Modeling and sensitivity analysis of bearing capacity in driven piles using hybrid ANN–PSO algorithm

Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity (BC) of piles due to the large number of effective parameters. This study combined the PSO and ANN algorithms to provide a polynomial relation for the p...

Full description

Saved in:
Bibliographic Details
Published inArabian journal of geosciences Vol. 15; no. 3
Main Authors Arjomand, Mohammad Ali, Mostafaei, Yashar, Kutanaei, Saman Soleimani
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-7511
1866-7538
DOI10.1007/s12517-022-09557-7

Cover

Abstract Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity (BC) of piles due to the large number of effective parameters. This study combined the PSO and ANN algorithms to provide a polynomial relation for the prediction of bearing capacity in driven piles. Sensitivity analysis examined the effect of the input parameters including flap number (FL), pile length (L) and cross-sectional area (A), internal friction angle (ϕ), soil drained cohesion (C), soil density (γ) and soil–pile interaction friction angle (δ) on the output parameter (BC). This study used the data from 100 static loading tests on the piles. The results of this study showed that the quadratic relation obtained from the PSO–ANN and PSO methods for the prediction of BC yielded the R 2 values of 0.912 and 0.957, respectively. The scaling of input data also plays an important role in the ANN performance. The results of sensitivity analyses revealed that γ, A, δ, L, ϕ, C and FL have the greatest effect, respectively. The model presented by PSO–ANN method can be used with a high reliability to predict BC.
AbstractList Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity (BC) of piles due to the large number of effective parameters. This study combined the PSO and ANN algorithms to provide a polynomial relation for the prediction of bearing capacity in driven piles. Sensitivity analysis examined the effect of the input parameters including flap number (FL), pile length (L) and cross-sectional area (A), internal friction angle (ϕ), soil drained cohesion (C), soil density (γ) and soil–pile interaction friction angle (δ) on the output parameter (BC). This study used the data from 100 static loading tests on the piles. The results of this study showed that the quadratic relation obtained from the PSO–ANN and PSO methods for the prediction of BC yielded the R 2 values of 0.912 and 0.957, respectively. The scaling of input data also plays an important role in the ANN performance. The results of sensitivity analyses revealed that γ, A, δ, L, ϕ, C and FL have the greatest effect, respectively. The model presented by PSO–ANN method can be used with a high reliability to predict BC.
Abstract Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity (BC) of piles due to the large number of effective parameters. This study combined the PSO and ANN algorithms to provide a polynomial relation for the prediction of bearing capacity in driven piles. Sensitivity analysis examined the effect of the input parameters including flap number (FL), pile length (L) and cross-sectional area (A), internal friction angle (ϕ), soil drained cohesion (C), soil density (γ) and soil–pile interaction friction angle (δ) on the output parameter (BC). This study used the data from 100 static loading tests on the piles. The results of this study showed that the quadratic relation obtained from the PSO–ANN and PSO methods for the prediction of BC yielded the R2 values of 0.912 and 0.957, respectively. The scaling of input data also plays an important role in the ANN performance. The results of sensitivity analyses revealed that γ, A, δ, L, ϕ, C and FL have the greatest effect, respectively. The model presented by PSO–ANN method can be used with a high reliability to predict BC.
ArticleNumber 309
Author Mostafaei, Yashar
Kutanaei, Saman Soleimani
Arjomand, Mohammad Ali
Author_xml – sequence: 1
  givenname: Mohammad Ali
  surname: Arjomand
  fullname: Arjomand, Mohammad Ali
  organization: Faculty of Civil Engineering, Shahid Rajaee Teacher Training University
– sequence: 2
  givenname: Yashar
  surname: Mostafaei
  fullname: Mostafaei, Yashar
  organization: Department of Civil Engineering, Roodehen Science and Research Branch, Islamic Azad University
– sequence: 3
  givenname: Saman Soleimani
  surname: Kutanaei
  fullname: Kutanaei, Saman Soleimani
  email: samansoleimani16@yahoo.com
  organization: Department of Civil Engineering, Ayatollah Amoli Branch, Islamic Azad University
BookMark eNp9kEtOwzAQhi1UJErhAqwssQ74kdjOsqp4SaVFAtaWk4xbV2kS7LRSd9yBG3ISEopAYtGVx5r_G818p2hQ1RUgdEHJFSVEXgfKEiojwlhE0iSRkTxCQ6qEiGTC1eC3pvQEnYawIkQoItUQ2ce6gNJVC2yqAgeogmvd1rW77m_KXXAB1xZnYHyfyU1j8r7pKlx4t4UKN66EgDehby93mXcFHs9mn-8fT89zbMpF7V27XJ-hY2vKAOc_7wi93t68TO6j6fzuYTKeRoYxHkeJiWXGmSiUZCkkKbEQM25ym0NBrABOMs6FVQKUAUvzHOJMiTSJSWqz2OZ8hC73cxtfv20gtHpVb3x3SdBMsDhVTEnRpdQ-lfs6BA9Wd0eZ1tVV640rNSW6t6r3VnVnVX9b1bJD2T-08W5t_O4wxPdQaHqN4P-2OkB9AXKEjlw
CitedBy_id crossref_primary_10_3390_su14116566
crossref_primary_10_1016_j_seppur_2024_126509
crossref_primary_10_1016_j_engappai_2023_106389
crossref_primary_10_1038_s41598_024_83784_8
crossref_primary_10_1016_j_jrmge_2024_02_016
crossref_primary_10_1186_s40703_025_00235_7
crossref_primary_10_1080_17486025_2023_2252759
crossref_primary_10_1007_s12517_023_11470_6
crossref_primary_10_1007_s12517_022_09843_4
Cites_doi 10.1007/s00366-019-00847-5
10.1007/s00366-019-00932-9
10.1007/s00366-018-00694-w
10.1590/S1679-78252014001100002
10.1007/s00366-017-0545-7
10.1016/j.tust.2013.10.003
10.1061/(ASCE)PS.1949-1204.0000349
10.1007/s00366-019-00767-4
10.1007/s00366-018-0674-7
10.1016/j.conbuildmat.2016.05.034
10.1080/01694243.2014.995343
10.1007/s00500-020-05435-0
10.1007/s00521-015-2072-z
10.1007/s12517-014-1458-z
10.1590/S1679-78252014000600004
10.1785/0120200346
10.1080/01694243.2018.1548535
10.1007/s10706-019-01085-8
10.1007/s12205-013-0315-z
10.1007/s12517-016-2452-4
10.15446/esrj.v19n1.38712
10.1007/s12517-013-1201-1
10.1061/(ASCE)0887-3801(2000)14:1(1)
10.1007/s13369-019-04134-9
10.1007/s00366-019-00849-3
ContentType Journal Article
Copyright Saudi Society for Geosciences 2022
Saudi Society for Geosciences 2022.
Copyright_xml – notice: Saudi Society for Geosciences 2022
– notice: Saudi Society for Geosciences 2022.
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
DOI 10.1007/s12517-022-09557-7
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-7538
ExternalDocumentID 10_1007_s12517_022_09557_7
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
1N0
203
23M
2JN
2JY
2KG
2VQ
30V
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
PT4
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z85
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-a2234-5a47b326d8729e590fe423acfced0f6e30b336f86e8aef1cce4b8695409fb4fc3
IEDL.DBID U2A
ISSN 1866-7511
IngestDate Wed Sep 17 23:53:47 EDT 2025
Wed Oct 01 02:28:45 EDT 2025
Thu Apr 24 23:05:46 EDT 2025
Fri Feb 21 02:47:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ANN
Bearing capacity
PSO
Sensitivity analyses
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2234-5a47b326d8729e590fe423acfced0f6e30b336f86e8aef1cce4b8695409fb4fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2624982876
PQPubID 2044009
ParticipantIDs proquest_journals_2624982876
crossref_citationtrail_10_1007_s12517_022_09557_7
crossref_primary_10_1007_s12517_022_09557_7
springer_journals_10_1007_s12517_022_09557_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Arabian journal of geosciences
PublicationTitleAbbrev Arab J Geosci
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Tavakoli, Kutanaei (CR24) 2015; 8
Moayedi, Armaghani (CR17) 2018; 34
Dehghanbanadaki, Khari, Amiri, Armaghani (CR5) 2021; 25
Tavakoli, Omran, Kutanaei (CR25) 2014; 11
Kutanaei, Choobbasti (CR9) 2015; 29
CR15
Armaghani, Raja, Faizi, Rashid (CR1) 2017; 28
Shaik, Krishna, Abbas, Ahmed, Mavaluru (CR23) 2019; 35
Choobbasti, Kutanaei, Afrakoti (CR4) 2019; 33
Liong, Lim, Paudyal (CR11) 2000; 14
Roten, Olsen (CR22) 2021; 111
Liu, Moayedi, Rashid, Rahman, Nguyen (CR12) 2020; 36
Yong, Zhou, Armaghani, Tahir, Tarinejad, Pham, Van Huynh (CR27) 2020; 37
Tavakoli, Omran, Shiade, Kutanaei (CR26) 2014; 11
Nawari, Liang, Nusairat (CR20) 1999; 4
Choobbasti, Tavakoli, Kutanaei (CR3) 2014; 40
CR6
Mashhadban, Kutanaei, Sayarinejad (CR14) 2016; 119
Benali, Hachama, Bounif, Nechnech, Karray (CR2) 2019; 37
CR8
Rezaei, Choobbasti, Kutanaei (CR21) 2015; 8
Kutanaei, Choobbasti (CR10) 2019; 10
Momeni, Nazir, Armaghani, Maizir (CR19) 2015; 19
Mashhadban, Beitollahi, Kutanaei (CR13) 2016; 9
Kardani, Zhou, Nazem, Shen (CR7) 2020; 38
Moayedi, Raftari, Sharifi, Jusoh, Rashid (CR18) 2020; 36
Milad, Kamal, Nader, Erman (CR16) 2015; 19
H Moayedi (9557_CR17) 2018; 34
F Milad (9557_CR16) 2015; 19
HR Tavakoli (9557_CR25) 2014; 11
9557_CR15
S Shaik (9557_CR23) 2019; 35
SS Kutanaei (9557_CR9) 2015; 29
AJ Choobbasti (9557_CR3) 2014; 40
A Dehghanbanadaki (9557_CR5) 2021; 25
9557_CR6
SS Kutanaei (9557_CR10) 2019; 10
9557_CR8
W Yong (9557_CR27) 2020; 37
NO Nawari (9557_CR20) 1999; 4
A Benali (9557_CR2) 2019; 37
N Kardani (9557_CR7) 2020; 38
E Momeni (9557_CR19) 2015; 19
DJ Armaghani (9557_CR1) 2017; 28
S Rezaei (9557_CR21) 2015; 8
S Liong (9557_CR11) 2000; 14
L Liu (9557_CR12) 2020; 36
H Mashhadban (9557_CR14) 2016; 119
HR Tavakoli (9557_CR26) 2014; 11
AJ Choobbasti (9557_CR4) 2019; 33
D Roten (9557_CR22) 2021; 111
H Moayedi (9557_CR18) 2020; 36
H Tavakoli (9557_CR24) 2015; 8
H Mashhadban (9557_CR13) 2016; 9
References_xml – volume: 37
  start-page: 675
  issue: 1
  year: 2019
  end-page: 684
  ident: CR2
  article-title: A TLBO-optimized artificial neural network for modeling axial capacity of pile foundations
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00847-5
– volume: 37
  start-page: 2111
  issue: 3
  year: 2020
  end-page: 2127
  ident: CR27
  article-title: A new hybrid simulated annealing-based genetic programming technique to predict the ultimate bearing capacity of piles
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00932-9
– volume: 36
  start-page: 227
  issue: 1
  year: 2020
  end-page: 238
  ident: CR18
  article-title: Optimization of ANFIS with GA and PSO estimating α ratio in driven piles
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-00694-w
– volume: 11
  start-page: 1906
  issue: 11
  year: 2014
  end-page: 1923
  ident: CR26
  article-title: Prediction of combined effects of fibers and nanosilica on the mechanical properties of self-compacting concrete using artificial neural network
  publication-title: Lat Am J Solids Struct
  doi: 10.1590/S1679-78252014001100002
– volume: 34
  start-page: 347
  issue: 2
  year: 2018
  end-page: 356
  ident: CR17
  article-title: Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0545-7
– ident: CR6
– volume: 40
  start-page: 192
  year: 2014
  end-page: 202
  ident: CR3
  article-title: Modeling and optimization of a trench layer location around a pipeline using artificial neural networks and particle swarm optimization algorithm
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2013.10.003
– ident: CR8
– volume: 10
  start-page: 04019002
  issue: 2
  year: 2019
  ident: CR10
  article-title: Prediction of liquefaction potential of sandy soil around a submarine pipeline under earthquake loading
  publication-title: J Pipeline Syst Eng Pract
  doi: 10.1061/(ASCE)PS.1949-1204.0000349
– volume: 36
  start-page: 421
  issue: 1
  year: 2020
  end-page: 433
  ident: CR12
  article-title: Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00767-4
– volume: 35
  start-page: 1463
  issue: 4
  year: 2019
  end-page: 1474
  ident: CR23
  article-title: Applying several soft computing techniques for prediction of bearing capacity of driven piles
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0674-7
– volume: 119
  start-page: 277
  year: 2016
  end-page: 287
  ident: CR14
  article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.05.034
– volume: 29
  start-page: 487
  issue: 6
  year: 2015
  end-page: 501
  ident: CR9
  article-title: Prediction of combined effects of fibers and cement on the mechanical properties of sand using particle swarm optimization algorithm
  publication-title: J Adhes Sci Technol
  doi: 10.1080/01694243.2014.995343
– volume: 25
  start-page: 4103
  issue: 5
  year: 2021
  end-page: 4119
  ident: CR5
  article-title: Estimation of ultimate bearing capacity of driven piles in c-φ soil using MLP-GWO and ANFIS-GWO models: a comparative study
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05435-0
– volume: 28
  start-page: 391
  issue: 2
  year: 2017
  end-page: 405
  ident: CR1
  article-title: Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2072-z
– volume: 8
  start-page: 3881
  issue: 6
  year: 2015
  end-page: 3891
  ident: CR24
  article-title: Evaluation of effect of soil characteristics on the seismic amplification factor using the neural network and reliability concept
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-014-1458-z
– volume: 11
  start-page: 966
  issue: 6
  year: 2014
  end-page: 979
  ident: CR25
  article-title: Prediction of energy absorption capability in fiber reinforced self-compacting concrete containing nano-silica particles using artificial neural network
  publication-title: Lat Am J Solids Struct
  doi: 10.1590/S1679-78252014000600004
– volume: 111
  start-page: 1784
  issue: 4
  year: 2021
  end-page: 1794
  ident: CR22
  article-title: Estimation of site amplification from geotechnical array data using neural networks
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120200346
– ident: CR15
– volume: 4
  start-page: 1
  year: 1999
  end-page: 21
  ident: CR20
  article-title: Artificial intelligence techniques for the design and analysis of deep foundations
  publication-title: Elec J Geo Eng
– volume: 33
  start-page: 791
  issue: 8
  year: 2019
  end-page: 807
  ident: CR4
  article-title: Modeling of compressive strength of cemented sandy soil
  publication-title: J Adhes Sci Technol
  doi: 10.1080/01694243.2018.1548535
– volume: 38
  start-page: 2271
  issue: 2
  year: 2020
  end-page: 2291
  ident: CR7
  article-title: Estimation of bearing capacity of piles in cohesionless soil using optimised machine learning approaches
  publication-title: Geotec Geol Eng
  doi: 10.1007/s10706-019-01085-8
– volume: 19
  start-page: 611
  issue: 3
  year: 2015
  end-page: 620
  ident: CR16
  article-title: New method for predicting the ultimate bearing capacity of driven piles by using Flap number
  publication-title: KSCE J Civil Eng
  doi: 10.1007/s12205-013-0315-z
– volume: 9
  start-page: 427
  issue: 6
  year: 2016
  end-page: 525
  ident: CR13
  article-title: Identification of soil properties based on accelerometer records and comparison with other methods
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2452-4
– volume: 19
  start-page: 85
  issue: 1
  year: 2015
  end-page: 93
  ident: CR19
  article-title: Application of artificial neural network for predicting shaft and tip resistances of concrete piles
  publication-title: Earth Sci Res J
  doi: 10.15446/esrj.v19n1.38712
– volume: 8
  start-page: 1453
  issue: 3
  year: 2015
  end-page: 1466
  ident: CR21
  article-title: Site effect assessment using microtremor measurement, equivalent linear method, and artificial neural network (case study: Babol, Iran)
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-013-1201-1
– volume: 14
  start-page: 1
  issue: 1
  year: 2000
  end-page: 8
  ident: CR11
  article-title: River stage forecasting in Bangladesh: neural network approach
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(2000)14:1(1)
– volume: 36
  start-page: 421
  issue: 1
  year: 2020
  ident: 9557_CR12
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00767-4
– volume: 34
  start-page: 347
  issue: 2
  year: 2018
  ident: 9557_CR17
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0545-7
– volume: 8
  start-page: 3881
  issue: 6
  year: 2015
  ident: 9557_CR24
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-014-1458-z
– ident: 9557_CR8
  doi: 10.1007/s13369-019-04134-9
– volume: 111
  start-page: 1784
  issue: 4
  year: 2021
  ident: 9557_CR22
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120200346
– ident: 9557_CR6
  doi: 10.1007/s00366-019-00849-3
– volume: 38
  start-page: 2271
  issue: 2
  year: 2020
  ident: 9557_CR7
  publication-title: Geotec Geol Eng
  doi: 10.1007/s10706-019-01085-8
– volume: 29
  start-page: 487
  issue: 6
  year: 2015
  ident: 9557_CR9
  publication-title: J Adhes Sci Technol
  doi: 10.1080/01694243.2014.995343
– volume: 11
  start-page: 1906
  issue: 11
  year: 2014
  ident: 9557_CR26
  publication-title: Lat Am J Solids Struct
  doi: 10.1590/S1679-78252014001100002
– volume: 119
  start-page: 277
  year: 2016
  ident: 9557_CR14
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.05.034
– ident: 9557_CR15
– volume: 19
  start-page: 85
  issue: 1
  year: 2015
  ident: 9557_CR19
  publication-title: Earth Sci Res J
  doi: 10.15446/esrj.v19n1.38712
– volume: 19
  start-page: 611
  issue: 3
  year: 2015
  ident: 9557_CR16
  publication-title: KSCE J Civil Eng
  doi: 10.1007/s12205-013-0315-z
– volume: 40
  start-page: 192
  year: 2014
  ident: 9557_CR3
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2013.10.003
– volume: 35
  start-page: 1463
  issue: 4
  year: 2019
  ident: 9557_CR23
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0674-7
– volume: 33
  start-page: 791
  issue: 8
  year: 2019
  ident: 9557_CR4
  publication-title: J Adhes Sci Technol
  doi: 10.1080/01694243.2018.1548535
– volume: 14
  start-page: 1
  issue: 1
  year: 2000
  ident: 9557_CR11
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(2000)14:1(1)
– volume: 37
  start-page: 2111
  issue: 3
  year: 2020
  ident: 9557_CR27
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00932-9
– volume: 25
  start-page: 4103
  issue: 5
  year: 2021
  ident: 9557_CR5
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05435-0
– volume: 11
  start-page: 966
  issue: 6
  year: 2014
  ident: 9557_CR25
  publication-title: Lat Am J Solids Struct
  doi: 10.1590/S1679-78252014000600004
– volume: 36
  start-page: 227
  issue: 1
  year: 2020
  ident: 9557_CR18
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-00694-w
– volume: 8
  start-page: 1453
  issue: 3
  year: 2015
  ident: 9557_CR21
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-013-1201-1
– volume: 4
  start-page: 1
  year: 1999
  ident: 9557_CR20
  publication-title: Elec J Geo Eng
– volume: 28
  start-page: 391
  issue: 2
  year: 2017
  ident: 9557_CR1
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2072-z
– volume: 9
  start-page: 427
  issue: 6
  year: 2016
  ident: 9557_CR13
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2452-4
– volume: 37
  start-page: 675
  issue: 1
  year: 2019
  ident: 9557_CR2
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00847-5
– volume: 10
  start-page: 04019002
  issue: 2
  year: 2019
  ident: 9557_CR10
  publication-title: J Pipeline Syst Eng Pract
  doi: 10.1061/(ASCE)PS.1949-1204.0000349
SSID ssj0068078
Score 2.2249298
Snippet Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity (BC) of...
Abstract Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Bearing capacity
Driven piles
Earth and Environmental Science
Earth science
Earth Sciences
Friction
Internal friction
Mathematical models
Original Paper
Parameter sensitivity
Parameters
Piles
Polynomials
Scaling
Sensitivity analysis
Soil
Soil density
Soil layers
Soil settlement
Soil-pile interaction
Title Modeling and sensitivity analysis of bearing capacity in driven piles using hybrid ANN–PSO algorithm
URI https://link.springer.com/article/10.1007/s12517-022-09557-7
https://www.proquest.com/docview/2624982876
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: AFBBN
  dateStart: 20080701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: U2A
  dateStart: 20080701
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RfAiPrFayx686ULTJJvssUgfKFZBC_UUspvdtlDT0tRDb_4H_6G_xJk8DIoKHsNu9jAzO_MNO_MNIed2S1tRJCxmR6FkjrQ0E65wmW1zwAtSKJ5SCt0OeH_oXI_cUd4UlhTV7sWTZOqpy2Y3ZNdiWH2OtGke8zZJ1UU6L7DiYatd-F-ODOqYZvmcMw_wRN4q8_MZX8NRiTG_PYum0aa7S3ZymEjbmV73yIaO98lWLx3Duz4gBkeYYSM5DeOIJliEnk2BgO-MZITODZVgxbhHQUBUuDiNabRE90YX4AwSikXvYzpZY9cWbQ8G769v9w93NJyN58vpavJ8SIbdzuNVn-UTE1gIYd5hbuh4EgBZ5ANm1q5oGg1wKVRG6ahpuLabEpRgfK79UBtLKe1InwtAbcJIxyj7iFTieayPCVUi8n1Lu5aGvFVwV8LVNrYlteBCaS-sEasQXKByOnGcajELSiJkFHYAwg5SYQdejVx8_rPIyDT-3F0v9BHkFysJWhzyRSTp5zVyWeioXP79tJP_bT8l263UTLBwpU4qq-WLPgP4sZINUm33nm46jdTqPgDTbtKF
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCMGFN2I8c-AGQevaps1xQsB4DSSYBKeqSZOBgA5t4wAn_gP_kF-C3QcTCJA4VnGjNk7sz4r9GWDTrRsnSaTD3SRW3FOO4dKXPnddgXhBSS0ySqHTlmi2vaMr_6ooCuuX2e7llWRmqYfFbsSuxSn7nGjTAh6MwpiHAUq9AmONg-vjvdICC-JQp0ArFIIHiCiKYpmfZ_nqkIYo89vFaOZv9qehXX5pnmZyt_M0UDv65RuJ439_ZQamCgDKGvmOmYURk87B-EHW4Pd5Hiw1R6MSdRanCetTenveXwKfc_oS1rVM4fkgGY2uVtPgbcqSHhlO9ohmps8onb7Dbp6pHow1Wq3317fzizMW33e6vdvBzcMCtPf3LnebvOjFwGMEEB73Yy9QCPWSENG48WXNGgRisbbaJDUrjFtTqF4bChPGxjpaG0-FQiIelFZ5VruLUEm7qVkCpmUSho7xHYMRsRS-QqNhXUcZKaQ2QVwFp1RIpAuicuqXcR8NKZZp_SJcvyhbvyiowtbnO485Tcef0qulnqPiyPajusBIlOj_RRW2S7UNh3-fbfl_4hsw0bw8PYlODlvHKzBZz3YBpcesQmXQezJrCHIGar3Y0x-sJ_Da
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYBOKCWEVZfeAGVpsmceJjBZS9IEGl3qJ4ayuVtGrLoTf-gT_kS5jJQgEBEsfIjg8z45k38swbQg7dqnG0Fg5zdSyZJx3DhC985roc8IIUiqeUQrcNftH0rlp-61MXf1rtXjxJZj0NyNKUjMsDbcvTxjdk2mJYiY4UagELZsm8h0QJYNHNaq3wxRzZ1DHlCjlnAWCLvG3m5zO-hqYp3vz2RJpGnvoKWc4hI61lOl4lMyZZIwvn6UjeyTqxOM4Mm8ppnGg6woL0bCIEfGeEI7RvqQSLxj0KgqPCxW5C9RBdHR2AYxhRLIBv084EO7hordF4e3m9f7ijca_dH3bHnacN0qyfPZ5csHx6Aosh5HvMj71AAjjTIeBn44uKNQCdYmWV0RXLjVuRoBAbchPGxjpKGU-GXACCE1Z6VrmbZC7pJ2aLUCV0GDrGdwzksIL7Eq65dR1pBBfKBHGJOIXgIpVTi-OEi140JUVGYUcg7CgVdhSUyNHHP4OMWOPP3buFPqL8ko2iKofcEQn7eYkcFzqaLv9-2vb_th-QxfvTenRz2bjeIUvV1GKwnmWXzI2Hz2YPUMlY7qeG9w6cR9gZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+sensitivity+analysis+of+bearing+capacity+in+driven+piles+using+hybrid+ANN%E2%80%93PSO+algorithm&rft.jtitle=Arabian+journal+of+geosciences&rft.au=Arjomand%2C+Mohammad+Ali&rft.au=Mostafaei%2C+Yashar&rft.au=Kutanaei%2C+Saman+Soleimani&rft.date=2022-02-01&rft.pub=Springer+International+Publishing&rft.issn=1866-7511&rft.eissn=1866-7538&rft.volume=15&rft.issue=3&rft_id=info:doi/10.1007%2Fs12517-022-09557-7&rft.externalDocID=10_1007_s12517_022_09557_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-7511&client=summon