Making Patterned Single Defects in MoS2 Thermally with the MoS2/Au Moiré Interface

Normally, it is hard to regulate thermal defects precisely in their host lattice due to the stochastic nature of thermal activation. Here, we demonstrate a thermal annealing way to create patterned single sulfur vacancy (VS) defects in monolayer molybdenum disulfide (MoS2) with about 2 nm separation...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 18; no. 40; pp. 27411 - 27419
Main Authors Bao, Yang, Shao, JingJing, Xu, Hai, Yan, Jiaxu, Jing, Peng-Tao, Xu, Jilian, Zhan, Da, Li, Binghui, Liu, Kewei, Liu, Lei, Shen, Dezhen
Format Journal Article
LanguageEnglish
Published American Chemical Society 08.10.2024
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.4c07212

Cover

Abstract Normally, it is hard to regulate thermal defects precisely in their host lattice due to the stochastic nature of thermal activation. Here, we demonstrate a thermal annealing way to create patterned single sulfur vacancy (VS) defects in monolayer molybdenum disulfide (MoS2) with about 2 nm separations at subnanometer accuracy. Theoretically, we reveal that the S–Au interface coupling reduces the energy barriers in forming VS defects and that explains the overwhelming formation of interface VS defects. We also discover a phonon regulation mechanism by the moiré interface that effectively condenses the Γ-point out-of-plane acoustic phonons of monolayer MoS2 to its TOP moiré sites, which has been proposed to trigger moiré-patterned thermal VS formation. The high-throughput nanoscale patterned defects presented here may contribute to building scalable defect-based quantum systems.
AbstractList Normally, it is hard to regulate thermal defects precisely in their host lattice due to the stochastic nature of thermal activation. Here, we demonstrate a thermal annealing way to create patterned single sulfur vacancy (VS) defects in monolayer molybdenum disulfide (MoS2) with about 2 nm separations at subnanometer accuracy. Theoretically, we reveal that the S–Au interface coupling reduces the energy barriers in forming VS defects and that explains the overwhelming formation of interface VS defects. We also discover a phonon regulation mechanism by the moiré interface that effectively condenses the Γ-point out-of-plane acoustic phonons of monolayer MoS2 to its TOP moiré sites, which has been proposed to trigger moiré-patterned thermal VS formation. The high-throughput nanoscale patterned defects presented here may contribute to building scalable defect-based quantum systems.
Normally, it is hard to regulate thermal defects precisely in their host lattice due to the stochastic nature of thermal activation. Here, we demonstrate a thermal annealing way to create patterned single sulfur vacancy (VS) defects in monolayer molybdenum disulfide (MoS2) with about 2 nm separations at subnanometer accuracy. Theoretically, we reveal that the S-Au interface coupling reduces the energy barriers in forming VS defects and that explains the overwhelming formation of interface VS defects. We also discover a phonon regulation mechanism by the moiré interface that effectively condenses the Γ-point out-of-plane acoustic phonons of monolayer MoS2 to its TOP moiré sites, which has been proposed to trigger moiré-patterned thermal VS formation. The high-throughput nanoscale patterned defects presented here may contribute to building scalable defect-based quantum systems.Normally, it is hard to regulate thermal defects precisely in their host lattice due to the stochastic nature of thermal activation. Here, we demonstrate a thermal annealing way to create patterned single sulfur vacancy (VS) defects in monolayer molybdenum disulfide (MoS2) with about 2 nm separations at subnanometer accuracy. Theoretically, we reveal that the S-Au interface coupling reduces the energy barriers in forming VS defects and that explains the overwhelming formation of interface VS defects. We also discover a phonon regulation mechanism by the moiré interface that effectively condenses the Γ-point out-of-plane acoustic phonons of monolayer MoS2 to its TOP moiré sites, which has been proposed to trigger moiré-patterned thermal VS formation. The high-throughput nanoscale patterned defects presented here may contribute to building scalable defect-based quantum systems.
Author Liu, Kewei
Shao, JingJing
Shen, Dezhen
Jing, Peng-Tao
Zhan, Da
Xu, Hai
Li, Binghui
Bao, Yang
Xu, Jilian
Yan, Jiaxu
Liu, Lei
AuthorAffiliation University of Chinese Academy of Sciences, Chinese Academy of Sciences
Changchun Institute of Optics, Fine Mechanics and Physics
State Key Laboratory of Luminescence and Applications
AuthorAffiliation_xml – name: State Key Laboratory of Luminescence and Applications
– name: Changchun Institute of Optics, Fine Mechanics and Physics
– name: University of Chinese Academy of Sciences, Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0001-9868-4946
  surname: Bao
  fullname: Bao, Yang
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 2
  givenname: JingJing
  surname: Shao
  fullname: Shao, JingJing
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 3
  givenname: Hai
  orcidid: 0000-0002-4047-7087
  surname: Xu
  fullname: Xu, Hai
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 4
  givenname: Jiaxu
  orcidid: 0000-0002-9683-1188
  surname: Yan
  fullname: Yan, Jiaxu
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 5
  givenname: Peng-Tao
  orcidid: 0009-0002-2789-0130
  surname: Jing
  fullname: Jing, Peng-Tao
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 6
  givenname: Jilian
  surname: Xu
  fullname: Xu, Jilian
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 7
  givenname: Da
  orcidid: 0000-0001-5270-936X
  surname: Zhan
  fullname: Zhan, Da
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 8
  givenname: Binghui
  surname: Li
  fullname: Li, Binghui
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 9
  givenname: Kewei
  orcidid: 0000-0001-9778-4996
  surname: Liu
  fullname: Liu, Kewei
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 10
  givenname: Lei
  orcidid: 0000-0002-9714-2130
  surname: Liu
  fullname: Liu, Lei
  email: liulei@ciomp.ac.cn
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 11
  givenname: Dezhen
  surname: Shen
  fullname: Shen, Dezhen
  email: shendz@ciomp.ac.cn
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
BookMark eNo9kFFLwzAUhYNMcJs--5pHQbolN2naPI7pdLChsAm-hTS7dZ1dqk2L-Oj_80dZ3fDp3HM5HA7fgPR85ZGQS85GnAEfWxe89dVIOpYAhxPS51qoiKXqufd_x_yMDELYMRYnaaL6ZL20r4V_oY-2abD2uKGrzpZIbzBH1wRaeLqsVkDXW6z3tiw_6UfRbGmzxb__eNJ2WtT4_UXnvqvIrcNzcprbMuDFUYfkaXa7nt5Hi4e7-XSyiCyAbCLLc4sx30Bmsxxy7QC0dTpz2iUbIVWqEGLIuVQ8S7KUYcK4Bh4rAdJZkYohuTr0vtXVe4uhMfsiOCxL67FqgxGcaQk6ZbKLXh-iHSazq9rad8MMZ-aXnTmyM0d24geVyGTA
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID 7X8
DOI 10.1021/acsnano.4c07212
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 27419
ExternalDocumentID d207133635
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
7X8
ABBLG
ABLBI
ADHGD
ID FETCH-LOGICAL-a224t-a1fae51d2babf2f9c229ac9bc9c7d34686e252f1461b7b80e70192156324ca383
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 15:54:57 EDT 2025
Wed Oct 09 03:28:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords thermal annealing
single defects
MoS2
moiré interface
catalytic effect
acoustic phonons
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a224t-a1fae51d2babf2f9c229ac9bc9c7d34686e252f1461b7b80e70192156324ca383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0002-2789-0130
0000-0002-9714-2130
0000-0002-4047-7087
0000-0001-9778-4996
0000-0001-9868-4946
0000-0001-5270-936X
0000-0002-9683-1188
PQID 3109429804
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_3109429804
acs_journals_10_1021_acsnano_4c07212
PublicationCentury 2000
PublicationDate 2024-10-08
PublicationDateYYYYMMDD 2024-10-08
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-08
  day: 08
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0057876
Score 2.4807794
Snippet Normally, it is hard to regulate thermal defects precisely in their host lattice due to the stochastic nature of thermal activation. Here, we demonstrate a...
SourceID proquest
acs
SourceType Aggregation Database
Publisher
StartPage 27411
Title Making Patterned Single Defects in MoS2 Thermally with the MoS2/Au Moiré Interface
URI http://dx.doi.org/10.1021/acsnano.4c07212
https://www.proquest.com/docview/3109429804
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kXvTgW6wvVug1bXfyaHIs1VKEitAWegv7BLEkYJKD3vx__ihnN6mKPegpJIEl7M58883O5FtCOoBOFCjMVA3yZQ_zDfQ5pmyzwyBkXPEk4vZH4elDNFkE98tw-S0W_buCD6zHZZHxLO8G0kp5IdpuQxQzm2cNR7M16Fq7i-oCMibIyCK-VHw2BrBhSBYb0OviyXi_7sQqnAyhbSN57lal6Mq3TZHGvz_1gOw1rJIOazM4JFs6OyK7P7QGj8l86s6doo9OUBPBlc7wdqXprXYdHfQpo9N8BhQNB8F6tXqldo-WIkF0z3vDCq8IkB_v1G0jGi71CVmM7-ajidccqeBxjNWlx5nhOmQKBBcGTCIBEi4TIRM5UH4QxZGGEIw97FsMRNzXVq0dWYEVdZccs9lT0sryTJ8RanwwKhbga4lAwBj3RdBXOkx8fOEz0SYdnI-0cYkiddVuYGkzSWkzSW1ys16IFC3blit4pvOqSK1mKUbLuB-c_2-oC7IDSDnqDr1L0ipfKn2FlKEU185YPgHqMrro
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jHtSD3-L8jLBrtyb9WHsc0zF1Hco22K0kaQLiaMG2B735__lH-ZJ1U9xFT6UphJC-_N7v5b38glCTwiJyE4hUFfBlC-INWHMk0cUOHY-whIU-0weFo5E_mLr3M29WQ_byLAwMIoeecpPE_1YXIG1oS1matVyhFb0AdDeMDoomQ73xEnu1-fmLPDLEyUAmVmI-ax1obyTyNQQ2bqW_i55WAzLVJC-tsuAt8f5Lq_E_I95DOxXHxN2FUeyjmkwP0PYP5cFDNInMLVT40chrAtTiMbzOJb6Rpr4DP6c4ysYUgxkBdM_nb1jv2GKgi6a93S3hCXD5-YHNpqJiQh6haf920htY1QULFgPPXViMKCY9klDOuKIqFJSGTIRchKKTOK4f-JJ6VOmrv3mHB7bU2u3AEbTEu2AQ2x6jepql8gRh5VCVBJw6UgAsEMIc7tqJ9EIHPjiEN1AT5iOuFkgem9w3JXE1SXE1SQ10vfwfMdi5Tl6wVGZlHmsFU_Cdge2e_q2rK7Q5mETDeHg3ejhDWxTIyKJ27xzVi9dSXgCZKPilsZ8vY9_DUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja8JAFB6KhdIeupfadQpeo85kMTmKVuyiCCp4C7OCVJLSJIf21v_XH9U3Y5RSL-0pZALDMHnL9-a99w1CNQpK5EmIVDXgZQfiDdA5Ik2xQ8snTLIoYKZReDAM-lPvcebPyqYw0wsDi8hgpswm8Y1Wv0pdMgyQBownLEnrnjCsXmB4t31DAGcAUWe8sr9GBINlLhliZQAUa0KfjQmMRxLZhhW2rqV3gKbrRdmKkpd6kfO6-PjF1_jfVR-i_RJr4vZSOI7QlkqO0d4PBsITNBnY26jwyNJsgsnFY3hdKNxVts4DzxM8SMcUgziBCV8s3rE5ucUAG-14o13AE8zm1ye2h4uaCXWKpr37SafvlBctOAw8eO4wopnyiaSccU11JCiNmIi4iERLul4QBor6VJsrwHmLh01lONwBKxiqd8Egxj1DlSRN1DnC2qVahpy6SoB5IIS53GtK5UcufHAJr6Ia7EdcKkoW2xw4JXG5SXG5SVV0t_onMci7SWKwRKVFFhsmU_ChYdO7-NtUt2hn1O3Fzw_Dp0u0SwGTLEv4rlAlfyvUNWCKnN9YEfoG1NzFzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Making+Patterned+Single+Defects+in+MoS2+Thermally+with+the+MoS2%2FAu+Moire%CC%81+Interface&rft.jtitle=ACS+nano&rft.au=Bao%2C+Yang&rft.au=Shao%2C+JingJing&rft.au=Xu%2C+Hai&rft.au=Yan%2C+Jiaxu&rft.date=2024-10-08&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=18&rft.issue=40&rft.spage=27411&rft.epage=27419&rft_id=info:doi/10.1021%2Facsnano.4c07212&rft.externalDocID=d207133635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon