Modeling and sensitivity analysis of bearing capacity in driven piles using hybrid ANN–PSO algorithm
Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity (BC) of piles due to the large number of effective parameters. This study combined the PSO and ANN algorithms to provide a polynomial relation for the p...
        Saved in:
      
    
          | Published in | Arabian journal of geosciences Vol. 15; no. 3 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.02.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1866-7511 1866-7538  | 
| DOI | 10.1007/s12517-022-09557-7 | 
Cover
| Abstract | Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity (BC) of piles due to the large number of effective parameters. This study combined the PSO and ANN algorithms to provide a polynomial relation for the prediction of bearing capacity in driven piles. Sensitivity analysis examined the effect of the input parameters including flap number (FL), pile length (L) and cross-sectional area (A), internal friction angle (ϕ), soil drained cohesion (C), soil density (γ) and soil–pile interaction friction angle (δ) on the output parameter (BC). This study used the data from 100 static loading tests on the piles. The results of this study showed that the quadratic relation obtained from the PSO–ANN and PSO methods for the prediction of BC yielded the R
2
values of 0.912 and 0.957, respectively. The scaling of input data also plays an important role in the ANN performance. The results of sensitivity analyses revealed that γ, A, δ, L, ϕ, C and FL have the greatest effect, respectively. The model presented by PSO–ANN method can be used with a high reliability to predict BC. | 
    
|---|---|
| AbstractList | Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity (BC) of piles due to the large number of effective parameters. This study combined the PSO and ANN algorithms to provide a polynomial relation for the prediction of bearing capacity in driven piles. Sensitivity analysis examined the effect of the input parameters including flap number (FL), pile length (L) and cross-sectional area (A), internal friction angle (ϕ), soil drained cohesion (C), soil density (γ) and soil–pile interaction friction angle (δ) on the output parameter (BC). This study used the data from 100 static loading tests on the piles. The results of this study showed that the quadratic relation obtained from the PSO–ANN and PSO methods for the prediction of BC yielded the R
2
values of 0.912 and 0.957, respectively. The scaling of input data also plays an important role in the ANN performance. The results of sensitivity analyses revealed that γ, A, δ, L, ϕ, C and FL have the greatest effect, respectively. The model presented by PSO–ANN method can be used with a high reliability to predict BC. Abstract Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity (BC) of piles due to the large number of effective parameters. This study combined the PSO and ANN algorithms to provide a polynomial relation for the prediction of bearing capacity in driven piles. Sensitivity analysis examined the effect of the input parameters including flap number (FL), pile length (L) and cross-sectional area (A), internal friction angle (ϕ), soil drained cohesion (C), soil density (γ) and soil–pile interaction friction angle (δ) on the output parameter (BC). This study used the data from 100 static loading tests on the piles. The results of this study showed that the quadratic relation obtained from the PSO–ANN and PSO methods for the prediction of BC yielded the R2 values of 0.912 and 0.957, respectively. The scaling of input data also plays an important role in the ANN performance. The results of sensitivity analyses revealed that γ, A, δ, L, ϕ, C and FL have the greatest effect, respectively. The model presented by PSO–ANN method can be used with a high reliability to predict BC.  | 
    
| ArticleNumber | 309 | 
    
| Author | Mostafaei, Yashar Kutanaei, Saman Soleimani Arjomand, Mohammad Ali  | 
    
| Author_xml | – sequence: 1 givenname: Mohammad Ali surname: Arjomand fullname: Arjomand, Mohammad Ali organization: Faculty of Civil Engineering, Shahid Rajaee Teacher Training University – sequence: 2 givenname: Yashar surname: Mostafaei fullname: Mostafaei, Yashar organization: Department of Civil Engineering, Roodehen Science and Research Branch, Islamic Azad University – sequence: 3 givenname: Saman Soleimani surname: Kutanaei fullname: Kutanaei, Saman Soleimani email: samansoleimani16@yahoo.com organization: Department of Civil Engineering, Ayatollah Amoli Branch, Islamic Azad University  | 
    
| BookMark | eNp9kEtOwzAQhi1UJErhAqwssQ74kdjOsqp4SaVFAtaWk4xbV2kS7LRSd9yBG3ISEopAYtGVx5r_G818p2hQ1RUgdEHJFSVEXgfKEiojwlhE0iSRkTxCQ6qEiGTC1eC3pvQEnYawIkQoItUQ2ce6gNJVC2yqAgeogmvd1rW77m_KXXAB1xZnYHyfyU1j8r7pKlx4t4UKN66EgDehby93mXcFHs9mn-8fT89zbMpF7V27XJ-hY2vKAOc_7wi93t68TO6j6fzuYTKeRoYxHkeJiWXGmSiUZCkkKbEQM25ym0NBrABOMs6FVQKUAUvzHOJMiTSJSWqz2OZ8hC73cxtfv20gtHpVb3x3SdBMsDhVTEnRpdQ-lfs6BA9Wd0eZ1tVV640rNSW6t6r3VnVnVX9b1bJD2T-08W5t_O4wxPdQaHqN4P-2OkB9AXKEjlw | 
    
| CitedBy_id | crossref_primary_10_3390_su14116566 crossref_primary_10_1016_j_seppur_2024_126509 crossref_primary_10_1016_j_engappai_2023_106389 crossref_primary_10_1038_s41598_024_83784_8 crossref_primary_10_1016_j_jrmge_2024_02_016 crossref_primary_10_1186_s40703_025_00235_7 crossref_primary_10_1080_17486025_2023_2252759 crossref_primary_10_1007_s12517_023_11470_6 crossref_primary_10_1007_s12517_022_09843_4  | 
    
| Cites_doi | 10.1007/s00366-019-00847-5 10.1007/s00366-019-00932-9 10.1007/s00366-018-00694-w 10.1590/S1679-78252014001100002 10.1007/s00366-017-0545-7 10.1016/j.tust.2013.10.003 10.1061/(ASCE)PS.1949-1204.0000349 10.1007/s00366-019-00767-4 10.1007/s00366-018-0674-7 10.1016/j.conbuildmat.2016.05.034 10.1080/01694243.2014.995343 10.1007/s00500-020-05435-0 10.1007/s00521-015-2072-z 10.1007/s12517-014-1458-z 10.1590/S1679-78252014000600004 10.1785/0120200346 10.1080/01694243.2018.1548535 10.1007/s10706-019-01085-8 10.1007/s12205-013-0315-z 10.1007/s12517-016-2452-4 10.15446/esrj.v19n1.38712 10.1007/s12517-013-1201-1 10.1061/(ASCE)0887-3801(2000)14:1(1) 10.1007/s13369-019-04134-9 10.1007/s00366-019-00849-3  | 
    
| ContentType | Journal Article | 
    
| Copyright | Saudi Society for Geosciences 2022 Saudi Society for Geosciences 2022.  | 
    
| Copyright_xml | – notice: Saudi Society for Geosciences 2022 – notice: Saudi Society for Geosciences 2022.  | 
    
| DBID | AAYXX CITATION 7UA C1K F1W H96 L.G  | 
    
| DOI | 10.1007/s12517-022-09557-7 | 
    
| DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology | 
    
| EISSN | 1866-7538 | 
    
| ExternalDocumentID | 10_1007_s12517_022_09557_7 | 
    
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 1N0 203 23M 2JN 2JY 2KG 2VQ 30V 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P PT4 QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z85 ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7UA C1K F1W H96 L.G  | 
    
| ID | FETCH-LOGICAL-a2234-5a47b326d8729e590fe423acfced0f6e30b336f86e8aef1cce4b8695409fb4fc3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1866-7511 | 
    
| IngestDate | Wed Sep 17 23:53:47 EDT 2025 Wed Oct 01 02:28:45 EDT 2025 Thu Apr 24 23:05:46 EDT 2025 Fri Feb 21 02:47:29 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | ANN Bearing capacity PSO Sensitivity analyses  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a2234-5a47b326d8729e590fe423acfced0f6e30b336f86e8aef1cce4b8695409fb4fc3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2624982876 | 
    
| PQPubID | 2044009 | 
    
| ParticipantIDs | proquest_journals_2624982876 crossref_citationtrail_10_1007_s12517_022_09557_7 crossref_primary_10_1007_s12517_022_09557_7 springer_journals_10_1007_s12517_022_09557_7  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-02-01 | 
    
| PublicationDateYYYYMMDD | 2022-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Heidelberg  | 
    
| PublicationTitle | Arabian journal of geosciences | 
    
| PublicationTitleAbbrev | Arab J Geosci | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | Tavakoli, Kutanaei (CR24) 2015; 8 Moayedi, Armaghani (CR17) 2018; 34 Dehghanbanadaki, Khari, Amiri, Armaghani (CR5) 2021; 25 Tavakoli, Omran, Kutanaei (CR25) 2014; 11 Kutanaei, Choobbasti (CR9) 2015; 29 CR15 Armaghani, Raja, Faizi, Rashid (CR1) 2017; 28 Shaik, Krishna, Abbas, Ahmed, Mavaluru (CR23) 2019; 35 Choobbasti, Kutanaei, Afrakoti (CR4) 2019; 33 Liong, Lim, Paudyal (CR11) 2000; 14 Roten, Olsen (CR22) 2021; 111 Liu, Moayedi, Rashid, Rahman, Nguyen (CR12) 2020; 36 Yong, Zhou, Armaghani, Tahir, Tarinejad, Pham, Van Huynh (CR27) 2020; 37 Tavakoli, Omran, Shiade, Kutanaei (CR26) 2014; 11 Nawari, Liang, Nusairat (CR20) 1999; 4 Choobbasti, Tavakoli, Kutanaei (CR3) 2014; 40 CR6 Mashhadban, Kutanaei, Sayarinejad (CR14) 2016; 119 Benali, Hachama, Bounif, Nechnech, Karray (CR2) 2019; 37 CR8 Rezaei, Choobbasti, Kutanaei (CR21) 2015; 8 Kutanaei, Choobbasti (CR10) 2019; 10 Momeni, Nazir, Armaghani, Maizir (CR19) 2015; 19 Mashhadban, Beitollahi, Kutanaei (CR13) 2016; 9 Kardani, Zhou, Nazem, Shen (CR7) 2020; 38 Moayedi, Raftari, Sharifi, Jusoh, Rashid (CR18) 2020; 36 Milad, Kamal, Nader, Erman (CR16) 2015; 19 H Moayedi (9557_CR17) 2018; 34 F Milad (9557_CR16) 2015; 19 HR Tavakoli (9557_CR25) 2014; 11 9557_CR15 S Shaik (9557_CR23) 2019; 35 SS Kutanaei (9557_CR9) 2015; 29 AJ Choobbasti (9557_CR3) 2014; 40 A Dehghanbanadaki (9557_CR5) 2021; 25 9557_CR6 SS Kutanaei (9557_CR10) 2019; 10 9557_CR8 W Yong (9557_CR27) 2020; 37 NO Nawari (9557_CR20) 1999; 4 A Benali (9557_CR2) 2019; 37 N Kardani (9557_CR7) 2020; 38 E Momeni (9557_CR19) 2015; 19 DJ Armaghani (9557_CR1) 2017; 28 S Rezaei (9557_CR21) 2015; 8 S Liong (9557_CR11) 2000; 14 L Liu (9557_CR12) 2020; 36 H Mashhadban (9557_CR14) 2016; 119 HR Tavakoli (9557_CR26) 2014; 11 AJ Choobbasti (9557_CR4) 2019; 33 D Roten (9557_CR22) 2021; 111 H Moayedi (9557_CR18) 2020; 36 H Tavakoli (9557_CR24) 2015; 8 H Mashhadban (9557_CR13) 2016; 9  | 
    
| References_xml | – volume: 37 start-page: 675 issue: 1 year: 2019 end-page: 684 ident: CR2 article-title: A TLBO-optimized artificial neural network for modeling axial capacity of pile foundations publication-title: Eng Comput doi: 10.1007/s00366-019-00847-5 – volume: 37 start-page: 2111 issue: 3 year: 2020 end-page: 2127 ident: CR27 article-title: A new hybrid simulated annealing-based genetic programming technique to predict the ultimate bearing capacity of piles publication-title: Eng Comput doi: 10.1007/s00366-019-00932-9 – volume: 36 start-page: 227 issue: 1 year: 2020 end-page: 238 ident: CR18 article-title: Optimization of ANFIS with GA and PSO estimating α ratio in driven piles publication-title: Eng Comput doi: 10.1007/s00366-018-00694-w – volume: 11 start-page: 1906 issue: 11 year: 2014 end-page: 1923 ident: CR26 article-title: Prediction of combined effects of fibers and nanosilica on the mechanical properties of self-compacting concrete using artificial neural network publication-title: Lat Am J Solids Struct doi: 10.1590/S1679-78252014001100002 – volume: 34 start-page: 347 issue: 2 year: 2018 end-page: 356 ident: CR17 article-title: Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil publication-title: Eng Comput doi: 10.1007/s00366-017-0545-7 – ident: CR6 – volume: 40 start-page: 192 year: 2014 end-page: 202 ident: CR3 article-title: Modeling and optimization of a trench layer location around a pipeline using artificial neural networks and particle swarm optimization algorithm publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2013.10.003 – ident: CR8 – volume: 10 start-page: 04019002 issue: 2 year: 2019 ident: CR10 article-title: Prediction of liquefaction potential of sandy soil around a submarine pipeline under earthquake loading publication-title: J Pipeline Syst Eng Pract doi: 10.1061/(ASCE)PS.1949-1204.0000349 – volume: 36 start-page: 421 issue: 1 year: 2020 end-page: 433 ident: CR12 article-title: Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system publication-title: Eng Comput doi: 10.1007/s00366-019-00767-4 – volume: 35 start-page: 1463 issue: 4 year: 2019 end-page: 1474 ident: CR23 article-title: Applying several soft computing techniques for prediction of bearing capacity of driven piles publication-title: Eng Comput doi: 10.1007/s00366-018-0674-7 – volume: 119 start-page: 277 year: 2016 end-page: 287 ident: CR14 article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.05.034 – volume: 29 start-page: 487 issue: 6 year: 2015 end-page: 501 ident: CR9 article-title: Prediction of combined effects of fibers and cement on the mechanical properties of sand using particle swarm optimization algorithm publication-title: J Adhes Sci Technol doi: 10.1080/01694243.2014.995343 – volume: 25 start-page: 4103 issue: 5 year: 2021 end-page: 4119 ident: CR5 article-title: Estimation of ultimate bearing capacity of driven piles in c-φ soil using MLP-GWO and ANFIS-GWO models: a comparative study publication-title: Soft Comput doi: 10.1007/s00500-020-05435-0 – volume: 28 start-page: 391 issue: 2 year: 2017 end-page: 405 ident: CR1 article-title: Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2072-z – volume: 8 start-page: 3881 issue: 6 year: 2015 end-page: 3891 ident: CR24 article-title: Evaluation of effect of soil characteristics on the seismic amplification factor using the neural network and reliability concept publication-title: Arab J Geosci doi: 10.1007/s12517-014-1458-z – volume: 11 start-page: 966 issue: 6 year: 2014 end-page: 979 ident: CR25 article-title: Prediction of energy absorption capability in fiber reinforced self-compacting concrete containing nano-silica particles using artificial neural network publication-title: Lat Am J Solids Struct doi: 10.1590/S1679-78252014000600004 – volume: 111 start-page: 1784 issue: 4 year: 2021 end-page: 1794 ident: CR22 article-title: Estimation of site amplification from geotechnical array data using neural networks publication-title: Bull Seismol Soc Am doi: 10.1785/0120200346 – ident: CR15 – volume: 4 start-page: 1 year: 1999 end-page: 21 ident: CR20 article-title: Artificial intelligence techniques for the design and analysis of deep foundations publication-title: Elec J Geo Eng – volume: 33 start-page: 791 issue: 8 year: 2019 end-page: 807 ident: CR4 article-title: Modeling of compressive strength of cemented sandy soil publication-title: J Adhes Sci Technol doi: 10.1080/01694243.2018.1548535 – volume: 38 start-page: 2271 issue: 2 year: 2020 end-page: 2291 ident: CR7 article-title: Estimation of bearing capacity of piles in cohesionless soil using optimised machine learning approaches publication-title: Geotec Geol Eng doi: 10.1007/s10706-019-01085-8 – volume: 19 start-page: 611 issue: 3 year: 2015 end-page: 620 ident: CR16 article-title: New method for predicting the ultimate bearing capacity of driven piles by using Flap number publication-title: KSCE J Civil Eng doi: 10.1007/s12205-013-0315-z – volume: 9 start-page: 427 issue: 6 year: 2016 end-page: 525 ident: CR13 article-title: Identification of soil properties based on accelerometer records and comparison with other methods publication-title: Arab J Geosci doi: 10.1007/s12517-016-2452-4 – volume: 19 start-page: 85 issue: 1 year: 2015 end-page: 93 ident: CR19 article-title: Application of artificial neural network for predicting shaft and tip resistances of concrete piles publication-title: Earth Sci Res J doi: 10.15446/esrj.v19n1.38712 – volume: 8 start-page: 1453 issue: 3 year: 2015 end-page: 1466 ident: CR21 article-title: Site effect assessment using microtremor measurement, equivalent linear method, and artificial neural network (case study: Babol, Iran) publication-title: Arab J Geosci doi: 10.1007/s12517-013-1201-1 – volume: 14 start-page: 1 issue: 1 year: 2000 end-page: 8 ident: CR11 article-title: River stage forecasting in Bangladesh: neural network approach publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(2000)14:1(1) – volume: 36 start-page: 421 issue: 1 year: 2020 ident: 9557_CR12 publication-title: Eng Comput doi: 10.1007/s00366-019-00767-4 – volume: 34 start-page: 347 issue: 2 year: 2018 ident: 9557_CR17 publication-title: Eng Comput doi: 10.1007/s00366-017-0545-7 – volume: 8 start-page: 3881 issue: 6 year: 2015 ident: 9557_CR24 publication-title: Arab J Geosci doi: 10.1007/s12517-014-1458-z – ident: 9557_CR8 doi: 10.1007/s13369-019-04134-9 – volume: 111 start-page: 1784 issue: 4 year: 2021 ident: 9557_CR22 publication-title: Bull Seismol Soc Am doi: 10.1785/0120200346 – ident: 9557_CR6 doi: 10.1007/s00366-019-00849-3 – volume: 38 start-page: 2271 issue: 2 year: 2020 ident: 9557_CR7 publication-title: Geotec Geol Eng doi: 10.1007/s10706-019-01085-8 – volume: 29 start-page: 487 issue: 6 year: 2015 ident: 9557_CR9 publication-title: J Adhes Sci Technol doi: 10.1080/01694243.2014.995343 – volume: 11 start-page: 1906 issue: 11 year: 2014 ident: 9557_CR26 publication-title: Lat Am J Solids Struct doi: 10.1590/S1679-78252014001100002 – volume: 119 start-page: 277 year: 2016 ident: 9557_CR14 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.05.034 – ident: 9557_CR15 – volume: 19 start-page: 85 issue: 1 year: 2015 ident: 9557_CR19 publication-title: Earth Sci Res J doi: 10.15446/esrj.v19n1.38712 – volume: 19 start-page: 611 issue: 3 year: 2015 ident: 9557_CR16 publication-title: KSCE J Civil Eng doi: 10.1007/s12205-013-0315-z – volume: 40 start-page: 192 year: 2014 ident: 9557_CR3 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2013.10.003 – volume: 35 start-page: 1463 issue: 4 year: 2019 ident: 9557_CR23 publication-title: Eng Comput doi: 10.1007/s00366-018-0674-7 – volume: 33 start-page: 791 issue: 8 year: 2019 ident: 9557_CR4 publication-title: J Adhes Sci Technol doi: 10.1080/01694243.2018.1548535 – volume: 14 start-page: 1 issue: 1 year: 2000 ident: 9557_CR11 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(2000)14:1(1) – volume: 37 start-page: 2111 issue: 3 year: 2020 ident: 9557_CR27 publication-title: Eng Comput doi: 10.1007/s00366-019-00932-9 – volume: 25 start-page: 4103 issue: 5 year: 2021 ident: 9557_CR5 publication-title: Soft Comput doi: 10.1007/s00500-020-05435-0 – volume: 11 start-page: 966 issue: 6 year: 2014 ident: 9557_CR25 publication-title: Lat Am J Solids Struct doi: 10.1590/S1679-78252014000600004 – volume: 36 start-page: 227 issue: 1 year: 2020 ident: 9557_CR18 publication-title: Eng Comput doi: 10.1007/s00366-018-00694-w – volume: 8 start-page: 1453 issue: 3 year: 2015 ident: 9557_CR21 publication-title: Arab J Geosci doi: 10.1007/s12517-013-1201-1 – volume: 4 start-page: 1 year: 1999 ident: 9557_CR20 publication-title: Elec J Geo Eng – volume: 28 start-page: 391 issue: 2 year: 2017 ident: 9557_CR1 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2072-z – volume: 9 start-page: 427 issue: 6 year: 2016 ident: 9557_CR13 publication-title: Arab J Geosci doi: 10.1007/s12517-016-2452-4 – volume: 37 start-page: 675 issue: 1 year: 2019 ident: 9557_CR2 publication-title: Eng Comput doi: 10.1007/s00366-019-00847-5 – volume: 10 start-page: 04019002 issue: 2 year: 2019 ident: 9557_CR10 publication-title: J Pipeline Syst Eng Pract doi: 10.1061/(ASCE)PS.1949-1204.0000349  | 
    
| SSID | ssj0068078 | 
    
| Score | 2.2249298 | 
    
| Snippet | Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity (BC) of... Abstract Piles are widely used to transfer load to the underlying soil layers and reduce settlement. It is difficult to determine the exact bearing capacity...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Algorithms Bearing capacity Driven piles Earth and Environmental Science Earth science Earth Sciences Friction Internal friction Mathematical models Original Paper Parameter sensitivity Parameters Piles Polynomials Scaling Sensitivity analysis Soil Soil density Soil layers Soil settlement Soil-pile interaction  | 
    
| Title | Modeling and sensitivity analysis of bearing capacity in driven piles using hybrid ANN–PSO algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s12517-022-09557-7 https://www.proquest.com/docview/2624982876  | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-7538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: AFBBN dateStart: 20080701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-7538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: U2A dateStart: 20080701 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RfAiPrFayx686ULTJJvssUgfKFZBC_UUspvdtlDT0tRDb_4H_6G_xJk8DIoKHsNu9jAzO_MNO_MNIed2S1tRJCxmR6FkjrQ0E65wmW1zwAtSKJ5SCt0OeH_oXI_cUd4UlhTV7sWTZOqpy2Y3ZNdiWH2OtGke8zZJ1UU6L7DiYatd-F-ODOqYZvmcMw_wRN4q8_MZX8NRiTG_PYum0aa7S3ZymEjbmV73yIaO98lWLx3Duz4gBkeYYSM5DeOIJliEnk2BgO-MZITODZVgxbhHQUBUuDiNabRE90YX4AwSikXvYzpZY9cWbQ8G769v9w93NJyN58vpavJ8SIbdzuNVn-UTE1gIYd5hbuh4EgBZ5ANm1q5oGg1wKVRG6ahpuLabEpRgfK79UBtLKe1InwtAbcJIxyj7iFTieayPCVUi8n1Lu5aGvFVwV8LVNrYlteBCaS-sEasQXKByOnGcajELSiJkFHYAwg5SYQdejVx8_rPIyDT-3F0v9BHkFysJWhzyRSTp5zVyWeioXP79tJP_bT8l263UTLBwpU4qq-WLPgP4sZINUm33nm46jdTqPgDTbtKF | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCMGFN2I8c-AGQevaps1xQsB4DSSYBKeqSZOBgA5t4wAn_gP_kF-C3QcTCJA4VnGjNk7sz4r9GWDTrRsnSaTD3SRW3FOO4dKXPnddgXhBSS0ySqHTlmi2vaMr_6ooCuuX2e7llWRmqYfFbsSuxSn7nGjTAh6MwpiHAUq9AmONg-vjvdICC-JQp0ArFIIHiCiKYpmfZ_nqkIYo89vFaOZv9qehXX5pnmZyt_M0UDv65RuJ439_ZQamCgDKGvmOmYURk87B-EHW4Pd5Hiw1R6MSdRanCetTenveXwKfc_oS1rVM4fkgGY2uVtPgbcqSHhlO9ohmps8onb7Dbp6pHow1Wq3317fzizMW33e6vdvBzcMCtPf3LnebvOjFwGMEEB73Yy9QCPWSENG48WXNGgRisbbaJDUrjFtTqF4bChPGxjpaG0-FQiIelFZ5VruLUEm7qVkCpmUSho7xHYMRsRS-QqNhXUcZKaQ2QVwFp1RIpAuicuqXcR8NKZZp_SJcvyhbvyiowtbnO485Tcef0qulnqPiyPajusBIlOj_RRW2S7UNh3-fbfl_4hsw0bw8PYlODlvHKzBZz3YBpcesQmXQezJrCHIGar3Y0x-sJ_Da | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYBOKCWEVZfeAGVpsmceJjBZS9IEGl3qJ4ayuVtGrLoTf-gT_kS5jJQgEBEsfIjg8z45k38swbQg7dqnG0Fg5zdSyZJx3DhC985roc8IIUiqeUQrcNftH0rlp-61MXf1rtXjxJZj0NyNKUjMsDbcvTxjdk2mJYiY4UagELZsm8h0QJYNHNaq3wxRzZ1DHlCjlnAWCLvG3m5zO-hqYp3vz2RJpGnvoKWc4hI61lOl4lMyZZIwvn6UjeyTqxOM4Mm8ppnGg6woL0bCIEfGeEI7RvqQSLxj0KgqPCxW5C9RBdHR2AYxhRLIBv084EO7hordF4e3m9f7ijca_dH3bHnacN0qyfPZ5csHx6Aosh5HvMj71AAjjTIeBn44uKNQCdYmWV0RXLjVuRoBAbchPGxjpKGU-GXACCE1Z6VrmbZC7pJ2aLUCV0GDrGdwzksIL7Eq65dR1pBBfKBHGJOIXgIpVTi-OEi140JUVGYUcg7CgVdhSUyNHHP4OMWOPP3buFPqL8ko2iKofcEQn7eYkcFzqaLv9-2vb_th-QxfvTenRz2bjeIUvV1GKwnmWXzI2Hz2YPUMlY7qeG9w6cR9gZ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+sensitivity+analysis+of+bearing+capacity+in+driven+piles+using+hybrid+ANN%E2%80%93PSO+algorithm&rft.jtitle=Arabian+journal+of+geosciences&rft.au=Arjomand%2C+Mohammad+Ali&rft.au=Mostafaei%2C+Yashar&rft.au=Kutanaei%2C+Saman+Soleimani&rft.date=2022-02-01&rft.pub=Springer+International+Publishing&rft.issn=1866-7511&rft.eissn=1866-7538&rft.volume=15&rft.issue=3&rft_id=info:doi/10.1007%2Fs12517-022-09557-7&rft.externalDocID=10_1007_s12517_022_09557_7 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-7511&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-7511&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-7511&client=summon |