Pedestrian Trajectory Prediction in Heterogeneous Traffic using Facial Keypoints-based Convolutional Encoder-decoder Network

Future pedestrian trajectory prediction offers great prospects for many practical applications such as unmanned vehicles, building evacuation design and robotic path planning. Most existing methods focus on social interaction among pedestrians but ignore the fact that heterogeneous traffic objects (...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on Internet technology Vol. 22; no. 4; pp. 1 - 14
Main Authors Xiao, Song, Chen, Kai, Ren, Xiaoxiang, Yuan, Haitao
Format Journal Article
LanguageEnglish
Published New York, NY ACM 14.11.2022
Subjects
Online AccessGet full text
ISSN1533-5399
1557-6051
DOI10.1145/3410444

Cover

Abstract Future pedestrian trajectory prediction offers great prospects for many practical applications such as unmanned vehicles, building evacuation design and robotic path planning. Most existing methods focus on social interaction among pedestrians but ignore the fact that heterogeneous traffic objects (cars, dogs, bicycles, motorcycles, etc.) have significant influence on the future trajectory of a subject pedestrian. Also, the walking direction intention of a pedestrian may be referred by his/her facial keypoints. Considering this, this work proposes to predict a pedestrian's future trajectory by jointly using neighboring heterogeneous traffic information and his/her facial keypoints. To fulfill this, an end-to-end facial keypoints-based convolutional encoder-decoder network (FK-CEN) is designed, in which the heterogeneous traffic and facial keypoints are input. After training, FK-CEN is evaluated on 5 crowded video sequences collected from the public datasets MOT-16 and MOT-17. Experimental results demonstrate that it outperforms state-of-the-art approaches, in terms of prediction errors.
AbstractList Future pedestrian trajectory prediction offers great prospects for many practical applications such as unmanned vehicles, building evacuation design and robotic path planning. Most existing methods focus on social interaction among pedestrians but ignore the fact that heterogeneous traffic objects (cars, dogs, bicycles, motorcycles, etc.) have significant influence on the future trajectory of a subject pedestrian. Also, the walking direction intention of a pedestrian may be referred by his/her facial keypoints. Considering this, this work proposes to predict a pedestrian's future trajectory by jointly using neighboring heterogeneous traffic information and his/her facial keypoints. To fulfill this, an end-to-end facial keypoints-based convolutional encoder-decoder network (FK-CEN) is designed, in which the heterogeneous traffic and facial keypoints are input. After training, FK-CEN is evaluated on 5 crowded video sequences collected from the public datasets MOT-16 and MOT-17. Experimental results demonstrate that it outperforms state-of-the-art approaches, in terms of prediction errors.
ArticleNumber 83
Author Chen, Kai
Ren, Xiaoxiang
Yuan, Haitao
Xiao, Song
Author_xml – sequence: 1
  givenname: Song
  surname: Xiao
  fullname: Xiao, Song
  email: songxiao@buaa.edu.cn
  organization: Beihang University, Beijing, China
– sequence: 2
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  email: chenkaivisual@buaa.edu.cn
  organization: Beihang University, Beijing, China
– sequence: 3
  givenname: Xiaoxiang
  surname: Ren
  fullname: Ren, Xiaoxiang
  email: 370726684@qq.com
  organization: Nanan Junior High School, China
– sequence: 4
  givenname: Haitao
  surname: Yuan
  fullname: Yuan, Haitao
  email: haitao.yuan@njit.edu
  organization: New Jersey Institute of Technology, USA
BookMark eNo9kEtPAjEYRRuDiYDGvavuXFXb6QNmaQgPI1EWuJ708Q0pQkvaQUPij5cRdHVuck_u4vZQJ8QACN0y-sCYkI9cMCqEuEBdJuWAKCpZp82cE8nL8gr1cl5TyqRivIu-F-AgN8nrgJdJr8E2MR3wIoHztvExYB_wDBpIcQUB4j63Wl17i_fZhxWeaOv1Br_AYRd9aDIxOoPDoxg-42bfLhzbcbDRQSIOfolfofmK6eMaXdZ6k-HmzD56n4yXoxmZv02fR09zoguqGiKcKIWxNfCiLAaslNIpKYWtFQytcM5QB4aD0rUojXJKOQ7Dwhkj2EAX1vA-uj_t2hRzTlBXu-S3Oh0qRqv2tOp82tG8O5nabv-lv_IHXU5sIg
Cites_doi 10.1109/TITS.2020.2981118
10.1016/j.physa.2019.121742
10.1109/ICCV.2009.5459260
10.1109/CVPR.2016.596
10.1109/CVPR.2019.01236
10.1016/j.physa.2015.12.041
10.1111/j.1467-8659.2007.01089.x
10.1109/TPAMI.2017.2728788
10.1016/j.physa.2018.06.045
10.1038/35035023
10.1145/3229047
10.1109/TITS.2018.2873118
10.1145/3374214
10.1109/TPAMI.2011.64
10.1007/978-3-642-33765-9_15
10.1109/CVPR.2019.00144
10.1109/CVPR.2018.00553
10.1109/ICRA.2018.8460504
10.1109/CVPR.2018.00792
10.1016/j.physa.2018.06.090
10.1007/978-3-319-10599-4_40
10.1109/CVPR.2015.7298935
10.1609/aaai.v32i1.12316
ContentType Journal Article
Copyright Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Copyright_xml – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
DBID AAYXX
CITATION
DOI 10.1145/3410444
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-6051
EndPage 14
ExternalDocumentID 10_1145_3410444
3410444
GrantInformation_xml – fundername: Open Fund of China State Key Laboratory of Intelligent Manufacturing System Technology, National Natural Science Foundation of China
  grantid: 61473013
– fundername: National Key R&D Program of China
  grantid: 2018YFB1702703
GroupedDBID -DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACGFO
ACM
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AEGXH
AENEX
AENSD
AFWIH
AFWXC
AIAGR
AIKLT
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
D0L
EBS
EDO
FEDTE
GUFHI
HGAVV
H~9
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TUS
U5U
UPT
W7O
ZCA
AAYXX
AEFXT
AEJOY
AKRVB
CITATION
ID FETCH-LOGICAL-a206t-4d494bcfe329271955d6554cf6e8c4ddb0deb3e6af49b6d66d3e82dbb417a2cb3
ISSN 1533-5399
IngestDate Wed Oct 01 06:05:14 EDT 2025
Fri Feb 21 01:12:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords convolutional long-short-term memory
attention
Social-interaction
pedestrian intention
encoder-decoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a206t-4d494bcfe329271955d6554cf6e8c4ddb0deb3e6af49b6d66d3e82dbb417a2cb3
PageCount 14
ParticipantIDs crossref_primary_10_1145_3410444
acm_primary_3410444
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-14
PublicationDateYYYYMMDD 2022-11-14
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-14
  day: 14
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle ACM transactions on Internet technology
PublicationTitleAbbrev ACM TOIT
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
References (Bib0002) 2018
(Bib0020) 2016
(Bib0012) 2018
(Bib0028) 2018; 509
(Bib0017) 2019
(Bib0027) 2014
(Bib0034) 2019; 19
(Bib0037) 2018
(Bib0010) 2018
(Bib0004) 2019
(Bib0009) 2012
(Bib0036) 2019; 20
(Bib0024) 2007
(Bib0015) 2018
(Bib0029) 2016; 447
(Bib0022) 2015
(Bib0007) 2000; 407
Bib0026
(Bib0008) 2011; 33
(Bib0032) 2014
(Bib0001) 2016
(Bib0011) 2016
(Bib0035) 2020; 3
(Bib0021) 2014
(Bib0031) 2018; 510
(Bib0033) 2020; 20
(Bib0014) 2017; 40
(Bib0038) 2019
(Bib0030) 2019; 531
(Bib0018) 2018
(Bib0005) 2009
(Bib0013) 2012
(Bib0023) 2016
(Bib0003) 2012
(Bib0019) 2018
(Bib0006) 2017
(Bib0016) 2018
(Bib0025) 2009
Zhang Z. (e_1_3_1_22_2) 2014
Alahi A. (e_1_3_1_2_2) 2016
Liang J. (e_1_3_1_5_2) 2019
e_1_3_1_21_2
e_1_3_1_23_2
e_1_3_1_24_2
Pellegrini S. (e_1_3_1_26_2) 2009
e_1_3_1_8_2
e_1_3_1_7_2
e_1_3_1_9_2
e_1_3_1_20_2
e_1_3_1_4_2
e_1_3_1_29_2
e_1_3_1_6_2
e_1_3_1_25_2
e_1_3_1_27_2
e_1_3_1_28_2
Nikhil N. (e_1_3_1_19_2) 2018
Xue H. (e_1_3_1_38_2) 2018
Kitani K. M. (e_1_3_1_14_2) 2012
e_1_3_1_32_2
e_1_3_1_33_2
e_1_3_1_34_2
Kitani K. M. (e_1_3_1_10_2) 2012
e_1_3_1_35_2
e_1_3_1_13_2
e_1_3_1_11_2
e_1_3_1_30_2
Yi S. (e_1_3_1_12_2) 2016
e_1_3_1_31_2
e_1_3_1_17_2
e_1_3_1_16_2
e_1_3_1_15_2
e_1_3_1_36_2
e_1_3_1_37_2
Gupta A. (e_1_3_1_3_2) 2018
e_1_3_1_18_2
e_1_3_1_39_2
References_xml – volume: 447
  start-page: 455
  issue: 4
  year: 2016
  end-page: 466
  ident: Bib0029
  article-title: Selfishness- and selflessness-based models of pedestrian room evacuation
  publication-title: Physica A-statistical Mechanics and Its Applications
– volume: 19
  start-page: 1
  issue: 1
  year: 2019
  end-page: 24
  ident: Bib0034
  article-title: Incentive-based crowdsourcing of hotspot services
  publication-title: ACM Transactions on Internet Technology (TOIT)
– ident: Bib0026
  article-title: [Online]
– start-page: 5725
  year: 2019
  end-page: 5734
  ident: Bib0004
  article-title: Peeking into the future: Predicting future person activities and locations in videos
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 261
  year: 2009
  end-page: 268
  ident: Bib0005
  article-title: You'll never walk alone: Modeling social behavior for multi-target tracking
  publication-title: 2009 IEEE 12th International Conference on Computer Vision
– volume: 20
  start-page: 3142
  issue: 8
  year: 2019
  end-page: 3155
  ident: Bib0036
  article-title: Simulation of pedestrian rotation dynamics near crowded exits
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 531
  start-page: 121742
  issue: 1
  year: 2019
  ident: Bib0030
  article-title: Unpredictability in pedestrian flow: The impact of stochasticity and anxiety in the event of an emergency
  publication-title: Physica A: Statistical Mechanics and its Applications
– start-page: 5275
  year: 2018
  end-page: 5284
  ident: Bib0010
  article-title: Encoding crowd interaction with deep neural network for pedestrian trajectory prediction
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 94
  year: 2014
  end-page: 108
  ident: Bib0021
  article-title: Facial landmark detection by deep multi-task learning
  publication-title: European Conference on Computer Vision
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  end-page: 21
  ident: Bib0033
  article-title: Beyond artificial reality: Finding and monitoring live events from social sensors
  publication-title: ACM Transactions on Internet Technology (TOIT)
– start-page: 263
  year: 2016
  end-page: 279
  ident: Bib0011
  article-title: Pedestrian behavior understanding and prediction with deep neural networks
  publication-title: European Conference on Computer Vision
– start-page: 5525
  year: 2016
  end-page: 5533
  ident: Bib0020
  article-title: Wider face: A face detection benchmark
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 33
  start-page: 2287
  issue: 11
  year: 2011
  end-page: 2301
  ident: Bib0008
  article-title: Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 1349
  year: 2019
  end-page: 1358
  ident: Bib0017
  article-title: Sohie: An attentive for predicting paths compliant to social and physical constraints
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 0
  year: 2018
  end-page: 0
  ident: Bib0018
  article-title: Convolutional neural network for trajectory prediction
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 510
  start-page: 507
  issue: 15
  year: 2018
  end-page: 517
  ident: Bib0031
  article-title: Modeling handicapped pedestrians considering physical characteristics using cellular automaton
  publication-title: Physica A: Statistical Mechanics and its Applications
– start-page: 618
  year: 2014
  end-page: 633
  ident: Bib0032
  article-title: Context-based pedestrian path prediction
  publication-title: European Conference on Computer Vision
– start-page: 201
  year: 2012
  end-page: 214
  ident: Bib0013
  article-title: Activity forecasting
  publication-title: European Conference on Computer Vision
– volume: 407
  start-page: 487
  issue: 9
  year: 2000
  end-page: 491
  ident: Bib0007
  article-title: Simulating dynamical features of escape panic
  publication-title: Nature
– year: 2014
  ident: Bib0027
  article-title: Adam: A method for stochastic optimization
– start-page: 3156
  year: 2015
  end-page: 3164
  ident: Bib0022
  article-title: Show and tell: A neural image caption generator
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 7593
  year: 2018
  end-page: 7602
  ident: Bib0019
  article-title: Future person localization in first-person videos
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: Bib0002
  article-title: Social : Socially acceptable trajectories with generative adversarial networks
  publication-title: CVPR
– start-page: 201
  year: 2012
  end-page: 214
  ident: Bib0003
  article-title: Activity forecasting
  publication-title: European Conference on Computer Vision
– volume: 40
  start-page: 1639
  issue: 7
  year: 2017
  end-page: 1652
  ident: Bib0014
  article-title: Learning and inferring “dark matter” and predicting human intents and trajectories in videos
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 1186–1194
  year: 2018
  ident: Bib0037
  article-title: SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction
  publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
– year: 2017
  ident: Bib0006
  article-title: Social attention: Modeling attention in human crowds
– start-page: 12085
  year: 2019
  end-page: 12094
  ident: Bib0038
  article-title: -Sr-lstm: State refinement for towards pedestrian trajectory prediction
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 261
  year: 2009
  end-page: 268
  ident: Bib0025
  article-title: You'll never walk alone: Modeling social behavior for multi-target tracking
  publication-title: IEEE 12th International Conference on Computer Vision (ICCV)
– volume: 3
  year: 2020
  ident: Bib0035
  article-title: Pedestrian trajectory prediction based on deep convolutional LSTM network
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.2981118
– year: 2018
  ident: Bib0012
  article-title: Understanding human behaviors in crowds by imitating the decision-making process
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
– volume: 509
  start-page: 827
  issue: 11
  year: 2018
  end-page: 844
  ident: Bib0028
  article-title: A data-driven neural network approach to simulate pedestrian movement
  publication-title: Physica A-statistical Mechanics and Its Applications
– start-page: 201
  year: 2012
  end-page: 214
  ident: Bib0009
  article-title: Activity forecasting
  publication-title: Proceedings of the 2012 European Conference on Computer Vision, LNCS 7575
– start-page: 961
  year: 2016
  end-page: 971
  ident: Bib0001
  article-title: Social : Human trajectory prediction in crowded spaces
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 655
  year: 2007
  end-page: 664
  ident: Bib0024
  article-title: Crowds by example
  publication-title: Computer Graphics Forum
– year: 2018
  ident: Bib0015
  article-title: Scene-: A model for human trajectory prediction[J]
– year: 2018
  ident: Bib0016
  article-title: A transferable pedestrian motion prediction model for intersections with different geometries
– year: 2016
  ident: Bib0023
  article-title: MOT16: A benchmark for multi-object tracking[J]
– ident: e_1_3_1_31_2
  doi: 10.1016/j.physa.2019.121742
– ident: e_1_3_1_6_2
  doi: 10.1109/ICCV.2009.5459260
– start-page: 0
  volume-title: Proceedings of the European Conference on Computer Vision (ECCV)
  year: 2018
  ident: e_1_3_1_19_2
– ident: e_1_3_1_21_2
  doi: 10.1109/CVPR.2016.596
– start-page: 261
  year: 2009
  ident: e_1_3_1_26_2
  article-title: You'll never walk alone: Modeling social behavior for multi-target tracking
  publication-title: IEEE 12th International Conference on Computer Vision (ICCV)
– ident: e_1_3_1_27_2
– start-page: 1186–1194
  year: 2018
  ident: e_1_3_1_38_2
  article-title: SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction
  publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
– ident: e_1_3_1_39_2
  doi: 10.1109/CVPR.2019.01236
– ident: e_1_3_1_30_2
  doi: 10.1016/j.physa.2015.12.041
– start-page: 263
  year: 2016
  ident: e_1_3_1_12_2
  article-title: Pedestrian behavior understanding and prediction with deep neural networks
  publication-title: European Conference on Computer Vision
– start-page: 201
  year: 2012
  ident: e_1_3_1_14_2
  article-title: Activity forecasting
  publication-title: European Conference on Computer Vision
– ident: e_1_3_1_25_2
  doi: 10.1111/j.1467-8659.2007.01089.x
– ident: e_1_3_1_15_2
  doi: 10.1109/TPAMI.2017.2728788
– ident: e_1_3_1_29_2
  doi: 10.1016/j.physa.2018.06.045
– ident: e_1_3_1_8_2
  doi: 10.1038/35035023
– ident: e_1_3_1_35_2
  doi: 10.1145/3229047
– ident: e_1_3_1_37_2
  doi: 10.1109/TITS.2018.2873118
– start-page: 94
  year: 2014
  ident: e_1_3_1_22_2
  article-title: Facial landmark detection by deep multi-task learning
  publication-title: European Conference on Computer Vision
– volume-title: CVPR
  year: 2018
  ident: e_1_3_1_3_2
– start-page: 201
  year: 2012
  ident: e_1_3_1_10_2
  article-title: Activity forecasting
  publication-title: Proceedings of the 2012 European Conference on Computer Vision, LNCS 7575
– ident: e_1_3_1_34_2
  doi: 10.1145/3374214
– ident: e_1_3_1_28_2
– ident: e_1_3_1_9_2
  doi: 10.1109/TPAMI.2011.64
– ident: e_1_3_1_4_2
  doi: 10.1007/978-3-642-33765-9_15
– ident: e_1_3_1_17_2
– ident: e_1_3_1_18_2
  doi: 10.1109/CVPR.2019.00144
– start-page: 5725
  year: 2019
  ident: e_1_3_1_5_2
  article-title: Peeking into the future: Predicting future person activities and locations in videos
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: e_1_3_1_11_2
  doi: 10.1109/CVPR.2018.00553
– ident: e_1_3_1_16_2
– ident: e_1_3_1_24_2
– start-page: 961
  year: 2016
  ident: e_1_3_1_2_2
  article-title: Social : Human trajectory prediction in crowded spaces
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: e_1_3_1_7_2
  doi: 10.1109/ICRA.2018.8460504
– ident: e_1_3_1_20_2
  doi: 10.1109/CVPR.2018.00792
– ident: e_1_3_1_32_2
  doi: 10.1016/j.physa.2018.06.090
– ident: e_1_3_1_33_2
  doi: 10.1007/978-3-319-10599-4_40
– ident: e_1_3_1_36_2
  doi: 10.1109/TITS.2020.2981118
– ident: e_1_3_1_23_2
  doi: 10.1109/CVPR.2015.7298935
– ident: e_1_3_1_13_2
  doi: 10.1609/aaai.v32i1.12316
SSID ssj0015613
Score 2.301591
Snippet Future pedestrian trajectory prediction offers great prospects for many practical applications such as unmanned vehicles, building evacuation design and...
SourceID crossref
acm
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Information systems
Information systems applications
SubjectTermsDisplay Information systems -- Information systems applications
Title Pedestrian Trajectory Prediction in Heterogeneous Traffic using Facial Keypoints-based Convolutional Encoder-decoder Network
URI https://dl.acm.org/doi/10.1145/3410444
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1557-6051
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015613
  issn: 1533-5399
  databaseCode: ADMLS
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHBAuI5SUfuK0MaWK7ybFaWFUsRUi7K5XTyq9IQSJZLSkCxE_hxzJjO492kXhc0sodW0nmq2c8nvlMyHNnEytzbViiHGfclCkrRGJY7qTMLQeHRGC98-qdXJ7zN2uxnkx-jrKWNq1-Yb7_tq7kf7QKbaBXrJL9B832g0IDfAf9whU0DNe_0vF7Z50_d6NGkvKPPgDvK_5sZbokxiXmuzQwhMNkVxBDzojDjQ8RHCsfMD9x3y6bqm4_M7RpFqsAv8T7RtbhGsver5h1_hNLhDGZa-zVLo5WeNZEd_C434EIoUbXHrbXgvfrSvkA7WkTzaZPLwjz34mq-j2g0ILSX-ERe9EPmxC0XaqqVc04bAErXkyd41szbcaQFjcYotgm5gzWV7Px9JymIxjy0Vw7GxntMPJ1c8CROQMMNbLiDRav2-XfMYR9emIo1hYXseMNspeCzUimZG_xavX2tN-lwsVX4OMNjxKKsrHry9gVfR7zaeTzjJyXszvkdlx10EWA0F0ycfU-uTXiorxHfgxgogOY6AAmWtV0C0w0gol6MNEAJroDJroFJroDJhrBdJ-cH78-O1qyeDQHU2kiW8bhb8y1KV2WFul8VghhJTimppQuN9xanVinMydVyQstrZQ2c3lqteazuUqNzh6Qad3U7iGhAmRKnXNuBAd3URQluMhGJcZqqaxOD8g-vMKLy0C-0unkgNDulfY_7ajt0Z9FHpObAzafkGl7tXFPwcls9bOo61-Y34O9
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pedestrian+Trajectory+Prediction+in+Heterogeneous+Traffic+using+Facial+Keypoints-based+Convolutional+Encoder-decoder+Network&rft.jtitle=ACM+transactions+on+Internet+technology&rft.au=Xiao%2C+Song&rft.au=Chen%2C+Kai&rft.au=Ren%2C+Xiaoxiang&rft.au=Yuan%2C+Haitao&rft.date=2022-11-14&rft.issn=1533-5399&rft.eissn=1557-6051&rft.volume=22&rft.issue=4&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1145%2F3410444&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3410444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1533-5399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1533-5399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1533-5399&client=summon