Swarm Intelligence Algorithms A Tutorial

Swarm intelligence algorithms are a form of nature-based optimization algorithms. Their main inspiration is the cooperative behavior of animals within specific communities. This can be described as simple behaviors of individuals along with the mechanisms for sharing knowledge between them, resultin...

Full description

Saved in:
Bibliographic Details
Main Author Slowik, Adam
Format eBook
LanguageEnglish
Published United States CRC Press 2020
Taylor & Francis Group
Edition1
Subjects
Online AccessGet full text
ISBN0429749503
9780429749506
9780367496142
1138384496
0367496143
9781138384491
DOI10.1201/9780429422614

Cover

Table of Contents:
  • 11.3.1 Matlab -- 11.3.2 C++ -- 11.3.3 Python -- 11.4 Numerical example: optimisation with DFO -- 11.5 Conclusion -- References -- 12. Elephant Herding Optimization -- 12.1 Introduction -- 12.2 Elephant herding optimization -- 12.2.1 Position update of elephants in a clan -- 12.2.2 Separation of male elephants from the clan -- 12.2.3 Pseudo-code of EHO algorithm -- 12.3 Source-code of EHO algorithm in Matlab -- 12.4 Source-code of EHO algorithm in C++ -- 12.5 Step-by-step numerical example of EHO algorithm -- 12.6 Conclusions -- Acknowledgement -- References -- 13. Firefly Algorithm -- 13.1 Introduction -- 13.2 Original firefly algorithm -- 13.2.1 Description of the standard firefly algorithm -- 13.2.2 Pseudo-code of FA -- 13.2.3 Parameters in the firefly algorithm -- 13.3 Source code of firefly algorithm in Matlab -- 13.4 Source code in C++ -- 13.5 A worked example -- 13.6 Handling constraints -- 13.7 Conclusion -- References -- 14. Glowworm Swarm Optimization: A Tutorial -- 14.1 Introduction -- 14.1.1 Basic principle of GSO -- 14.1.2 The Glowworm Swarm Optimization (GSO) algorithm -- 14.1.3 Algorithm description -- 14.2 Source-code of GSO algorithm in Matlab -- 14.3 Source-code of GSO algorithm in C++ -- 14.4 Step-by-step numerical example of GSO algorithm -- 14.5 Conclusions -- References -- 15. Grasshopper Optimization Algorithm -- 15.1 Introduction -- 15.2 Description of the Grasshopper Optimization Algorithm -- 15.3 Source-code of GOA in Matlab -- 15.4 Source-code of GOA in C++ -- 15.5 Step-by-step numerical example of GOA -- 15.6 Conclusion -- References -- 16. Grey Wolf Optimizer -- 16.1 Introduction -- 16.2 Original GWO algorithm -- 16.2.1 Main concepts and inspiration -- 16.2.2 Social hierarchy -- 16.2.3 Encircling prey -- 16.2.4 Hunting process -- 16.2.5 Attacking prey (exploitation) -- 16.2.6 Search for prey (exploration)
  • 20.6 Conclusions -- References -- 21. Salp Swarm Algorithm: Tutorial -- 21.1 Introduction -- 21.2 Salp swarm algorithm (SSA) -- 21.2.1 Pseudo-code of SSA algorithm -- 21.2.2 Description of SSA algorithm -- 21.3 Source code of SSA algorithm in Matlab -- 21.4 Source-code of SSA algorithm in C++ -- 21.5 Step-by-step numerical example of SSA algorithm -- 21.6 Conclusion -- References -- 22. Social Spider Optimization -- 22.1 Introduction -- 22.2 Original SSO algorithm -- 22.2.1 Social behavior and inspiration -- 22.2.2 Population initialization -- 22.2.3 Evaluation of the solution quality -- 22.2.4 Modeling of the vibrations through the communal web -- 22.2.5 Female cooperative operator -- 22.2.6 Male cooperative operator -- 22.2.7 Mating operator -- 22.2.8 Pseudo-code of SSO algorithm -- 22.2.9 Description of the SSO algorithm -- 22.3 Source-code of SSO algorithm in Matlab -- 22.4 Source-code of SSO algorithm in C++ -- 22.5 Step-by-step numerical example of SSO algorithm -- 22.6 Conclusion -- References -- 23. Stochastic Diffusion Search: A Tutorial -- 23.1 Introduction -- 23.2 Stochastic Diffusion Search -- 23.2.1 The mining game -- 23.2.2 Refinements in the metaphor -- 23.3 SDS architecture -- 23.4 Step by step example: text search -- 23.5 Source code -- 23.5.1 Matlab -- 23.5.2 C++ -- 23.5.3 Python -- 23.6 Conclusion -- References -- 24. Whale Optimization Algorithm -- 24.1 Introduction -- 24.2 Original WOA -- 24.2.1 Pseudo-code of the WOA -- 24.2.2 Description of the WOA -- 24.3 Source-code of the WOA in Matlab -- 24.4 Source-code of the WOA in C++ -- 24.5 A step-by-step numerical example of WOA -- 24.6 Conclusions -- References -- Index
  • Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Editor -- Contributors -- 1. Ant Colony Optimization -- 1.1 Introduction -- 1.2 Ants' behavior -- 1.3 Ant colony algorithm -- 1.4 Source-code of ACO algorithm in Matlab -- 1.5 Source-code of ACO algorithm in C++ -- 1.6 Step-by-step numerical example of ACO algorithm -- 1.7 Conclusion -- Acknowledgment -- References -- 2. Artificial Bee Colony Algorithm -- 2.1 Introduction -- 2.2 The original ABC algorithm -- 2.3 Source-code of ABC algorithm in Matlab -- 2.4 Source-code of ABC algorithm in C++ -- 2.5 Step-by-step numerical example of the ABC algorithm -- 2.6 Conclusions -- References -- 3. Bacterial Foraging Optimization -- 3.1 Introduction -- 3.2 Bacterial foraging optimization algorithm -- 3.2.1 Chemotaxis -- 3.2.2 Swarming -- 3.2.3 Reproduction -- 3.2.4 Elimination and dispersal -- 3.3 Pseudo-code of bacterial foraging optimization -- 3.4 Matlab source-code of bacterial foraging optimization -- 3.5 Numerical examples -- 3.6 Conclusions -- 3.7 Acknowledgement -- References -- 4. Bat Algorithm -- 4.1 Introduction -- 4.2 Original bat algorithm -- 4.2.1 Description of the bat algorithm -- 4.2.2 Pseudo-code of BA -- 4.2.3 Parameters in the bat algorithm -- 4.3 Source code of bat algorithm in Matlab -- 4.4 Source code in C++ -- 4.5 A worked example -- 4.6 Conclusion -- References -- 5. Cat Swarm Optimization -- 5.1 Introduction -- 5.2 Original CSO algorithm -- 5.2.1 Pseudo-code of global version of CSO algorithm -- 5.2.2 Description of global version of CSO algorithm -- 5.2.2.1 Seeking mode (resting) -- 5.2.2.2 Tracing mode (movement) -- 5.2.3 Description of local version of CSO algorithm -- 5.3 Source-code of global version of CSO algorithm in Matlab -- 5.4 Source-code of global version of CSO algorithm in C++
  • 5.5 Step-by-step numerical example of global version of CSO algorithm -- 5.6 Conclusions -- References -- 6. Chicken Swarm Optimization -- 6.1 Introduction -- 6.2 Original CSO algorithm -- 6.2.1 Pseudo-code of global version of CSO algorithm -- 6.2.2 Description of global version of CSO algorithm -- 6.3 Source-code of global version of CSO algorithm in Matlab -- 6.4 Source-code of global version of CSO algorithm in C++ -- 6.5 Step-by-step numerical example of global version of CSO algorithm -- 6.6 Conclusions -- References -- 7. Cockroach Swarm Optimization -- 7.1 Introduction -- 7.2 Original cockroach swarm optimization algorithm -- 7.2.1 Pseudo-code of CSO algorithm -- 7.2.2 Description of the CSO algorithm -- 7.3 Source-code of CSO algorithm in Matlab -- 7.4 Source-code of CSO algorithm in C++ -- 7.5 Step-by-step numerical example of CSO algorithm -- 7.6 Conclusions -- References -- 8. Crow Search Algorithm -- 8.1 Introduction -- 8.2 Original CSA -- 8.3 Source-code of CSA in Matlab -- 8.4 Source-code of CSA in C++ -- 8.5 Step-by-step numerical example of CSA -- 8.6 Conclusions -- References -- 9. Cuckoo Search Algorithm -- 9.1 Introduction -- 9.2 Original cuckoo search -- 9.2.1 Description of the cuckoo search -- 9.2.2 Pseudo-code of CS -- 9.2.3 Parameters in the cuckoo search -- 9.3 Source code of the cuckoo search in Matlab -- 9.4 Source code in C++ -- 9.5 A worked example -- 9.6 Conclusion -- References -- 10. Dynamic Virtual Bats Algorithm -- 10.1 Introduction -- 10.2 Dynamic virtual bats algorithm -- 10.2.1 Pseudo-code of DVBA -- 10.2.2 Description of DVBA -- 10.3 Source-code of DVBA in Matlab -- 10.4 Source-code of DVBA in C++ -- 10.5 Step-by-step numerical example of DVBA -- 10.6 Conclusions -- References -- 11. Dispersive Flies Optimisation: A Tutorial -- 11.1 Introduction -- 11.2 Dispersive flies optimisation -- 11.3 Source code
  • 16.2.7 Pseudo-code of GWO algorithm -- 16.2.8 Description of the GWO algorithm -- 16.3 Source-code of GWO algorithm in Matlab -- 16.4 Source-code of GWO algorithm in C++ -- 16.5 Step-by-step numerical example of GWO algorithm -- 16.6 Conclusion -- References -- 17. Hunting Search Algorithm -- 17.1 Introduction -- 17.2 Original HuS algorithm -- 17.2.1 Pseudo-code and description of HuS algorithm -- 17.3 Source code of HuS algorithm in Matlab -- 17.4 Source code of HuS algorithm in C++ -- 17.5 Elaboration on HuS algorithm with constrained minimization problem -- 17.6 Conclusion -- References -- 18. Krill Herd Algorithm -- 18.1 Introduction -- 18.2 Original KH algorithm -- 18.2.1 Pseudo-code of the original version of KH algorithm -- 18.2.2 Description of the original version of KH algorithm -- 18.3 Source-code of the KH algorithm in Matlab -- 18.4 Source-code of the KH algorithm in C++ -- 18.5 Step-by-step numerical example of KH algorithm -- 18.6 Conclusion -- References -- 19. Monarch Butterfly Optimization -- 19.1 Introduction -- 19.2 Monarch butterfly optimization -- 19.2.1 Migration operator -- 19.2.2 Butterfly adjusting operator -- 19.3 Algorithm of monarch butterfly optimization -- 19.4 Source-code of MBO algorithm in Matlab -- 19.5 Source-code of MBO algorithm in C++ -- 19.6 Step-by-step numerical example of MBO algorithm -- 19.7 Conclusion -- Acknowledgement -- References -- 20. Particle Swarm Optimization -- 20.1 Introduction -- 20.2 Original PSO algorithm -- 20.2.1 Pseudo-code of global version of PSO algorithm -- 20.2.2 Description of the global version of the PSO algorithm -- 20.2.3 Description of the local version of the PSO algorithm -- 20.3 Source-code of global version of PSO algorithm in Matlab -- 20.4 Source-code of global version of PSO algorithm in C++ -- 20.5 Step-by-step numerical example of global version of PSO algorithm