Mathematical modeling and applied calculus

This textbook is rich with real-life data sets, uses RStudio to streamline computations, builds "big picture" conceptual understandings, and applies them in diverse settings. Mathematical Modeling and Applied Calculus will develop the insights and skills needed to describe and model many d...

Full description

Saved in:
Bibliographic Details
Main Authors Kilty, Joel, McAllister, Alex M.
Format eBook Book
LanguageEnglish
Published Oxford Oxford University Press 2018
Oxford University Press, Incorporated
Edition1
Subjects
Online AccessGet full text
ISBN9780198824725
0198824726
0198824734
9780198824732

Cover

Abstract This textbook is rich with real-life data sets, uses RStudio to streamline computations, builds "big picture" conceptual understandings, and applies them in diverse settings. Mathematical Modeling and Applied Calculus will develop the insights and skills needed to describe and model many different aspects of our world. This textbook provides an excellent introduction to the process of mathematical modeling, the method of least squares, and both differentialand integral calculus, perfectly meeting the needs of today's students. Mathematical Modeling and Applied Calculus provides a modern outline of the ideas of Calculus and is aimed at those who do not intend to enter the traditional calculus sequence. Topics that are not traditionally taught in a one-semester Calculus course, such as dimensional analysis and the method of least squares, are woven together with the ideas of mathematical modeling and the ideas of calculus to provide a rich experience and a large toolbox of mathematical techniques for futurestudies. Additionally, multivariable functions are interspersed throughout the text, presented alongside their single-variable counterparts. This text provides a fresh take on these ideas that is ideal for the modern student.
AbstractList This textbook is rich with real-life data sets, uses RStudio to streamline computations, builds "big picture" conceptual understandings, and applies them in diverse settings. Mathematical Modeling and Applied Calculus will develop the insights and skills needed to describe and model many different aspects of our world. This textbook provides an excellent introduction to the process of mathematical modeling, the method of least squares, and both differentialand integral calculus, perfectly meeting the needs of today's students. Mathematical Modeling and Applied Calculus provides a modern outline of the ideas of Calculus and is aimed at those who do not intend to enter the traditional calculus sequence. Topics that are not traditionally taught in a one-semester Calculus course, such as dimensional analysis and the method of least squares, are woven together with the ideas of mathematical modeling and the ideas of calculus to provide a rich experience and a large toolbox of mathematical techniques for futurestudies. Additionally, multivariable functions are interspersed throughout the text, presented alongside their single-variable counterparts. This text provides a fresh take on these ideas that is ideal for the modern student.
Mathematical Modeling and Applied Calculus is a modern take on modeling and calculus aimed at students who need some experience with these ideas.
Author McAllister, Alex M.
Kilty, Joel
Author_xml – sequence: 1
  fullname: Kilty, Joel
– sequence: 2
  fullname: McAllister, Alex M.
BackLink https://cir.nii.ac.jp/crid/1130000795207588992$$DView record in CiNii
BookMark eNotkNtOwzAMhoM4CDb2Dr1AQiBNsnNokkuYOElD3CBuKzdNWFnWjqWD1ydQbmxZ_mT5-yfsqOs7f8AmgJYrZVDoQzaz2uTZGC41Vydsgoi2lABanbJZSh8AwNGCkfqMXT_TsPIbGlpHsdj0jY9t915Q1xS03cbWN0VeuH3cp3N2HCgmP_vvU_Z2f_e6eJwvXx6eFjfLOXEuSj6vG6lFHWoViIPVUAog1NKSCsZ6GRwEF7xRwgEGrDFIKVUt8zvoqKFSTNnVeJjS2n-nVR-HVH1FX_f9OlWj3WhrMns5sttd_7n3aaj-MOe7YUexurtdKGOzvsrkxUh2bVu59rciipwFaKt4DscYa7n4ATc8XSM
ContentType eBook
Book
DBID RYH
DEWEY 511.8
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISBN 0192558137
9780192558138
Edition 1
ExternalDocumentID 9780192558138
EBC5891965
BB2711492X
GroupedDBID -VX
38.
AABBV
ABARN
ABMRC
ABQPQ
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
DUGUG
EBSCA
ECOWB
GEOUK
RYH
XI1
ZBOWZ
ID FETCH-LOGICAL-a22362-bd473bfb5fa20970630a1749a5f89e4fc0fcfe853c01f1b1f4445b48471cada63
ISBN 9780198824725
0198824726
0198824734
9780198824732
IngestDate Fri Nov 08 03:16:58 EST 2024
Wed Sep 17 02:58:40 EDT 2025
Fri Jun 27 00:31:28 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QA401 .K558 2018
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a22362-bd473bfb5fa20970630a1749a5f89e4fc0fcfe853c01f1b1f4445b48471cada63
Notes Includes index
OCLC 1119640075
PQID EBC5891965
PageCount 812
ParticipantIDs askewsholts_vlebooks_9780192558138
proquest_ebookcentral_EBC5891965
nii_cinii_1130000795207588992
PublicationCentury 2000
PublicationDate 2018
2018-09-13
PublicationDateYYYYMMDD 2018-01-01
2018-09-13
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationYear 2018
Publisher Oxford University Press
Oxford University Press, Incorporated
Publisher_xml – name: Oxford University Press
– name: Oxford University Press, Incorporated
SSID ssj0002190847
ssib047233916
Score 2.0761578
Snippet Mathematical Modeling and Applied Calculus is a modern take on modeling and calculus aimed at students who need some experience with these ideas.
This textbook is rich with real-life data sets, uses RStudio to streamline computations, builds "big picture" conceptual understandings, and applies them in...
SourceID askewsholts
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Calculus
Mathematical models
TableOfContents Cover -- Mathematical Modeling and Applied Calculus -- Copyright -- Dedication -- Contents -- Preface -- Overview of the Book -- Pedagogical Features -- Course Designs -- Acknowledgments -- Chapter 1. Functions for Modeling Data -- 1.1 Functions -- Tabular Functions and Nonfunctions -- Graphical Functions and Nonfunctions -- Analytic Presentations of Functions -- Piecewise Functions -- Exercises -- 1.2 Multivariable Functions -- Exercises -- 1.3 Linear Functions -- Parameters of Linear Functions -- Monotonicity -- Exercises -- 1.4 Exponential Functions -- Recognizing Exponential Functions Graphically -- Parameters of Exponential Functions -- Concavity -- Algebra of Exponents -- Exercises -- 1.5 Inverse Functions -- Tabular Inverses -- Graphical Inverses -- Existence of Inverses -- Monotonicity and Inverses -- Finding Inverses Algebraically -- Exercises -- 1.6 Logarithmic Functions -- Logarithms as Parametrized Families of Functions -- Algebra of Logarithms -- Logarithms and Exponential Models -- Semi-log Plots and Log-Log Plots -- Exercises -- 1.7 Trigonometric Functions -- Measuring Angles -- Right Triangle Definitions of Trigonometric Functions -- The Unit Circle Definitions of Trigonometric Functions -- Graphs of Trigonometric Functions -- Trigonometric Identities -- Exercises -- Chapter 2. Mathematical Modeling -- 2.1 Modeling with Linear Functions -- Numerically Identifying Linear Data Sets -- Conjecturing Linear Models -- Best Possible Linear Models -- Exercises -- 2.2 Modeling with Exponential Functions -- Numerically Identifying Exponential Data Sets -- Conjecturing Exponential Models -- Best Possible Exponential Models -- Exercises -- 2.3 Modeling with Power Functions -- Graphically Identifying Power Functional Data Sets -- Numerically Identifying Power Functional Data Sets -- Conjecturing Power Function Models
Starting Values and Ending Criteria -- Determining Points of Intersection -- Optimization Using Newton's Method -- Understanding Newton's Method -- Newton's Method and Dimensions -- Exercises -- 5.5 Multivariable Optimization -- Contour Plots and Extreme Values -- Critical Points -- Multivariable Second Derivative Test -- Global Extreme Values -- Exercises -- 5.6 Constrained Optimization -- The Gradient -- Properties of the Gradient -- Constrained Optimization -- Understanding the Lagrange Multiplier -- Method of Lagrange Multipliers -- Understanding the Method of Lagrange Multipliers -- Exercises -- Chapter 6. Accumulation and Integration -- 6.1 Accumulation -- Left and Right Approximations -- Midpoint Rule -- Obtaining More Accurate Approximations -- Riemann Sums -- Exercises -- 6.2 The Definite Integral -- Net Accumulation and Geometry -- Dimensions and Units of Definite Integrals -- Properties of the Definite Integral -- Understanding the Algebraic Properties of Integrals -- Exercises -- 6.3 First Fundamental Theorem -- The Net Accumulation Function -- The First Fundamental Theorem of Calculus -- Antiderivatives of Modeling Functions -- Exercises -- 6.4 Second Fundamental Theorem -- Using the Second Fundamental Theorem -- Area Between Curves -- Understanding the Fundamental Theorems -- A Partial Proof of the Fundamental Theorems -- Exercises -- 6.5 The Method of Substitution -- The Chain Rule -- Antiderivatives via Substitution -- Substitution with Intermediate Algebra -- The Method of Substitution and Definite Integrals -- Understanding Di↵erentials -- Exercises -- 6.6 Integration by Parts -- Method of Integration by Parts -- Choosing f(x) and g'(x) -- Integration by Parts and Definite Integrals -- Understanding Integration by Parts -- Exercises -- Appendix A. Answer to Questions -- Section 1.1 Questions -- Section 1.2 Questions
Best Possible Power Function Models -- Logarithmic Scale Plots -- Exercises -- 2.4 Modeling with Sine Functions -- The Sine Function -- Parameters of Sine Functions -- Conjecturing Sine Models -- Best Possible Sine Models -- Exercises -- 2.5 Modeling with Sigmoidal Functions -- Parameters of Sigmoidal Functions -- Conjecturing Sigmoidal Models -- Best Possible Sigmoidal Models -- Exercises -- 2.6 Single-Variable Modeling -- Graphically Identifying Reasonable Models -- Context and Choosing Models -- Refining Models Using More Data -- A Limitation of Mathematical Models -- Exercises -- 2.7 Dimensional Analysis -- Fundamental and Derived Dimensions -- Arithmetic with Dimensions and Units -- Solving for Unknown Dimensions -- Generalized Products -- Dimensional Analysis -- Exercises -- Chapter 3. The Method of Least Squares -- 3.1 Vectors and Vector Operations -- Three Vector Operations -- A Geometric Interpretation of Scalar Multiplication -- A Geometric Interpretation of Vector Addition -- An Introduction to Vector Fields -- Exercises -- 3.2 Linear Combinations of Vectors -- Finding Desired Linear Combinations -- Vector Equations as Matrix Equations -- Matrix-Vector Multiplication -- Solving Matrix Equations -- Exercises -- 3.3 Existence of Linear Combinations -- Linear Combinations of Two Vectors -- Linear Combinations of Three or More Vectors -- Linear Combinations and Data Sets -- Exercises -- 3.4 Vector Projection -- The Dot Product -- Geometry of the Dot Product -- Residual Vectors -- Vector Projection -- Understanding Vector Projection -- Exercises -- 3.5 The Method of Least Squares -- Applying the Method of Least Squares -- The Residual Vector of Minimal Length -- Understanding the Method of Least Squares -- Exercises -- Chapter 4. Derivatives -- 4.1 Rates of Change -- Average Rate of Change -- Instantaneous Rate of Change
Appendix C. Getting Started with RStudio
Section 1.3 Questions -- Section 1.4 Questions -- Section 1.5 Questions -- Section 1.6 Questions -- Section 1.7 Questions -- Section 2.1 Questions -- Section 2.2 Questions -- Section 2.3 Questions -- Section 2.4 Questions -- Section 2.5 Questions -- Section 2.6 Questions -- Section 2.7 Questions -- Section 3.1 Questions -- Section 3.2 Questions -- Section 3.3 Questions -- Section 3.4 Questions -- Section 3.5 Questions -- Section 4.1 Questions -- Section 4.2 Questions -- Section 4.3 Questions -- Section 4.4 Questions -- Section 4.5 Questions -- Section 4.6 Questions -- Section 4.7 Questions -- Section 5.1 Questions -- Section 5.2 Questions -- Section 5.3 Questions -- Section 5.4 Questions -- Section 5.5 Questions -- Section 5.6 Questions -- Section 6.1 Questions -- Section 6.2 Questions -- Section 6.3 Questions -- Section 6.4 Questions -- Section 6.5 Questions -- Section 6.6 Questions -- Appendix B. Answers to Odd-Numbered Exercises -- Section 1.1 Exercises -- Section 1.2 Exercises -- Section 1.3 Exercises -- Section 1.4 Exercises -- Section 1.5 Exercises -- Section 1.6 Exercises -- Section 1.7 Exercises -- Section 2.1 Exercises -- Section 2.2 Exercises -- Section 2.3 Exercises -- Section 2.4 Exercises -- Section 2.5 Exercises -- Section 2.6 Exercises -- Section 2.7 Exercises -- Section 3.1 Exercises -- Section 3.2 Exercises -- Section 3.3 Exercises -- Section 3.4 Exercises -- Section 3.5 Exercises -- Section 4.1 Exercises -- Section 4.2 Exercises -- Section 4.3 Exercises -- Section 4.4 Exercises -- Section 4.6 Exercises -- Section 4.7 Exercises -- Section 5.1 Exercises -- Section 5.2 Exercises -- Section 5.3 Exercises -- Section 5.4 Exercises -- Section 5.5 Exercises -- Section 5.6 Exercises -- Section 6.1 Exercises -- Section 6.2 Exercises -- Section 6.3 Exercises -- Section 6.4 Exercises -- Section 6.5 Exercises -- Section 6.6 Exercises
Tangent Line Question and Fermat's Solution -- Exercises -- 4.2 The Derivative as a Function -- Existence of Derivatives -- Dimensions and Derivatives -- Higher-Order Derivatives -- Monotonicity of Functions -- Exercises -- 4.3 Derivatives of Modeling Functions -- Derivatives of Linear Functions -- The Power Rule -- Di↵erentiation and Basic Arithmetic -- Di↵erentiating Other Modeling Functions -- Evidence for Di↵erentiation Rules -- Tangent Lines and Linear Approximations -- Exercises -- 4.4 Product and Quotient Rules -- The Product Rule -- The Quotient Rule -- More Trigonometric Derivatives -- Differentiating with Multiple Rules -- Tabular Functions -- Exercises -- 4.5 The Chain Rule -- Composition of Functions -- The Chain Rule -- Di↵erentiating with Multiple Rules -- Tabular Functions -- Revisiting Extended Di↵erentiation Rules -- Evidence for the Chain Rule -- Exercises -- 4.6 Partial Derivatives -- Approximating Partial Derivatives -- Differentiation Rules and Partial Derivatives -- Higher-Order Partial Derivatives -- Linear Approximation -- Exercises -- 4.7 Limits and the Derivative -- Continuous Functions -- Evaluating Limits at Discontinuities -- Reprise: The Definition of the Derivative -- Exercises -- Chapter 5. Optimization -- 5.1 Global Extreme Values -- Extreme Value Theorem -- Critical Numbers -- Determining Critical Numbers from the Derivative -- Locating Global Extreme Values -- Exercises -- 5.2 Local Extreme Values -- Critical Numbers -- Critical Numbers and Monotonicity -- First Derivative Test -- Revisiting Global Extreme Values -- Exercises -- 5.3 Concavity and Extreme Values -- Concavity and Points of Inflection -- Determining Concavity Graphically -- Determining Concavity from the Second Derivative -- Second Derivative Test -- Exercises -- 5.4 Newton's Method and Optimization -- Applying Newton's Method
Title Mathematical modeling and applied calculus
URI https://cir.nii.ac.jp/crid/1130000795207588992
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5891965
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780192558138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BudDTArui7IIixAkUFKd2HB8pKkJI5QSot8hxbCnaqki0cODX73Pz0VJAaLlYjqOM5JnI88b2myE6YdLKmCcu9OnR_DFjFGrjb04lhVEAFAUXnu88uk2u7_nNWIyXFcAW7JJ5fm5eP-SVfMeqGINdPUv2PyzbCsUA-rAvWlgY7Rr4bR_r2kttslVP_vDFbBquoa5RJV74jb3lUU05qdL_3zza5VVAczGZlE1tDs91ORudr-4DsHRtH-ATfuGbcBFwDoCay4pqvJZnejCIJYIjFY83aVPKtENb8IzDUbtjhbUtgi-r8hJVcpI6hVErt0tdPfuL5RlL93wGfz0ty3debuG6735Qx9M5dmjDTnepu5J-cY9OV9UYNGoMoMagVmPQqPEnPVwN7y6vw7p2RKgBeJI4zAsu-7nLhdNxpKRPLaYRfSktXKosdyZyxlmAFRMxx3LmOOci595ZG13opP-LOtPHqd2nAPO0JgJwVkxxwXQueCEhRKKXpLHt0fHKpLOXyeKce5ZVmkHMlrJ-2qND6CIzpW-ZP0QEOlMiBmRLEfPGPQoaLWWL7-vLudlwcOkrP6pEHHwh4jdtL3-MP9SZPz3bQ0CmeX5U2_IfhjEQyA
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Mathematical+modeling+and+applied+calculus&rft.au=Kilty%2C+Joel&rft.au=McAllister%2C+Alex+M.&rft.date=2018-01-01&rft.pub=Oxford+University+Press&rft.isbn=9780198824725&rft.externalDocID=BB2711492X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801925%2F9780192558138.jpg