Hands-on Machine Learning with Python - Implement Neural Network Solutions with Scikit-Learn and PyTorch

Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytor...

Full description

Saved in:
Bibliographic Details
Main Author Ashwin Pajankar, Aditya Joshi
Format eBook
LanguageEnglish
Published Berkeley, CA Apress, an imprint of Springer Nature 2022
Apress
Apress L. P
Edition1
Subjects
Online AccessGet full text
ISBN9781484279205
1484279204
1484279212
9781484279212
DOI10.1007/978-1-4842-7921-2

Cover

Abstract Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios. The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoretical and practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch.
AbstractList Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios.The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoretical and practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch.After completing Hands-on Machine Learning with Python, you will be able to implement machine learning and neural network solutions and extend them to your advantage. What You'll LearnReview data structures in NumPy and Pandas Demonstrate machine learning techniques and algorithmUnderstand supervised learning and unsupervised learning Examine convolutional neural networks and Recurrent neural networksGet acquainted with scikit-learn and PyTorchPredict sequences in recurrent neural networks and long short term memory Who This Book Is ForData scientists, machine learning engineers, and software professionals with basic skills in Python programming.
Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios.The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoreticaland practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch.After completing Hands-on Machine Learning with Python, you will be able to implement machine learning and neural network solutions and extend them to your advantage. What You'll LearnReview data structures in NumPy and Pandas Demonstrate machine learning techniques and algorithmUnderstand supervised learning and unsupervised learning Examine convolutional neural networks and Recurrent neural networksGet acquainted with scikit-learn and PyTorchPredict sequences in recurrent neural networks and long short term memory Who This Book Is ForData scientists, machine learning engineers, and software professionals with basic skills in Python programming.
Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios. The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoreticaland practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch. After completing Hands-on Machine Learning with Python, you will be able to implement machine learning and neural network solutions and extend them to your advantage. What You'll Learn * Review data structures in NumPy and Pandas * Demonstrate machine learning techniques and algorithm * Understand supervised learning and unsupervised learning * Examine convolutional neural networks and Recurrent neural networks * Get acquainted with scikit-learn and PyTorch * Predict sequences in recurrent neural networks and long short term memory Who This Book Is For Data scientists, machine learning engineers, and software professionals with basic skills in Python programming.
Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. --
Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios. The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoretical and practical lessons. The third section explains complex neural network architectures with details on internal working and implementation of convolutional neural networks. The final chapter contains a detailed end-to-end solution with neural networks in Pytorch.
Author Pajankar, Ashwin
Joshi, Aditya
Author_xml – sequence: 1
  fullname: Ashwin Pajankar, Aditya Joshi
BookMark eNplkUuP0zAUhY14CGboD0BikQUIsTDj60ecLKEaaKVOGWlGbC0ncSYhbtyx05b59zhNFkis7uJ85_je4wv0one9QegdkC9AiLzKZYYB84xTLHMKmD5DFyAoAwFEpM_RIgIwylEl4lUUGaEi4yInr9EihN-EECopowBvULPSfRWw65MbXTZtb5KN0b5v-4fk1A5Ncvs0NFHEyXq3t2Zn-iHZmoPXNo7h5HyX3Dl7GFrXh8lwV7ZdO-BzShKzY8K982XzFr2stQ1mMc9L9Ov79f1yhTc_f6yXXzdYU0a4wEIWnDFWVrySIExelZJrYMJIYGmV6wpSxkVaV6Lisi6KwhQ1K0SRppnOSarZJfo0BYeutTa4elCFc12g_I9URRfi9SCyXMpIfp5IHTpzCo2zQ1BHa864-qdFoJG9mlP3PpZj_BSqgKjxU0ZagRp5NRrU6PgwO3StfTvzR_pf8Lzu3rvHgwmDOr9fxqZjy-r62zLN4-XpSL6fSeOteXBzIhfAgY3XfJzkrndHY1Xcc6f905lS3X51s7ldb7eU_QUwUKsv
ContentType eBook
Copyright 2022
Ashwin Pajankar and Aditya Joshi 2022
Copyright_xml – notice: 2022
– notice: Ashwin Pajankar and Aditya Joshi 2022
DBID YSPEL
OHILO
OODEK
DEWEY 006.31
DOI 10.1007/978-1-4842-7921-2
DatabaseName Perlego
O'Reilly Online Learning: Corporate Edition
O'Reilly Online Learning: Academic/Public Library Edition
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
Government
EISBN 1523151056
9781523151059
1484279212
9781484279212
Edition 1
ExternalDocumentID bks000158977
9781484279212
516449
EBC6913662
4514137
book_kpHMLPINN2
Genre Electronic books
GroupedDBID 38.
AABBV
AADCS
AAJNZ
AALIM
AAQFW
AAZWU
ABSVR
ABTHU
ACBPT
ACPMC
ACXXF
ADNVS
AEKFX
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CMZ
CZZ
IEZ
K-E
OHILO
OODEK
SBO
TD3
TPJZQ
WZT
YSPEL
Z7R
Z7X
Z81
Z83
ACBYE
AJIEK
Z7U
Z85
ID FETCH-LOGICAL-a23045-57b4333cd4d715e9dc74a135e7136d9ad163456fd5d47fbbbebf3b5b668a906a3
IEDL.DBID K-E
ISBN 9781484279205
1484279204
1484279212
9781484279212
IngestDate Tue Oct 28 12:08:20 EDT 2025
Fri Nov 08 03:35:27 EST 2024
Tue Jul 29 20:26:46 EDT 2025
Fri Oct 24 23:04:17 EDT 2025
Fri May 30 22:58:57 EDT 2025
Tue Sep 30 15:19:01 EDT 2025
Sat Nov 23 14:02:54 EST 2024
IsPeerReviewed false
IsScholarly false
LCCallNum J223.M53 .P35 2022
LCCallNum_Ident Q325.5-.7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a23045-57b4333cd4d715e9dc74a135e7136d9ad163456fd5d47fbbbebf3b5b668a906a3
OCLC 1302584590
PQID EBC6913662
PageCount 340
ParticipantIDs skillsoft_books24x7_bks000158977
askewsholts_vlebooks_9781484279212
springer_books_10_1007_978_1_4842_7921_2
safari_books_v2_9781484279212
proquest_ebookcentral_EBC6913662
perlego_books_4514137
knovel_primary_book_kpHMLPINN2
PublicationCentury 2000
PublicationDate 2022
2022-03-05T00:00:00
2022-03-05
2022.
PublicationDateYYYYMMDD 2022-01-01
2022-03-05
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Berkeley, CA
PublicationPlace_xml – name: Berkeley, CA
– name: Place of publication not identified
PublicationYear 2022
Publisher Apress, an imprint of Springer Nature
Apress
Apress L. P
Publisher_xml – name: Apress, an imprint of Springer Nature
– name: Apress
– name: Apress L. P
SSID ssj0002723211
Score 2.4194427
Snippet Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such...
Here is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. --
SourceID skillsoft
askewsholts
springer
safari
proquest
perlego
knovel
SourceType Aggregation Database
Publisher
SubjectTerms Artificial Intelligence
Automatic control
Computer Science
Data processing
General References
Machine Learning
MATHEMATICS
Neural networks (Computer science)
Pattern recognition systems
Professional and Applied Computing
Python
Python (Computer program language)
Software Engineering
SubjectTermsDisplay Automatic control -- Data processing.
Electronic books.
Neural networks (Computer science)
Pattern recognition systems -- Data processing.
TableOfContents Title Page Introduction Table of Contents 1. Getting Started with Python 3 and Jupyter Notebook 2. Getting Started with NumPy 3. Introduction to Data Visualization 4. Introduction to Pandas 5. Introduction to Machine Learning with Scikit-Learn 6. Preparing Data for Machine Learning 7. Supervised Learning Methods: Part 1 8. Tuning Supervised Learners 9. Supervised Learning Methods: Part 2 10. Ensemble Learning Methods 11. Unsupervised Learning Methods 12. Neural Network and PyTorch Basics 13. Feedforward Neural Networks 14. Convolutional Neural Networks 15. Recurrent Neural Networks 16. Bringing it All Together Index
Phase 5: Evaluation -- Phase 6: Deployment -- How ML Applications Are Served -- Learning with an Example -- Defining the Problem -- Data -- Preparing the Model -- Serializing for Future Predictions -- Hosting the Model -- Hello World in Flask -- What's Next -- Index
Intro -- Table of Contents -- About the Authors -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Section 1: Python for Machine Learning -- Chapter 1: Getting Started with Python 3 and Jupyter Notebook -- Python 3 Programming Language -- History of Python Programming Language -- Philosophy of Python Programming Language -- Where Python Is Used -- Installing Python -- Python on Linux Distributions -- Python on macOS -- Python Modes -- Interactive Mode -- Script Mode -- Pip3 Utility -- Scientific Python Ecosystem -- Python Implementations and Distributions -- Anaconda -- Summary -- Chapter 2: Getting Started with NumPy -- Getting Started with NumPy -- Multidimensional Ndarrays -- Indexing of Ndarrays -- Ndarray Properties -- NumPy Constants -- Summary -- Chapter 3: Introduction to Data Visualization -- NumPy Routines for Ndarray Creation -- Matplotlib Data Visualization -- Summary -- Chapter 4: Introduction to Pandas -- Pandas Basics -- Series in Pandas -- Properties of Series -- Pandas Dataframes -- Visualizing the Data in Dataframes -- Summary -- Section 2: Machine Learning Approaches -- Chapter 5: Introduction to Machine Learning with Scikit-learn -- Learning from Data -- Supervised Learning -- Classification -- Regression -- Unsupervised Learning -- Structure of a Machine Learning System -- Problem Understanding -- Data Collection -- Data Annotation and Data Preparation -- Data Wrangling -- Model Development, Training, and Evaluation -- Model Deployment -- Scikit-Learn -- Installing Scikit-Learn -- Understanding the API -- Your First Scikit-learn Experiment -- Summary -- Chapter 6: Preparing Data for Machine Learning -- Types of Data Variables -- Nominal Data -- Ordinal Data -- Interval Data -- Ratio Data -- Transformation -- Transforming Nominal Attributes -- Transforming Ordinal Attributes -- Normalization
Min-Max Scaling -- Standard Scaling -- Preprocessing Text -- Preparing NLTK -- Five-Step NLP Pipeline -- 1. Segmentation -- 2. Tokenization -- Stemming and Lemmatization -- Removing Stopwords -- Preparing Word Vectors -- Preprocessing Images -- Summary -- Chapter 7: Supervised Learning Methods: Part 1 -- Linear Regression -- Finding the Regression Line -- Linear Regression Using Python -- Visualizing What We Learned -- Evaluating Linear Regression -- Logistic Regression -- Line vs. Curve for Expression Probability -- Learning the Parameters -- Logistic Regression Using Python -- Visualizing the Decision Boundary -- Decision Trees -- Building a Decision Tree -- Picking the Splitting Attribute -- Decision Tree in Python -- Pruning the Trees -- Interpreting Decision Trees -- Summary -- Chapter 8: Tuning Supervised Learners -- Training and Testing Processes -- Measures of Performance -- Confusion Matrix -- Recall -- Precision -- Accuracy -- F-Measure -- Performance Metrics in Python -- Classification Report -- Cross Validation -- Why Cross Validation? -- Cross Validation in Python -- ROC Curve -- Overfitting and Regularization -- Bias and Variance -- Regularization -- L1 and L2 Regularization -- Hyperparameter Tuning -- Effect of Hyperparameters -- Grid Search -- Random Search -- Summary -- Chapter 9: Supervised Learning Methods: Part 2 -- Naive Bayes -- Bayes Theorem -- Conditional Probability -- How Naive Bayes Works -- Multinomial Naive Bayes -- Naive Bayes in Python -- Support Vector Machines -- How SVM Works -- Nonlinear Classification -- Kernel Trick in SVM -- Support Vector Machines in Python -- Summary -- Chapter 10: Ensemble Learning Methods -- Bagging and Random Forest -- Random Forest in Python -- Boosting -- Boosting in Python -- Stacking Ensemble -- Stacking in Python -- Summary -- Chapter 11: Unsupervised Learning Methods
Dimensionality Reduction -- Understanding the Curse of Dimensionality -- Principal Component Analysis -- Principal Component Analysis in Python -- Clustering -- Clustering Using K-Means -- K-Means in Python -- What Is the Right K? -- Clustering for Image Segmentation -- Clustering Using DBSCAN -- Frequent Pattern Mining -- Market Basket Analysis -- Frequent Pattern Mining in Python -- Summary -- Section 3: Neural Networks and Deep Learning -- Chapter 12: Neural Network and PyTorch Basics -- Installing PyTorch -- PyTorch Basics -- Creating a Tensor -- Tensor Operations -- Perceptron -- Perceptron in Python -- Artificial Neural Networks -- Summary -- Chapter 13: Feedforward Neural Networks -- Feedforward Neural Network -- Training Neural Networks -- Gradient Descent -- Backpropagation -- Loss Functions -- Mean Squared Error (MSE) -- Mean Absolute Error -- Negative Log Likelihood Loss -- Cross Entropy Loss -- Hinge Loss -- ANN for Regression -- Activation Functions -- ReLU Activation Function -- Sigmoid Activation Function -- Tanh Activation Function -- Multilayer ANN -- NN Class in PyTorch -- Overfitting and Dropouts -- Classifying Handwritten Digits -- Summary -- Chapter 14: Convolutional Neural Networks -- Convolution Operation -- Structure of a CNN -- Padding and Stride -- CNN in PyTorch -- Image Classification Using CNN -- What Did the Model Learn? -- Deep Networks of CNN -- Summary -- Chapter 15: Recurrent Neural Networks -- Recurrent Unit -- Types of RNN -- One to One -- One to Many -- Many to One -- Many to Many -- RNN in Python -- Long Short-Term Memory -- LSTM Cell -- Time Series Prediction -- Gated Recurrent Unit -- Summary -- Chapter 16: Bringing It All Together -- Data Science Life Cycle -- CRISP-DM Process -- Phase 1: Business Understanding -- Phase 2: Data Understanding -- Phase 3: Data Preparation -- Phase 4: Modelling
Title Hands-on Machine Learning with Python - Implement Neural Network Solutions with Scikit-Learn and PyTorch
URI https://app.knovel.com/hotlink/toc/id:kpHMLPINN2/hands-machine-learning/hands-machine-learning?kpromoter=Summon
https://www.perlego.com/book/4514137/handson-machine-learning-with-python-implement-neural-network-solutions-with-scikitlearn-and-pytorch-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6913662
https://learning.oreilly.com/library/view/~/9781484279212/?ar
http://link.springer.com/10.1007/978-1-4842-7921-2
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781484279212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Nb9MwGLb2cYBexsfQCqyyEAcuXmvHjhMuSFSbKkQnDgNNXCw7droqUVMtWcX2K_jJvHaSbQwhbpyqNvETOX77-v18jNBbS62dSMtITmlOeJamJOGRJnEqtGOpcEniG4Xnp_HsK_90Ls63UNX3wvjDrYpVtXFlUNMXVeMTmeOmysZL-75Yz-afwd09ZWMfVwZnMFQcOtIdsbD4y88finUobgPhaINL22iX-p3NZ3HJXVCGSTAwKA0NYAn33HoT3vNCdd9Fnxrt2GnBA4MrBC5RwgZooOsCtBNorqaGTa2dCtjWa3dZukX1ux1b6xwc4gF6VBfLsqxB7_6Rjw3b3Mke-tm_oLa6pTi6asxRdvOAO_I_vsEnaNf5doynaMutnqG9_hAK3Omk5-hiFpCqFZ63YLijjF1gH2PGX649OwImOPAg-1go9oQkuoSPUAGPbyOD7QBALpYNCSgYsAHhrAJtsI--nRyfTWekOz6CaB_pFkRIw6Moyiy3kgqX2kxyTSPhwDGPbaot2KJgP-ZWWC5zY4wzeWSEieNEp5NYRy_QzqpauQOEpQyBBCY0BxNMgtLTOomyjLFsAksvh-jNvYVXmzKkumt1T3IoG6JRuzBq3TKJKH-TuluSIdrv5ES1wzmYszQCdNxLjQrAXeGuOv44jVOYTAxDD1tp6kZu2MNn41sha29h_IdUpqhDN30CbsAQvetlrwPpKa0BSVHlsZQHU-zlv2byCj1mvk8kxKpeo53m8sodgvXWmBHans6_j8L_7hcH6URN
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Hands-on+Machine+Learning+with+Python%3A+Implement+Neural+Network+Solutions+with+Scikit-learn+and+PyTorch&rft.au=Aditya+Joshi&rft.au=Ashwin+Pajankar&rft.date=2022-03-05&rft.pub=Apress&rft.isbn=9781484279212&rft_id=info:doi/10.1007%2F978-1-4842-7921-2&rft.externalDocID=9781484279212
thumbnail_l http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fingram_csplus_gexhsuob%2F9781484279212.jpg
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.safaribooksonline.com%2Flibrary%2Fcover%2F9781484279212
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814842%2F9781484279212.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcontent.knovel.com%2Fcontent%2FThumbs%2Fthumb14884.gif
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-1-4842-7921-2