Structural Control and Fault Detection of Wind Turbine Systems
With the rapid growth of wind energy worldwide, challenges in the operation and control of wind turbine systems are becoming increasingly important. These affect all parts of the system, and require an integrated approach to optimize safety, cost, integrity and survivability of the system, while ret...
Saved in:
Main Author | |
---|---|
Format | eBook |
Language | English |
Published |
Stevenage
The Institution of Engineering and Technology
2018
Institution of Engineering & Technology Institution of Engineering and Technology |
Edition | 1 |
Series | Energy engineering |
Subjects | |
Online Access | Get full text |
ISBN | 9781785613944 1785613944 |
DOI | 10.1049/PBPO117E |
Cover
Table of Contents:
- Chapter 1: Introduction -- Chapter 2: Wave loads on monopile-supported offshore wind turbines: current methods and future challenges -- Chapter 3: Numerical and experimental tools for small wind turbine load analysis -- Chapter 4: Structural control concept for load reduction of offshore wind turbines -- Chapter 5: Advanced control of wind turbine system -- Chapter 6: Toward farm-level health management of wind turbine systems: status and scope for improvements -- Chapter 7: Health monitoring of wind turbine: data-based approaches -- Chapter 8: Fault diagnostics for electrically operated pitch systems in offshore wind turbines -- Chapter 9: Magnetic bearing for wind turbine power generator shaft: an emulator prototype design for vibration control -- Chapter 10: Condition monitoring and diagnostics of wind turbine power train -- Chapter 11: Robust fuzzy fault tolerant control wind energy system subject to actuator and sensor faults
- Intro -- Contents -- About the editor -- 1: Introduction (Hamid Reza Karimi) -- References -- 2: Wave loads on monopile-supported offshore wind turbines: current methods and future challenges (Enzo Marino, Agota Mockut˙e, Claudio Borri, and Claudio Lugni) -- 2.1 Introduction -- 2.2 Hydro-aero-servo-elastic coupled simulation models -- 2.3 Wave kinematics -- 2.3.1 Governing equations -- 2.3.2 Method of solution -- 2.3.3 Analytical wave theories -- 2.3.4 Nondeterministic representation of waves -- 2.3.5 A domain decomposition approach to account for fully nonlinear random waves -- 2.4 Hydrodynamic loading models -- 2.4.1 Morison equation -- 2.4.2 Slender body theory -- 2.4.3 Perturbation theories -- 2.5 Nonlinear resonant effects -- 2.5.1 Ringing and springing -- 2.5.2 Ringing and secondary loading cycle -- 2.5.3 Role of wave kinematics and hydrodynamic model -- 2.6 Dynamic response of an offshore wind turbine -- 2.6.1 Effects of fully nonlinear waves -- 2.6.2 Effects of different wind conditions -- 2.6.3 Limitation of the second-order wave model -- 2.7 Conclusions -- Acknowledgements -- References -- 3: Numerical and experimental tools for small wind turbine load analysis (Karczewski Maciej, Sobczak Krzysztof, Lipian Michal, and Jozwik Krzysztof) -- 3.1 Introduction -- 3.2 SWT design and development -- 3.2.1 Analytical methods -- 3.2.2 BET-CFD coupling -- 3.2.3 Numerical methods for the WT development -- 3.2.4 CFD simulations of the WT -- 3.2.5 BET-CFD simulations of the turbine model in scale -- 3.3 Experimental tools for the small wind turbine load analysis -- 3.4 Analytical methods for estimation of aeromechanical rotor loads -- 3.5 Summary -- References -- 4: Structural control concept for load reduction of offshore wind turbines (Yulin Si, Dahai Zhang, and Hamid Reza Karimi) -- 4.1 Offshore wind energy development
- 4.2 Offshore wind turbine design challenges -- 4.2.1 Ultimate loads -- 4.2.2 Fatigue loads -- 4.2.3 Load reduction solutions -- 4.3 Structural control methods -- 4.3.1 Tuned mass dampers -- 4.3.2 Tuned liquid column dampers -- 4.3.3 Hybrid mass dampers -- 4.4 Structural control of offshore wind turbines -- 4.4.1 Dynamic modeling -- 4.4.2 Passive structural control -- 4.4.3 Active structural control -- 4.5 Conclusions -- References -- 5: Advanced control of wind turbine system (Fanzhong Meng, JanWenske, Mohsen Neshati, and Arne Bartschat) -- 5.1 A state-of-the-art wind turbine controller -- 5.2 Design of controllers for load reduction in wind turbines -- 5.2.1 Individual pitch controller -- 5.2.2 Effective wind speed estimation -- 5.2.3 Feedforward feedback controller based on the effective wind speed estimation -- 5.3 Drivetrain damping -- 5.3.1 Traditional drivetrain damping -- 5.3.2 Model-based drivetrain active vibration damping -- 5.3.3 Sensorless generator control techniques for drivetrain -- References -- 6: Toward farm-level health management of wind turbine systems: status and scope for improvements (Surya Teja Kandukuri, Kjell G. Robbersmyr, and Hamid Reza Karimi) -- 6.1 Introduction -- 6.2 Maintenance methodologies -- 6.2.1 Condition-based maintenance -- 6.2.2 Reliability centered maintenance -- 6.3 Farm-level health management architecture -- 6.3.1 On-board CM systems -- 6.3.2 SCADA and fault data -- 6.3.3 Communication protocol -- 6.3.4 Advanced diagnostics and prognostics -- 6.3.5 Operation and maintenance database -- 6.3.6 Health assessment -- 6.3.7 Maintenance advisory -- 6.3.8 Maintenance, resource and inventory planning -- 6.4 Issues, challenges and gaps -- 6.4.1 Requirements, guidelines and standards -- 6.4.2 Database creation and maintenance -- 6.4.3 Data analytics and big data -- 6.4.4 Advances in prognostics
- 11: Robust fuzzy fault tolerant control wind energy system subject to actuator and sensor faults (Abdel Aitouche, Elkhatib Kamal, and Maher Kharrat) -- 11.1 Introduction -- 11.2 RFFTC of WES with DFIG -- 11.2.1 TS fuzzy model with parameter uncertainties and fuzzy observer -- 11.2.2 Proposed RFFTC based on FPIEO and FDOS -- 11.2.3 Proposed RFFTC stability and robustness analysis -- 11.2.4 WES with DFIG application -- 11.2.5 Simulations and results -- 11.3 RFSFTC ofWESwith DFIG subject to sensor and actuator faults -- 11.3.1 TS fuzzy plant model with actuator faults, sensor faults and parameter uncertainties -- 11.3.2 Proposed RFSFTC algorithm based on FPIEO and FDOS -- 11.3.3 Derivation of the stability and robustness conditions -- 11.3.4 WESwith DFIG application and simulations and results -- 11.4 RDFFTC of HWDSS subject to actuator and sensor faults -- 11.4.1 Fuzzy observer scheme for the uncertain system with sensor and actuator faults -- 11.4.2 Proposed RDFFTC, reference model and stability analysis -- 11.4.3 HWDSS application and simulations and results -- 11.5 Chapter conclusion -- References -- Index
- 6.4.5 Focus on balance-of-system -- 6.5 Conclusion -- Acknowledgment -- References -- 7: Health monitoring of wind turbine: data-based approaches (GuangWang, Shen Yin, and Hamid Reza Karimi) -- 7.1 Introduction -- 7.2 Benchmark system and faults description -- 7.2.1 Benchmark model -- 7.2.2 Fault scenarios -- 7.3 Robust data-driven fault detection design -- 7.3.1 Identify parity space directly from measured data -- 7.3.2 Select optimal parity vector from parity space -- 7.3.3 Construct robust residual generators -- 7.3.4 A designed robust fault detection scheme -- 7.4 Benchmark simulation -- 7.5 Conclusions -- References -- 8: Fault diagnostics for electrically operated pitch systems in offshore wind turbines (Surya Teja Kandukuri, Van Khang Huynh, Hamid Reza Karimi, and Kjell G. Robbersmyr) -- 8.1 Introduction -- 8.2 FAST analysis -- 8.3 Induction motor behaviour in faulty conditions -- 8.4 Faulty machine behaviour in closed-loop -- 8.5 Conclusion -- Acknowledgements -- Appendix A -- References -- 9: Magnetic bearing for wind turbine power generator shaft: an emulator prototype design for vibration control (Francisco Palacios-Quiñonero, Leonardo Acho, Josep M. Rossell, and Hamid Reza Karimi) -- 9.1 Introduction -- 9.2 Small wind turbines characteristics -- 9.3 Micro-sized wind turbines: challenges and opportunities -- 9.4 Experimental platform for AMB vibration control -- 9.4.1 Active magnetic bearings and vibration control -- 9.4.2 Experimental platform design -- 9.5 Conclusions and final remarks -- Acknowledgements -- Appendix -- References -- 10: Condition monitoring and diagnostics of wind turbine power train (Steven Chatterton and Paolo Pennacchi) -- 10.1 Background -- 10.2 Failure analysis -- 10.3 Maintenance policies -- 10.4 Condition monitoring and diagnostics -- 10.5 Signal processing and fault identification -- References