-page: 3297
  ident: Bib0088
  article-title: Cross-project transfer representation learning for vulnerable function discovery
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 150
  start-page: 22
  year: 2019
  end-page: 36
  ident: Bib0114
  article-title: Fine-grained just-in-time defect prediction
  publication-title: Journal of Systems and Software
– volume: 130
  start-page: 103247
  year: 2023
  ident: Bib0036
  article-title: VDoTR: Vulnerability detection based on tensor representation of comprehensive code graphs
  publication-title: Computers & Security
– year: 2023
  ident: Bib0156
  article-title: Automated program repair in the era of large pre-trained language models
  publication-title: Proceedings of the 45th International Conference on Software Engineering (ICSE’23)
– start-page: 1
  year: 2023
  end-page: 6
  ident: Bib0062
  article-title: Multi-objective approach for detecting vulnerabilities in Ethereum smart contracts
  publication-title: Proceedings of the 2023 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC’23)
– start-page: 103787
  year: 2024
  ident: Bib0068
  article-title: A multi-type vulnerability detection framework with parallel perspective fusion and hierarchical feature enhancement
  publication-title: Computers & Security
– start-page: 959
  year: 2022
  end-page: 970
  ident: Bib0029
  article-title: VELVET: A noVel Ensemble Learning approach to automatically locate VulnErable sTatements
  publication-title: Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER’22)
– start-page: 2369
  year: 2023
  end-page: 2376
  ident: Bib0168
  article-title: SmartDT: An effective vulnerability detection system of smart contracts based on deep learning
  publication-title: Proceedings of the 2023 IEEE International Conference on Big Data (Big Data’23)
– volume: 135
  start-page: 103508
  year: 2023
  ident: Bib0045
  article-title: BinAIV: Semantic-enhanced vulnerability detection for Linux x86 binaries
  publication-title: Computers & Security
– year: 2024
  ident: Bib0151
  article-title: Meta-path based attentional graph learning model for vulnerability detection
  publication-title: IEEE Transactions on Software Engineering
– volume: 158
  year: 2024
  ident: Bib0057
  article-title: Effective combining source code and opcode for accurate vulnerability detection of smart contracts in edge AI systems
  publication-title: Applied Soft Computing
– start-page: 32
  year: 2020
  end-page: 42
  ident: Bib0019
  article-title: A machine learning approach for vulnerability curation
  publication-title: Proceedings of the 17th International Conference on Mining Software Repositories (MSR’20)
– volume: 171
  start-page: 107453
  year: 2024
  ident: Bib0017
  article-title: Hybrid semantics-based vulnerability detection incorporating a temporal convolutional network and self-attention mechanism
  publication-title: Information and Software Technology
– year: 2024
  ident: Bib0076
  article-title: Smart contract vulnerability detection based on automated feature extraction and feature interaction
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 107442
  year: 2024
  ident: Bib0158
  article-title: MSGVUL: Multi-semantic integration vulnerability detection based on relational graph convolutional neural networks
  publication-title: Information and Software Technology
– start-page: 1
  year: 2022
  end-page: 8
  ident: Bib0048
  article-title: Vulberta: Simplified source code pre-training for vulnerability detection
  publication-title: Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN’22)
– start-page: 457
  year: 2021
  end-page: 467
  ident: Bib0179
  article-title: Vu1SPG: Vulnerability detection based on slice property graph representation learning
  publication-title: Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE’21)
– start-page: 150
  year: 2022
  end-page: 162
  ident: Bib0137
  article-title: SeVulDet: A semantics-enhanced learnable vulnerability detector
  publication-title: Proceedings of the 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’22)
– volume: 136
  start-page: 106576
  year: 2021
  ident: Bib0010
  article-title: BGNN4VD: Constructing bidirectional graph neural-network for vulnerability detection
  publication-title: Information and Software Technology
– volume: 134
  start-page: 303
  year: 2022
  end-page: 318
  ident: Bib0049
  article-title: Proximal instance aggregator networks for explainable security vulnerability detection
  publication-title: Future Generation Computer Systems
– year: 2022
  ident: Bib0012
  article-title: Deep learning based vulnerability detection: Are we there yet
  publication-title: IEEE Transactions on Software Engineering
– volume: 50
  start-page: 1
  issue: 4
  year: 2017
  end-page: 36
  ident: Bib0040
  article-title: Software vulnerability analysis and discovery using machine-learning and data-mining techniques: A survey
  publication-title: ACM Computing Surveys
– volume: 121
  start-page: 102823
  year: 2022
  ident: Bib0047
  article-title: HyVulDect: A hybrid semantic vulnerability mining system based on graph neural network
  publication-title: Computers & Security
– year: 2024
  ident: Bib0109
  article-title: Deep domain adaptation with max-margin principle for cross-project imbalanced software vulnerability detection
  publication-title: ACM Transactions on Software Engineering and Methodology
– year: 2019
  ident: Bib0183
  article-title: Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks
  publication-title: Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS’19).
– start-page: 2275
  year: 2023
  end-page: 2286
  ident: Bib0150
  article-title: Vulnerability detection with graph simplification and enhanced graph representation learning
  publication-title: Proceedings of the 45th International Conference on Software Engineering (ICSE’23)
– volume: 553
  start-page: 189
  year: 2021
  end-page: 207
  ident: Bib0041
  article-title: Neural software vulnerability analysis using rich intermediate graph representations of programs
  publication-title: Information Sciences
– start-page: 121
  year: 2023
  end-page: 133
  ident: Bib0024
  article-title: Data quality for software vulnerability datasets
  publication-title: Proceedings of the 45th International Conference on Software Engineering (ICSE’23)
– year: 2013
  ident: Bib0035
  publication-title: Infer
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  ident: Bib0055
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– volume: 106
  start-page: 142
  year: 2019
  end-page: 160
  ident: Bib0126
  article-title: Automatically identifying code features for software defect prediction: Using AST n-grams
  publication-title: Information and Software Technology
– volume: 160
  start-page: 107246
  year: 2023
  ident: Bib0181
  article-title: A multitype software buffer overflow vulnerability prediction method based on a software graph structure and a self-attentive graph neural network
  publication-title: Information and Software Technology
– start-page: 568
  year: 2023
  end-page: 577
  ident: Bib0185
  article-title: GraBit: A sequential model-based framework for smart contract vulnerability detection
  publication-title: Proceedings of the 2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE’23)
– start-page: 457
  year: 2022
  end-page: 464
  ident: Bib0165
  article-title: Source code vulnerability detection using vulnerability dependency representation graph
  publication-title: Proceedings of the 2022 IEEE International Conference on Trust, Security, and Privacy in Computing and Communications (TrustCom’22)
– volume: 14
  issue: 1
  year: 2024
  ident: Bib0060
  article-title: Vulnerability detection in Java source code using a quantum convolutional neural network with self-attentive pooling, deep sequence, and graph-based hybrid feature extraction
  publication-title: Scientific Reports
– start-page: 31
  year: 2019
  end-page: 40
  ident: Bib0043
  article-title: Joint prediction of multiple vulnerability characteristics through multi-task learning
  publication-title: Proceedings of the 2019 24th International Conference on Engineering and Complex Computer Systems (ICECCS’19)
– start-page: 3
  year: 2018
  end-page: 32
  ident: Bib0066
  article-title: Review into state of the art of vulnerability assessment using artificial intelligence
  publication-title: Guide to Vulnerability Analysis for Computer Networks and Systems
– start-page: 45
  year: 2017
  end-page: 52
  ident: Bib0117
  article-title: Convolutional neural networks over control flow graphs for software defect prediction
  publication-title: Proceedings of the 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI’17)
– start-page: 318
  year: 2017
  end-page: 328
  ident: Bib0074
  article-title: Software defect prediction via convolutional neural network
  publication-title: Proceedings of the 2017 IEEE International Conference on Software Quality, Reliability, and Security (QRS’17)
– start-page: 4651
  year: 2020
  end-page: 4656
  ident: Bib0100
  article-title: Explainable software vulnerability detection based on attention-based bidirectional recurrent neural networks
  publication-title: Proceedings of the 2020 IEEE International Conference on Big Data (Big Data’20)
– volume: 167
  start-page: 107371
  year: 2024
  ident: Bib0175
  article-title: Vulnerability detection based on federated learning
  publication-title: Information and Software Technology
– start-page: 833
  year: 2012
  end-page: 844
  ident: Bib0005
  article-title: Before we knew it: An empirical study of zero-day attacks in the real world
  publication-title: Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCCS’12)
– volume: 27
  start-page: 313
  year: 2005
  end-page: 334
  ident: Bib0167
  article-title: Using static analysis to reduce dynamic analysis overhead
  publication-title: Formal Methods in System Design
– year: 2023
  ident: Bib0174
  article-title: CPVD: Cross project vulnerability detection based on graph attention network and domain adaptation
  publication-title: IEEE Transactions on Software Engineering
– start-page: 1911
  year: 2023
  end-page: 1918
  ident: Bib0110
  article-title: Function-level vulnerability detection through fusing multi-modal knowledge
  publication-title: Proceedings of the 2023 IEEE/ACM International Conference on Automated Software Engineering (ASE’23)
– volume: 204
  start-page: 111772
  year: 2023
  ident: Bib0016
  article-title: BiTCN_DRSN: An effective software vulnerability detection model based on an improved temporal convolutional network
  publication-title: Journal of Systems and Software
– start-page: 41
  year: 2019
  end-page: 50
  ident: Bib0021
  article-title: Static detection of control-flow-related vulnerabilities using graph embedding
  publication-title: Proceedings of the 2019 24th International Conference on Engineering and Complex Computer Systems (ICECCS’19)
– start-page: 324
  year: 2021
  end-page: 335
  ident: Bib0089
  article-title: Traceability transformed: Generating more accurate links with pre-trained BERT models
  publication-title: Proceedings of the 43rd International Conference on Software Engineering (ICSE’21)
– volume: 77
  start-page: 103555
  year: 2023
  ident: Bib0182
  article-title: Smart contracts vulnerability detection model based on adversarial multi-task learning
  publication-title: Journal of Information Security and Applications
– volume: 30
  start-page: 1
  issue: 3
  year: 2021
  end-page: 33
  ident: Bib0020
  article-title: DeepWukong: Statically detecting software vulnerabilities using deep graph neural network
  publication-title: ACM Transactions on Software Engineering and Methodology
– start-page: 556
  year: 2023
  end-page: 567
  ident: Bib0169
  article-title: PSCVFinder: A prompt-tuning based framework for smart contract vulnerability detection
  publication-title: Proceedings of the 2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE’23)
– volume: 248
  start-page: 108852
  year: 2022
  ident: Bib0186
  article-title: Just-in-time defect prediction based on AST change embedding
  publication-title: Knowledge-Based Systems
– volume: 28
  start-page: 39
  issue: 1
  year: 2020
  end-page: 57
  ident: Bib0033
  article-title: Cross-project bug type prediction based on transfer learning
  publication-title: Software Quality Journal
– volume: 26
  start-page: 1
  issue: 3
  year: 2023
  end-page: 25
  ident: Bib0075
  article-title: VulANalyzeR: Explainable binary vulnerability detection with multi-task learning and attentional graph convolution
  publication-title: ACM Transactions on Privacy and Security
– volume: 18
  start-page: 2469
  issue: 5
  year: 2019
  end-page: 2485
  ident: Bib0087
  article-title: Software vulnerability discovery via learning multi-domain knowledge bases
  publication-title: IEEE Transactions on Dependable and Secure Computing
– start-page: 1
  year: 2017
  end-page: 7
  ident: Bib0166
  article-title: VulDigger: A just-in-time and cost-aware tool for digging vulnerability-contributing changes
  publication-title: Proceedings of the 2017 IEEE Global Communications Conference (GLOBECOM’17)
– start-page: 1456
  year: 2022
  end-page: 1468
  ident: Bib0011
  article-title: MVD: Memory-related vulnerability detection based on flow-sensitive graph neural networks
  publication-title: Proceedings of the 44th International Conference on Software Engineering (ICSE’22)
– start-page: 334
  year: 2023
  end-page: 346
  ident: Bib0105
  article-title: MANDO-HGT: Heterogeneous graph transformers for smart contract vulnerability detection
  publication-title: Proceedings of the 20th International Conference on Mining Software Repositories (MSR’23)
– start-page: 297
  year: 2016
  end-page: 308
  ident: Bib0146
  article-title: Automatically learning semantic features for defect prediction
  publication-title: Proceedings of the 38th International Conference on Software Engineering (ICSE’16)
– volume: 133
  start-page: 108296
  year: 2024
  ident: Bib0144
  article-title: Graph confident learning for software vulnerability detection
  publication-title: Engineering Applications of Artificial Intelligence
– start-page: 2249
  year: 2023
  end-page: 2261
  ident: Bib0147
  article-title: DeepVD: Toward class-separation features for neural network vulnerability detection
  publication-title: Proceedings of the 45th International Conference on Software Engineering (ICSE’23)
– volume: 46
  start-page: 1267
  issue: 12
  year: 2018
  end-page: 1293
  ident: Bib0145
  article-title: Deep semantic feature learning for software defect prediction
  publication-title: IEEE Transactions on Software Engineering
– start-page: 425
  volume-title: Proceedings of the 28th USENIX Conference on Security Symposium (SEC’19)
  year: 2019
  ident: e_1_3_2_68_2
– ident: e_1_3_2_103_2
  doi: 10.1145/1273442.1250746
– ident: e_1_3_2_112_2
  doi: 10.1145/3540250.3549165
– ident: e_1_3_2_190_2
– ident: e_1_3_2_101_2
  doi: 10.1109/BigData50022.2020.9377803
– start-page: 717
  volume-title: Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering (ASE’21)
  year: 2021
  ident: e_1_3_2_74_2
– ident: e_1_3_2_96_2
  doi: 10.1109/TDSC.2020.2984505
– ident: e_1_3_2_56_2
  doi: 10.1162/neco.2006.18.7.1527
– ident: e_1_3_2_10_2
  doi: 10.1016/j.infsof.2023.107328
– ident: e_1_3_2_34_2
  doi: 10.1007/s11219-019-09467-0
– ident: e_1_3_2_138_2
  doi: 10.1109/DSN53405.2022.00026
– ident: e_1_3_2_89_2
  doi: 10.1109/TII.2018.2821768
– ident: e_1_3_2_111_2
  doi: 10.1109/ASE56229.2023.00084
– ident: e_1_3_2_136_2
  doi: 10.1145/3597503.3639117
– ident: e_1_3_2_160_2
  doi: 10.1016/j.jisa.2022.103293
– ident: e_1_3_2_142_2
  doi: 10.1109/QRS-C60940.2023.00078
– ident: e_1_3_2_50_2
  doi: 10.1016/j.future.2022.04.008
– ident: e_1_3_2_94_2
  doi: 10.1109/TrustCom56396.2022.00046
– ident: e_1_3_2_95_2
– ident: e_1_3_2_186_2
  doi: 10.1109/ISSRE59848.2023.00024
– ident: e_1_3_2_40_2
  doi: 10.1145/3641846
– ident: e_1_3_2_42_2
  doi: 10.1016/j.ins.2020.11.053
– ident: e_1_3_2_83_2
  doi: 10.1109/TSE.2023.3317209
– ident: e_1_3_2_63_2
  doi: 10.1109/ETNCC59188.2023.10284955
– ident: e_1_3_2_27_2
  doi: 10.1109/TSE.2018.2881961
– ident: e_1_3_2_87_2
  doi: 10.1109/JPROC.2020.2993293
– ident: e_1_3_2_183_2
  doi: 10.1016/j.jisa.2023.103555
– ident: e_1_3_2_80_2
  doi: 10.1145/3360588
– ident: e_1_3_2_106_2
  doi: 10.1109/MSR59073.2023.00052
– ident: e_1_3_2_126_2
  doi: 10.14722/ndss.2023.23263
– ident: e_1_3_2_156_2
– volume-title: Guidelines for Performing Systematic Literature Reviews in Software Engineering
  year: 2007
  ident: e_1_3_2_66_2
– ident: e_1_3_2_158_2
  doi: 10.1109/TIFS.2024.3392536
– ident: e_1_3_2_77_2
  doi: 10.1109/TKDE.2023.3333371
– ident: e_1_3_2_79_2
  doi: 10.1145/3468264.3468597
– start-page: 45
  volume-title: Proceedings of the 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI’17)
  year: 2017
  ident: e_1_3_2_118_2
– ident: e_1_3_2_84_2
  doi: 10.1109/TDSC.2021.3076142
– ident: e_1_3_2_127_2
  doi: 10.1016/j.infsof.2018.10.001
– ident: e_1_3_2_22_2
  doi: 10.1109/ICECCS.2019.00012
– ident: e_1_3_2_85_2
  doi: 10.1109/TDSC.2021.3051525
– ident: e_1_3_2_152_2
  doi: 10.1109/TSE.2023.3340267
– ident: e_1_3_2_67_2
  doi: 10.1007/978-3-319-92624-7_1
– ident: e_1_3_2_43_2
  doi: 10.1145/1292414.1292416
– ident: e_1_3_2_191_2
  doi: 10.1145/3429444
– ident: e_1_3_2_166_2
  doi: 10.1109/TrustCom56396.2022.00070
– ident: e_1_3_2_189_2
– ident: e_1_3_2_37_2
  doi: 10.1016/j.cose.2023.103247
– ident: e_1_3_2_69_2
  doi: 10.1016/j.cose.2024.103787
– ident: e_1_3_2_119_2
  doi: 10.1145/3276517
– ident: e_1_3_2_121_2
  doi: 10.1016/j.compeleceng.2023.108766
– ident: e_1_3_2_164_2
  doi: 10.1145/2508859.2516665
– ident: e_1_3_2_175_2
  doi: 10.1109/TSE.2023.3285910
– ident: e_1_3_2_52_2
  doi: 10.1016/j.neucom.2021.05.043
– ident: e_1_3_2_172_2
  doi: 10.1016/j.jss.2023.111699
– start-page: 377
  volume-title: Proceedings of the 31st USENIX Security Symposium (Security’22)
  year: 2022
  ident: e_1_3_2_131_2
– ident: e_1_3_2_35_2
  doi: 10.24963/ijcai.2019/648
– ident: e_1_3_2_48_2
  doi: 10.1016/j.cose.2022.102823
– ident: e_1_3_2_147_2
  doi: 10.1145/2884781.2884804
– ident: e_1_3_2_6_2
  doi: 10.1145/2382196.2382284
– ident: e_1_3_2_170_2
  doi: 10.1109/ISSRE59848.2023.00030
– ident: e_1_3_2_184_2
– ident: e_1_3_2_104_2
  doi: 10.1145/3540250.3558927
– ident: e_1_3_2_154_2
  doi: 10.1109/ISSRE52982.2021.00047
– ident: e_1_3_2_133_2
  doi: 10.1016/j.cose.2024.103732
– ident: e_1_3_2_177_2
  doi: 10.1016/j.jisa.2023.103484
– ident: e_1_3_2_55_2
  doi: 10.1145/3524842.3527949
– ident: e_1_3_2_108_2
  doi: 10.1007/978-3-030-47436-2_13
– volume-title: Proceedings of the 5th USENIX Workshop on Offensive Technologies (WOOT’11)
  year: 2011
  ident: e_1_3_2_163_2
– ident: e_1_3_2_62_2
  doi: 10.1109/TSE.2022.3140868
– ident: e_1_3_2_159_2
  doi: 10.1016/j.infsof.2024.107442
– ident: e_1_3_2_140_2
  doi: 10.1016/j.infsof.2020.106289
– ident: e_1_3_2_14_2
  doi: 10.1016/j.jss.2023.111705
– ident: e_1_3_2_179_2
  doi: 10.1016/j.comnet.2024.110238
– ident: e_1_3_2_46_2
  doi: 10.1016/j.cose.2023.103508
– ident: e_1_3_2_21_2
  doi: 10.1145/3436877
– ident: e_1_3_2_134_2
  doi: 10.1109/COMST.2018.2885561
– ident: e_1_3_2_165_2
  doi: 10.1016/j.cose.2021.102286
– ident: e_1_3_2_143_2
  doi: 10.1109/TIFS.2020.3044773
– ident: e_1_3_2_173_2
  doi: 10.1109/ISSRE52982.2021.00020
– ident: e_1_3_2_161_2
  doi: 10.1109/SP.2014.44
– ident: e_1_3_2_117_2
  doi: 10.1016/j.infsof.2015.03.007
– ident: e_1_3_2_31_2
  doi: 10.1016/j.infsof.2023.107290
– ident: e_1_3_2_59_2
  doi: 10.1109/TIFS.2021.3050051
– ident: e_1_3_2_73_2
  doi: 10.1145/3529757
– ident: e_1_3_2_97_2
– ident: e_1_3_2_12_2
  doi: 10.1145/3510003.3510219
– ident: e_1_3_2_167_2
  doi: 10.1109/GLOCOM.2017.8254428
– ident: e_1_3_2_28_2
  doi: 10.1109/TSE.2018.2881961
– ident: e_1_3_2_82_2
  doi: 10.1145/3611643.3616346
– ident: e_1_3_2_148_2
  doi: 10.1109/ICSE48619.2023.00189
– ident: e_1_3_2_105_2
  doi: 10.1109/DSAA54385.2022.10032337
– ident: e_1_3_2_92_2
  doi: 10.1016/j.jss.2023.111775
– ident: e_1_3_2_15_2
  doi: 10.24963/ijcai.2019/937
– ident: e_1_3_2_91_2
  doi: 10.1145/3477535
– ident: e_1_3_2_153_2
  doi: 10.1016/j.cose.2023.103469
– ident: e_1_3_2_44_2
  doi: 10.1109/ICECCS.2019.00011
– volume-title: Proceedings of the 2020 International Conference on Learning Representations (ICLR’20)
  year: 2020
  ident: e_1_3_2_29_2
– ident: e_1_3_2_75_2
  doi: 10.1109/QRS.2017.42
– ident: e_1_3_2_71_2
  doi: 10.1145/3230833.3230856
– ident: e_1_3_2_2_2
  doi: 10.1109/BigData47090.2019.9006514
– ident: e_1_3_2_33_2
  doi: 10.1016/j.jss.2024.112039
– ident: e_1_3_2_188_2
  doi: 10.24963/ijcai.2020/454
– ident: e_1_3_2_182_2
  doi: 10.1016/j.infsof.2023.107246
– ident: e_1_3_2_181_2
  doi: 10.1109/ISSRE52982.2021.00054
– ident: e_1_3_2_123_2
  doi: 10.1109/TSE.2014.2340398
– ident: e_1_3_2_19_2
  doi: 10.1006/csla.1999.0128
– ident: e_1_3_2_135_2
  doi: 10.1016/j.jisa.2023.103423
– ident: e_1_3_2_120_2
– ident: e_1_3_2_7_2
– ident: e_1_3_2_81_2
  doi: 10.1145/3360588
– ident: e_1_3_2_13_2
  doi: 10.1109/TSE.2021.3087402
– ident: e_1_3_2_58_2
  doi: 10.1016/j.asoc.2024.111556
– ident: e_1_3_2_25_2
  doi: 10.1109/ICSE48619.2023.00022
– volume-title: Proceedings of the 2018 International Conference on Learning Representations (ICLR’18)
  year: 2018
  ident: e_1_3_2_72_2
– ident: e_1_3_2_130_2
  doi: 10.1145/3597503.3623345
– ident: e_1_3_2_45_2
  doi: 10.1145/3422622
– ident: e_1_3_2_155_2
  doi: 10.1109/TIFS.2024.3374219
– ident: e_1_3_2_146_2
  doi: 10.1109/TSE.2018.2877612
– ident: e_1_3_2_144_2
  doi: 10.1016/j.jss.2023.111706
– ident: e_1_3_2_39_2
– ident: e_1_3_2_51_2
  doi: 10.1016/j.asoc.2018.04.020
– ident: e_1_3_2_150_2
  doi: 10.1016/j.infsof.2021.106809
– ident: e_1_3_2_60_2
  doi: 10.1109/ASE56229.2023.00181
– ident: e_1_3_2_129_2
  doi: 10.1109/SEAA51224.2020.00085
– ident: e_1_3_2_49_2
  doi: 10.1109/IJCNN55064.2022.9892280
– ident: e_1_3_2_70_2
  doi: 10.1016/j.array.2019.100011
– volume-title: Introduction to Information Retrieval
  year: 2008
  ident: e_1_3_2_124_2
– ident: e_1_3_2_57_2
  doi: 10.1109/MSR.2019.00016
– ident: e_1_3_2_187_2
  doi: 10.1016/j.knosys.2022.108852
– volume-title: Infer
  year: 2013
  ident: e_1_3_2_36_2
– ident: e_1_3_2_122_2
  doi: 10.1109/ICMLA.2018.00120
– ident: e_1_3_2_114_2
  doi: 10.1109/ICSE48619.2023.00088
– ident: e_1_3_2_176_2
  doi: 10.1016/j.infsof.2023.107371
– ident: e_1_3_2_141_2
  doi: 10.1016/j.eswa.2023.121865
– ident: e_1_3_2_20_2
  doi: 10.1145/3379597.3387461
– ident: e_1_3_2_53_2
  doi: 10.1109/ISSRE59848.2023.00042
– ident: e_1_3_2_64_2
  doi: 10.1016/j.cose.2021.102308
– ident: e_1_3_2_169_2
  doi: 10.1109/BigData59044.2023.10386771
– ident: e_1_3_2_180_2
  doi: 10.1109/ISSRE52982.2021.00054
– ident: e_1_3_2_107_2
  doi: 10.1016/j.jss.2024.112014
– ident: e_1_3_2_90_2
  doi: 10.1109/ICSE43902.2021.00040
– ident: e_1_3_2_47_2
  doi: 10.1109/MCSoC60832.2023.00053
– ident: e_1_3_2_178_2
  doi: 10.1145/3551349.3560428
– ident: e_1_3_2_109_2
  doi: 10.1016/j.infsof.2024.107406
– ident: e_1_3_2_149_2
  doi: 10.1016/j.cose.2022.103023
– ident: e_1_3_2_18_2
  doi: 10.1016/j.infsof.2024.107453
– ident: e_1_3_2_3_2
  doi: 10.1016/j.knosys.2020.106646
– ident: e_1_3_2_151_2
  doi: 10.1109/ICSE48619.2023.00191
– ident: e_1_3_2_139_2
  doi: 10.1016/j.cose.2023.103341
– ident: e_1_3_2_128_2
  doi: 10.1016/j.infsof.2023.107219
– ident: e_1_3_2_16_2
  doi: 10.1016/j.jss.2020.110616
– ident: e_1_3_2_171_2
  doi: 10.1109/ICSE48619.2023.00190
– ident: e_1_3_2_99_2
  doi: 10.1016/j.jss.2024.112031
– ident: e_1_3_2_132_2
  doi: 10.1016/j.cose.2021.102417
– ident: e_1_3_2_168_2
  doi: 10.1007/s10703-005-3401-0
– ident: e_1_3_2_4_2
– ident: e_1_3_2_5_2
  doi: 10.1145/3457337.3457841
– ident: e_1_3_2_76_2
  doi: 10.1145/3585386
– ident: e_1_3_2_113_2
  doi: 10.1109/TSE.2022.3207149
– ident: e_1_3_2_185_2
  doi: 10.1145/3106237.3117771
– ident: e_1_3_2_23_2
  doi: 10.1145/3533767.3534371
– ident: e_1_3_2_115_2
  doi: 10.1016/j.jss.2018.12.001
– ident: e_1_3_2_98_2
– ident: e_1_3_2_125_2
  doi: 10.1049/iet-sen.2020.0084
– ident: e_1_3_2_100_2
  doi: 10.1201/b20091
– ident: e_1_3_2_137_2
  doi: 10.1016/j.jss.2023.111623
– ident: e_1_3_2_88_2
  doi: 10.1109/TDSC.2019.2954088
– ident: e_1_3_2_11_2
  doi: 10.1016/j.infsof.2021.106576
– ident: e_1_3_2_32_2
  doi: 10.1016/j.infsof.2023.107168
– ident: e_1_3_2_102_2
  doi: 10.1109/ESEM.2013.19
– ident: e_1_3_2_9_2
  doi: 10.1016/j.jss.2023.111919
– ident: e_1_3_2_61_2
  doi: 10.1038/s41598-024-56871-z
– ident: e_1_3_2_24_2
  doi: 10.24963/ijcai.2017/214
– ident: e_1_3_2_116_2
  doi: 10.1145/2810103.2813604
– ident: e_1_3_2_54_2
  doi: 10.1109/MSR59073.2023.00018
– ident: e_1_3_2_86_2
– ident: e_1_3_2_174_2
  doi: 10.1109/ACCESS.2020.3034766
– ident: e_1_3_2_17_2
  doi: 10.1016/j.jss.2023.111772
– ident: e_1_3_2_157_2
  doi: 10.1109/ICSE48619.2023.00129
– ident: e_1_3_2_78_2
  doi: 10.1016/j.cose.2022.103017
– ident: e_1_3_2_162_2
  doi: 10.1145/2420950.2421003
– ident: e_1_3_2_8_2
  doi: 10.1016/j.jss.2022.111550
– ident: e_1_3_2_26_2
  doi: 10.1145/1348250.1348254
– ident: e_1_3_2_30_2
  doi: 10.1109/SANER53432.2022.00114
– ident: e_1_3_2_41_2
  doi: 10.1145/3092566
– ident: e_1_3_2_65_2
  doi: 10.1016/j.ins.2023.03.132
– ident: e_1_3_2_93_2
  doi: 10.1016/j.eswa.2023.121764
– ident: e_1_3_2_110_2
  doi: 10.1145/3664602
– ident: e_1_3_2_38_2
  doi: 10.1007/978-3-030-68110-4_7
– ident: e_1_3_2_145_2
  doi: 10.1016/j.engappai.2024.108296
SSID ssj0002416
Score 2.545597
Snippet In recent years, numerous Machine Learning (ML) models, including Deep Learning (DL) and classic ML models, have been developed to detect software...
SourceID proquest
crossref
acm
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Deep learning
Digital libraries
Digital systems
Embedding
Graph neural networks
International conferences
Literature reviews
Machine learning
Neural networks
Recurrent neural networks
Reliability engineering
Representations
Security and privacy
Software engineering
Software reliability
Software security engineering
Source code
Systematic review
Taxonomy
SubjectTermsDisplay Security and privacy -- Software security engineering
Title A Systematic Literature Review on Automated Software Vulnerability Detection Using Machine Learning
URI https://dl.acm.org/doi/10.1145/3699711
https://www.proquest.com/docview/3175118839
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1557-7341
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002416
  issn: 0360-0300
  databaseCode: ADMLS
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW5dILBUrFtoB84IYCSZzH-hheQojlAhRuKztxYBFNqiWhgiO_nHH8SBYqFTgkihzZ2fV8nhnbM58R2mRRyD3mMUcMYbgFHnMdHtHMEXHOgjinGacyOXl0Gh1dBMdX4VWv99yJWqorvp0-_TOv5DNShTKQq8yS_YBkbaNQAM8gX7iDhOH-LhknmnC8YV09sQTJhi2_lEsZVQmvpVcJ-vavDPP6Vd9JpukmKPYR9E0l1GnhKnhg1ARXCsO7et11XpO9UROCXjeh0vf19AFgYJdobibTicwJeoKPq5zr00mr9HdL9ii2ZDaQWkG9e-hs6F_qRevjuridvCk9K_XP0IsTfthGZ9mkLBfKXLX1IrSODWMnJorvyihhxVKtwUY6GtXrmGZFlfJW6QeSH4NElMZacc_Qar8ydzYIUaVkh2NdcQ7N-2AZ3D6aT_ZHJ2fWnoOPo3e81V9Rqdey6o6uKj2b9PesZzNr2Btv5XwRLehpBk4UZpZQTxTL6Ks5wgNrjf4NpQluIYRbCGEFIVwW2EIIGwjhGQhhCyHcQAhrCGEDoRV0cXhwvnfk6HM3HOaToHLkweM8cHkOAs1ILI9UiCMZDgnjHa6MROmQBp5gPBfMp0Pw-X0umf1iHvppSsh31C_KQqwizASlAWECGoKJLswWBDTORBbBLNfLCRugZei58R_FrGJEMUDY9KR99UpaA7RmenisR-T9WPrCMGEGn__H_1v4ib60iF1D_Wpai3VwMCu-oRHwAtRQfM8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Literature+Review+on+Automated+Software+Vulnerability+Detection+Using+Machine+Learning&rft.jtitle=ACM+computing+surveys&rft.au=Shiri+Harzevili%2C+Nima&rft.au=Boaye+Belle%2C+Alvine&rft.au=Wang%2C+Junjie&rft.au=Wang%2C+Song&rft.date=2025-03-01&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=57&rft.issue=3&rft.spage=1&rft.epage=36&rft_id=info:doi/10.1145%2F3699711&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3699711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon