Python machine learning by example : build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn
Equipped with the latest updates, this third edition of Python Machine Learning By Example provides a comprehensive course for ML enthusiasts to strengthen their command of ML concepts, techniques, and algorithms.
        Saved in:
      
    
          | Main Author | |
|---|---|
| Format | eBook Book | 
| Language | English | 
| Published | 
        Birmingham
          Packt Pub
    
        2020
     Packt Publishing, Limited Packt Publishing Limited  | 
| Edition | 3 | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 1800209711 9781800209718  | 
| DOI | 10.0000/9781800203860 | 
Cover
| Abstract | Equipped with the latest updates, this third edition of Python Machine Learning By Example provides a comprehensive course for ML enthusiasts to strengthen their command of ML concepts, techniques, and algorithms. | 
    
|---|---|
| AbstractList | Equipped with the latest updates, this third edition of Python Machine Learning By Example provides a comprehensive course for ML enthusiasts to strengthen their command of ML concepts, techniques, and algorithms. | 
    
| Author | Liu, Yuxi (Hayden) | 
    
| Author_xml | – sequence: 1 fullname: Liu, Yuxi (Hayden)  | 
    
| BackLink | https://cir.nii.ac.jp/crid/1130860210910972561$$DView record in CiNii | 
    
| BookMark | eNpVkMtLAzEQxiM-8Hn0noMgQqt5bR7etPiCgh6K1yXZnW2DaVY3W2r_e1OrgsMwM9_w44OZQ7QT2wgInVJySXJcGaWpJoQRriXZQod_gm7_CqMo3cuCEUE5N7TYRycpeUeE0YIKxg5Q_7LqZ23Ec1vNfAQcwHbRxyl2Kwyfdv4eAF9jt_Chxj72EIKfQuxxWqUe5gkv0hremAzwBGJqu_vQLjEb5O2k7arZANtY41T5N98Pv_2P0W5jQ4KTn36EXu_vJqPH4fj54Wl0Mx5aRhUvhsypxsqiYeAa50TDrGO6NkbJQmgphVaWV1oQyQUoVxtnBeHSKAeFA1lX_AhdbIyXNvTQ1TDtFqs8lHPbVeW_D2b2fMO-d-3HAlJfgmvbtypf29lQ3t2OJNe8MCKTZxsyel9Wfl0p5SSbMEpMTsUKSfkXgYh7eQ | 
    
| ContentType | eBook Book  | 
    
| DBID | RYH | 
    
| DOI | 10.0000/9781800203860 | 
    
| DatabaseName | CiNii Complete | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 1800203861 9781800203860  | 
    
| Edition | 3 | 
    
| ExternalDocumentID | 9781800203860 EBC6383594 BD03509101  | 
    
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS CMZ RYH -VX 38. AABBV AAXUV AAZEP ABARN ABIWA ABMRC ACBYE ACIWJ ACMFT ACXXF ADVEM AECLD AEDWI AEIUR AEMZR AERYV AETWE AHWGJ AJFER ATDNW BBABE BSWCA CZZ DUGUG DYXOI EBSCA ESHEC GEOUK IHRAH K-E KT4 L7C NEJRU OHILO OODEK PASLL QD8 TD3  | 
    
| ID | FETCH-LOGICAL-a21735-2b7fa65f2ebfbb4f2ab28d997654866487a3c840634e7bd9ba403697be5be6dc3 | 
    
| ISBN | 1800209711 9781800209718  | 
    
| IngestDate | Sat Oct 25 00:47:20 EDT 2025 Wed Oct 29 02:27:20 EDT 2025 Thu Jun 26 22:38:39 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| LCCallNum_Ident | QA76.73.P98 .L58 2020 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-a21735-2b7fa65f2ebfbb4f2ab28d997654866487a3c840634e7bd9ba403697be5be6dc3 | 
    
| Notes | Includes index | 
    
| OCLC | 1204133915 | 
    
| PQID | EBC6383594 | 
    
| PageCount | 527 | 
    
| ParticipantIDs | walterdegruyter_marc_9781800203860 proquest_ebookcentral_EBC6383594 nii_cinii_1130860210910972561  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020 [2020]  | 
    
| PublicationDateYYYYMMDD | 2020-01-01 | 
    
| PublicationDate_xml | – year: 2020 text: 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Birmingham | 
    
| PublicationPlace_xml | – name: Birmingham – name: Birmingham, UK  | 
    
| PublicationYear | 2020 | 
    
| Publisher | Packt Pub Packt Publishing, Limited Packt Publishing Limited  | 
    
| Publisher_xml | – name: Packt Pub – name: Packt Publishing, Limited – name: Packt Publishing Limited  | 
    
| RestrictionsOnAccess | restricted access | 
    
| SSID | ssib049841422 ssj0003127935  | 
    
| Score | 2.1877525 | 
    
| Snippet | Equipped with the latest updates, this third edition of Python Machine Learning By Example provides a comprehensive course for ML enthusiasts to strengthen... | 
    
| SourceID | walterdegruyter proquest nii  | 
    
| SourceType | Publisher | 
    
| SubjectTerms | COM004000 COMPUTERS / Intelligence (AI) & Semantics COMPUTERS / Natural Language Processing COMPUTERS / Programming Languages / Python Machine learning Python (Computer program language)  | 
    
| TableOfContents | Training a logistic regression model using stochastic gradient descent -- Training a logistic regression model with regularization -- Feature selection using L1 regularization -- Training on large datasets with online learning -- Handling multiclass classification -- Implementing logistic regression using TensorFlow -- Feature selection using random forest -- Summary -- Exercises -- Chapter 6: Scaling Up Prediction to Terabyte Click Logs -- Learning the essentials of Apache Spark -- Breaking down Spark -- Installing Spark -- Launching and deploying Spark programs -- Programming in PySpark -- Learning on massive click logs with Spark -- Loading click logs -- Splitting and caching the data -- One-hot encoding categorical features -- Training and testing a logistic regression model -- Feature engineering on categorical variables with Spark -- Hashing categorical features -- Combining multiple variables - feature interaction -- Summary -- Exercises -- Chapter 7: Predicting Stock Prices with Regression Algorithms -- A brief overview of the stock market and stock prices -- What is regression? -- Mining stock price data -- Getting started with feature engineering -- Acquiring data and generating features -- Estimating with linear regression -- How does linear regression work? -- Implementing linear regression from scratch -- Implementing linear regression with scikit-learn -- Implementing linear regression with TensorFlow -- Estimating with decision tree regression -- Transitioning from classification trees to regression trees -- Implementing decision tree regression -- Implementing a regression forest -- Estimating with support vector regression -- Implementing SVR -- Evaluating regression performance -- Predicting stock prices with the three regression algorithms -- Summary -- Exercises -- Chapter 8: Predicting Stock Prices with Artificial Neural Networks Demystifying neural networks -- Starting with a single-layer neural network -- Layers in neural networks -- Activation functions -- Backpropagation -- Adding more layers to a neural network: DL -- Building neural networks -- Implementing neural networks from scratch -- Implementing neural networks with scikit-learn -- Implementing neural networks with TensorFlow -- Picking the right activation functions -- Preventing overfitting in neural networks -- Dropout -- Early stopping -- Predicting stock prices with neural networks -- Training a simple neural network -- Fine-tuning the neural network -- Summary -- Exercise -- Chapter 9: Mining the 20 Newsgroups Dataset with Text Analysis Techniques -- How computers understand language - NLP -- What is NLP? -- The history of NLP -- NLP applications -- Touring popular NLP libraries and picking up NLP basics -- Installing famous NLP libraries -- Corpora -- Tokenization -- PoS tagging -- NER -- Stemming and lemmatization -- Semantics and topic modeling -- Getting the newsgroups data -- Exploring the newsgroups data -- Thinking about features for text data -- Counting the occurrence of each word token -- Text preprocessing -- Dropping stop words -- Reducing inflectional and derivational forms of words -- Visualizing the newsgroups data with t-SNE -- What is dimensionality reduction? -- t-SNE for dimensionality reduction -- Summary -- Exercises -- Chapter 10: Discovering Underlying Topics in the Newsgroups Dataset with Clustering and Topic Modeling -- Learning without guidance - unsupervised learning -- Clustering newsgroups data using k-means -- How does k-means clustering work? -- Implementing k-means from scratch -- Implementing k-means with scikit-learn -- Choosing the value of k -- Clustering newsgroups data using k-means -- Discovering underlying topics in newsgroups -- Topic modeling using NMF Topic modeling using LDA -- Summary -- Exercises -- Chapter 11: Machine Learning Best Practices -- Machine learning solution workflow -- Best practices in the data preparation stage -- Best practice 1 - Completely understanding the project goal -- Best practice 2 - Collecting all fields that are relevant -- Best practice 3 - Maintaining the consistency of field values -- Best practice 4 - Dealing with missing data -- Best practice 5 - Storing large-scale data -- Best practices in the training sets generation stage -- Best practice 6 - Identifying categorical features with numerical values -- Best practice 7 - Deciding whether to encode categorical features -- Best practice 8 - Deciding whether to select features, and if so, how to do so -- Best practice 9 - Deciding whether to reduce dimensionality, and if so, how to do so -- Best practice 10 - Deciding whether to rescale features -- Best practice 11 - Performing feature engineering with domain expertise -- Best practice 12 - Performing feature engineering without domain expertise -- Binarization -- Discretization -- Interaction -- Polynomial transformation -- Best practice 13 - Documenting how each feature is generated -- Best practice 14 - Extracting features from text data -- Tf and tf-idf -- Word embedding -- Word embedding with pre-trained models -- Best practices in the model training, evaluation, and selection stage -- Best practice 15 - Choosing the right algorithm(s) to start with -- Naïve Bayes -- Logistic regression -- SVM -- Random forest (or decision tree) -- Neural networks -- Best practice 16 - Reducing overfitting -- Best practice 17 - Diagnosing overfitting and underfitting -- Best practice 18 - Modeling on large-scale datasets -- Best practices in the deployment and monitoring stage -- Best practice 19 - Saving, loading, and reusing models -- Saving and restoring models using pickle Saving and restoring models in TensorFlow Cover -- Copyright -- Packt Page -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started with Machine Learning and Python -- An introduction to machine learning -- Understanding why we need machine learning -- Differentiating between machine learning and automation -- Machine learning applications -- Knowing the prerequisites -- Getting started with three types of machine learning -- A brief history of the development of machine learning algorithms -- Digging into the core of machine learning -- Generalizing with data -- Overfitting, underfitting, and the bias-variance trade-off -- Overfitting -- Underfitting -- The bias-variance trade-off -- Avoiding overfitting with cross-validation -- Avoiding overfitting with regularization -- Avoiding overfitting with feature selection and dimensionality reduction -- Data preprocessing and feature engineering -- Preprocessing and exploration -- Dealing with missing values -- Label encoding -- One-hot encoding -- Scaling -- Feature engineering -- Polynomial transformation -- Power transforms -- Binning -- Combining models -- Voting and averaging -- Bagging -- Boosting -- Stacking -- Installing software and setting up -- Setting up Python and environments -- Installing the main Python packages -- NumPy -- SciPy -- Pandas -- Scikit-learn -- TensorFlow -- Introducing TensorFlow 2 -- Summary -- Exercises -- Chapter 2: Building a Movie Recommendation Engine with Naïve Bayes -- Getting started with classification -- Binary classification -- Multiclass classification -- Multi-label classification -- Exploring Naïve Bayes -- Learning Bayes' theorem by example -- The mechanics of Naïve Bayes -- Implementing Naïve Bayes -- Implementing Naïve Bayes from scratch -- Implementing Naïve Bayes with scikit-learn -- Building a movie recommender with Naïve Bayes -- Evaluating classification performance Tuning models with cross-validation -- Summary -- Exercise -- References -- Chapter 3: Recognizing Faces with Support Vector Machine -- Finding the separating boundary with SVM -- Scenario 1 - identifying a separating hyperplane -- Scenario 2 - determining the optimal hyperplane -- Scenario 3 - handling outliers -- Implementing SVM -- Scenario 4 - dealing with more than two classes -- Scenario 5 - solving linearly non-separable problems with kernels -- Choosing between linear and RBF kernels -- Classifying face images with SVM -- Exploring the face image dataset -- Building an SVM-based image classifier -- Boosting image classification performance with PCA -- Fetal state classification on cardiotocography -- Summary -- Exercises -- Chapter 4: Predicting Online Ad Click-Through with Tree-Based Algorithms -- A brief overview of ad click-through prediction -- Getting started with two types of data - numerical and categorical -- Exploring a decision tree from the root to the leaves -- Constructing a decision tree -- The metrics for measuring a split -- Gini Impurity -- Information Gain -- Implementing a decision tree from scratch -- Implementing a decision tree with scikit-learn -- Predicting ad click-through with a decision tree -- Ensembling decision trees - random forest -- Ensembling decision trees - gradient boosted trees -- Summary -- Exercises -- Chapter 5: Predicting Online Ads Click-Through with Logistic Regression -- Converting categorical features to numerical-one-hot encoding and ordinal encoding -- Classifying data with logistic regression -- Getting started with the logistic function -- Jumping from the logistic function to logistic regression -- Training a logistic regression model -- Training a logistic regression model using gradient descent -- Predicting ad click-through with logistic regression using gradient descent Python Machine Learning by Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn  | 
    
| Title | Python machine learning by example : build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn | 
    
| URI | https://cir.nii.ac.jp/crid/1130860210910972561 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6383594  | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZt8rKXdWs7lnYpJpS9uYsuvuh1ISOUdfQhHaUvRpLlzRTSCw6t--t3jnxJbAZjfRG2MbasTzr-jqTzHUJOZSipinB8Byk4KJpyXzHLfBllIfQXYaUTcb34ES6uxPl1cL3JLeiiSwp9Zl7-GlfyGlThGuCKUbL_gWz7ULgAx4AvlIAwlD3y255W4F6WGPKPWYN-I0v83sxvAJecPysU_G032uRrZ2XXzzmSyYUqnaGR294-m_a8_UtlboutGarKed-OhKocQ-p4II8rrf6-mcSfVLUzontfT3l6_nUGo5MHUny-f_AxURcuaNdZS3bJkAmgW7gOvmyHtJCxwFmldpqLUwYWIHDB-_gqGVFaK20153ElfYqV-tKpEvzuV3neof5vn9wmgtT-elyXRbNo7bjA8h0ZWgwQeU927Gqf7DVpMbzaSh6QSYWOV6PjNeh4uvRqdA7Jz2_z5Wzh16kooOfSiAc-01GmwiBjVmdai4wpzeJUApkDly-Ebh0pbsBZDrmwkU6lVgK4gYy0DbQNU8M_kMHqbmU_Ek8HRnPBpkA8laDSxNNYGwOWU2TAv9NwRMbw2YnJsaTAMTBNGOq3otIS0N0R8ZoGSdyKer2NN9ngNSKTXkMlqIySdJr36N_POSZvNp3wExkUj2s7BhJW6BOyO7u4OXHg_wEC7iU4 | 
    
| linkProvider | Knovel | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Python+Machine+Learning+by+Example&rft.au=Liu%2C+Yuxi+%28Hayden%29&rft.date=2020-01-01&rft.pub=Packt+Publishing%2C+Limited&rft.isbn=9781800203860&rft_id=info:doi/10.0000%2F9781800203860&rft.externalDocID=EBC6383594 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781800209718/lc.gif&client=summon&freeimage=true | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781800209718/mc.gif&client=summon&freeimage=true | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781800209718/sc.gif&client=summon&freeimage=true |