Pedestrian Trajectory Prediction in Heterogeneous Traffic using Facial Keypoints-based Convolutional Encoder-decoder Network
Future pedestrian trajectory prediction offers great prospects for many practical applications such as unmanned vehicles, building evacuation design and robotic path planning. Most existing methods focus on social interaction among pedestrians but ignore the fact that heterogeneous traffic objects (...
        Saved in:
      
    
          | Published in | ACM transactions on Internet technology Vol. 22; no. 4; pp. 1 - 14 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          ACM
    
        14.11.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1533-5399 1557-6051  | 
| DOI | 10.1145/3410444 | 
Cover
| Abstract | Future pedestrian trajectory prediction offers great prospects for many practical applications such as unmanned vehicles, building evacuation design and robotic path planning. Most existing methods focus on social interaction among pedestrians but ignore the fact that heterogeneous traffic objects (cars, dogs, bicycles, motorcycles, etc.) have significant influence on the future trajectory of a subject pedestrian. Also, the walking direction intention of a pedestrian may be referred by his/her facial keypoints. Considering this, this work proposes to predict a pedestrian's future trajectory by jointly using neighboring heterogeneous traffic information and his/her facial keypoints. To fulfill this, an end-to-end facial keypoints-based convolutional encoder-decoder network (FK-CEN) is designed, in which the heterogeneous traffic and facial keypoints are input. After training, FK-CEN is evaluated on 5 crowded video sequences collected from the public datasets MOT-16 and MOT-17. Experimental results demonstrate that it outperforms state-of-the-art approaches, in terms of prediction errors. | 
    
|---|---|
| AbstractList | Future pedestrian trajectory prediction offers great prospects for many practical applications such as unmanned vehicles, building evacuation design and robotic path planning. Most existing methods focus on social interaction among pedestrians but ignore the fact that heterogeneous traffic objects (cars, dogs, bicycles, motorcycles, etc.) have significant influence on the future trajectory of a subject pedestrian. Also, the walking direction intention of a pedestrian may be referred by his/her facial keypoints. Considering this, this work proposes to predict a pedestrian's future trajectory by jointly using neighboring heterogeneous traffic information and his/her facial keypoints. To fulfill this, an end-to-end facial keypoints-based convolutional encoder-decoder network (FK-CEN) is designed, in which the heterogeneous traffic and facial keypoints are input. After training, FK-CEN is evaluated on 5 crowded video sequences collected from the public datasets MOT-16 and MOT-17. Experimental results demonstrate that it outperforms state-of-the-art approaches, in terms of prediction errors. | 
    
| ArticleNumber | 83 | 
    
| Author | Chen, Kai Ren, Xiaoxiang Yuan, Haitao Xiao, Song  | 
    
| Author_xml | – sequence: 1 givenname: Song surname: Xiao fullname: Xiao, Song email: songxiao@buaa.edu.cn organization: Beihang University, Beijing, China – sequence: 2 givenname: Kai surname: Chen fullname: Chen, Kai email: chenkaivisual@buaa.edu.cn organization: Beihang University, Beijing, China – sequence: 3 givenname: Xiaoxiang surname: Ren fullname: Ren, Xiaoxiang email: 370726684@qq.com organization: Nanan Junior High School, China – sequence: 4 givenname: Haitao surname: Yuan fullname: Yuan, Haitao email: haitao.yuan@njit.edu organization: New Jersey Institute of Technology, USA  | 
    
| BookMark | eNo9kEtPAjEYRRuDiYDGvavuXFXb6QNmaQgPI1EWuJ708Q0pQkvaQUPij5cRdHVuck_u4vZQJ8QACN0y-sCYkI9cMCqEuEBdJuWAKCpZp82cE8nL8gr1cl5TyqRivIu-F-AgN8nrgJdJr8E2MR3wIoHztvExYB_wDBpIcQUB4j63Wl17i_fZhxWeaOv1Br_AYRd9aDIxOoPDoxg-42bfLhzbcbDRQSIOfolfofmK6eMaXdZ6k-HmzD56n4yXoxmZv02fR09zoguqGiKcKIWxNfCiLAaslNIpKYWtFQytcM5QB4aD0rUojXJKOQ7Dwhkj2EAX1vA-uj_t2hRzTlBXu-S3Oh0qRqv2tOp82tG8O5nabv-lv_IHXU5sIg | 
    
| Cites_doi | 10.1109/TITS.2020.2981118 10.1016/j.physa.2019.121742 10.1109/ICCV.2009.5459260 10.1109/CVPR.2016.596 10.1109/CVPR.2019.01236 10.1016/j.physa.2015.12.041 10.1111/j.1467-8659.2007.01089.x 10.1109/TPAMI.2017.2728788 10.1016/j.physa.2018.06.045 10.1038/35035023 10.1145/3229047 10.1109/TITS.2018.2873118 10.1145/3374214 10.1109/TPAMI.2011.64 10.1007/978-3-642-33765-9_15 10.1109/CVPR.2019.00144 10.1109/CVPR.2018.00553 10.1109/ICRA.2018.8460504 10.1109/CVPR.2018.00792 10.1016/j.physa.2018.06.090 10.1007/978-3-319-10599-4_40 10.1109/CVPR.2015.7298935 10.1609/aaai.v32i1.12316  | 
    
| ContentType | Journal Article | 
    
| Copyright | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from | 
    
| Copyright_xml | – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1145/3410444 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1557-6051 | 
    
| EndPage | 14 | 
    
| ExternalDocumentID | 10_1145_3410444 3410444  | 
    
| GrantInformation_xml | – fundername: Open Fund of China State Key Laboratory of Intelligent Manufacturing System Technology, National Natural Science Foundation of China grantid: 61473013 – fundername: National Key R&D Program of China grantid: 2018YFB1702703  | 
    
| GroupedDBID | -DZ -~X .4S .DC 23M 4.4 5GY 5VS 6J9 85S 8US AAKMM AALFJ AAYFX ABPPZ ACGFO ACM ADBCU ADL ADMLS ADPZR AEBYY AEGXH AENEX AENSD AFWIH AFWXC AIAGR AIKLT ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BDXCO CCLIF CS3 D0L EBS EDO FEDTE GUFHI HGAVV H~9 I07 LHSKQ P1C P2P PQQKQ RNS ROL TUS U5U UPT W7O ZCA AAYXX AEFXT AEJOY AKRVB CITATION  | 
    
| ID | FETCH-LOGICAL-a206t-4d494bcfe329271955d6554cf6e8c4ddb0deb3e6af49b6d66d3e82dbb417a2cb3 | 
    
| ISSN | 1533-5399 | 
    
| IngestDate | Wed Oct 01 06:05:14 EDT 2025 Fri Feb 21 01:12:37 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | convolutional long-short-term memory attention Social-interaction pedestrian intention encoder-decoder  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-a206t-4d494bcfe329271955d6554cf6e8c4ddb0deb3e6af49b6d66d3e82dbb417a2cb3 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | crossref_primary_10_1145_3410444 acm_primary_3410444  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-11-14 | 
    
| PublicationDateYYYYMMDD | 2022-11-14 | 
    
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-14 day: 14  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York, NY | 
    
| PublicationPlace_xml | – name: New York, NY | 
    
| PublicationTitle | ACM transactions on Internet technology | 
    
| PublicationTitleAbbrev | ACM TOIT | 
    
| PublicationYear | 2022 | 
    
| Publisher | ACM | 
    
| Publisher_xml | – name: ACM | 
    
| References | (Bib0002) 2018 (Bib0020) 2016 (Bib0012) 2018 (Bib0028) 2018; 509 (Bib0017) 2019 (Bib0027) 2014 (Bib0034) 2019; 19 (Bib0037) 2018 (Bib0010) 2018 (Bib0004) 2019 (Bib0009) 2012 (Bib0036) 2019; 20 (Bib0024) 2007 (Bib0015) 2018 (Bib0029) 2016; 447 (Bib0022) 2015 (Bib0007) 2000; 407 Bib0026 (Bib0008) 2011; 33 (Bib0032) 2014 (Bib0001) 2016 (Bib0011) 2016 (Bib0035) 2020; 3 (Bib0021) 2014 (Bib0031) 2018; 510 (Bib0033) 2020; 20 (Bib0014) 2017; 40 (Bib0038) 2019 (Bib0030) 2019; 531 (Bib0018) 2018 (Bib0005) 2009 (Bib0013) 2012 (Bib0023) 2016 (Bib0003) 2012 (Bib0019) 2018 (Bib0006) 2017 (Bib0016) 2018 (Bib0025) 2009 Zhang Z. (e_1_3_1_22_2) 2014 Alahi A. (e_1_3_1_2_2) 2016 Liang J. (e_1_3_1_5_2) 2019 e_1_3_1_21_2 e_1_3_1_23_2 e_1_3_1_24_2 Pellegrini S. (e_1_3_1_26_2) 2009 e_1_3_1_8_2 e_1_3_1_7_2 e_1_3_1_9_2 e_1_3_1_20_2 e_1_3_1_4_2 e_1_3_1_29_2 e_1_3_1_6_2 e_1_3_1_25_2 e_1_3_1_27_2 e_1_3_1_28_2 Nikhil N. (e_1_3_1_19_2) 2018 Xue H. (e_1_3_1_38_2) 2018 Kitani K. M. (e_1_3_1_14_2) 2012 e_1_3_1_32_2 e_1_3_1_33_2 e_1_3_1_34_2 Kitani K. M. (e_1_3_1_10_2) 2012 e_1_3_1_35_2 e_1_3_1_13_2 e_1_3_1_11_2 e_1_3_1_30_2 Yi S. (e_1_3_1_12_2) 2016 e_1_3_1_31_2 e_1_3_1_17_2 e_1_3_1_16_2 e_1_3_1_15_2 e_1_3_1_36_2 e_1_3_1_37_2 Gupta A. (e_1_3_1_3_2) 2018 e_1_3_1_18_2 e_1_3_1_39_2  | 
    
| References_xml | – volume: 447 start-page: 455 issue: 4 year: 2016 end-page: 466 ident: Bib0029 article-title: Selfishness- and selflessness-based models of pedestrian room evacuation publication-title: Physica A-statistical Mechanics and Its Applications – volume: 19 start-page: 1 issue: 1 year: 2019 end-page: 24 ident: Bib0034 article-title: Incentive-based crowdsourcing of hotspot services publication-title: ACM Transactions on Internet Technology (TOIT) – ident: Bib0026 article-title: [Online] – start-page: 5725 year: 2019 end-page: 5734 ident: Bib0004 article-title: Peeking into the future: Predicting future person activities and locations in videos publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 261 year: 2009 end-page: 268 ident: Bib0005 article-title: You'll never walk alone: Modeling social behavior for multi-target tracking publication-title: 2009 IEEE 12th International Conference on Computer Vision – volume: 20 start-page: 3142 issue: 8 year: 2019 end-page: 3155 ident: Bib0036 article-title: Simulation of pedestrian rotation dynamics near crowded exits publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 531 start-page: 121742 issue: 1 year: 2019 ident: Bib0030 article-title: Unpredictability in pedestrian flow: The impact of stochasticity and anxiety in the event of an emergency publication-title: Physica A: Statistical Mechanics and its Applications – start-page: 5275 year: 2018 end-page: 5284 ident: Bib0010 article-title: Encoding crowd interaction with deep neural network for pedestrian trajectory prediction publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 94 year: 2014 end-page: 108 ident: Bib0021 article-title: Facial landmark detection by deep multi-task learning publication-title: European Conference on Computer Vision – volume: 20 start-page: 1 issue: 1 year: 2020 end-page: 21 ident: Bib0033 article-title: Beyond artificial reality: Finding and monitoring live events from social sensors publication-title: ACM Transactions on Internet Technology (TOIT) – start-page: 263 year: 2016 end-page: 279 ident: Bib0011 article-title: Pedestrian behavior understanding and prediction with deep neural networks publication-title: European Conference on Computer Vision – start-page: 5525 year: 2016 end-page: 5533 ident: Bib0020 article-title: Wider face: A face detection benchmark publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 33 start-page: 2287 issue: 11 year: 2011 end-page: 2301 ident: Bib0008 article-title: Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 1349 year: 2019 end-page: 1358 ident: Bib0017 article-title: Sohie: An attentive for predicting paths compliant to social and physical constraints publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 0 year: 2018 end-page: 0 ident: Bib0018 article-title: Convolutional neural network for trajectory prediction publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 510 start-page: 507 issue: 15 year: 2018 end-page: 517 ident: Bib0031 article-title: Modeling handicapped pedestrians considering physical characteristics using cellular automaton publication-title: Physica A: Statistical Mechanics and its Applications – start-page: 618 year: 2014 end-page: 633 ident: Bib0032 article-title: Context-based pedestrian path prediction publication-title: European Conference on Computer Vision – start-page: 201 year: 2012 end-page: 214 ident: Bib0013 article-title: Activity forecasting publication-title: European Conference on Computer Vision – volume: 407 start-page: 487 issue: 9 year: 2000 end-page: 491 ident: Bib0007 article-title: Simulating dynamical features of escape panic publication-title: Nature – year: 2014 ident: Bib0027 article-title: Adam: A method for stochastic optimization – start-page: 3156 year: 2015 end-page: 3164 ident: Bib0022 article-title: Show and tell: A neural image caption generator publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 7593 year: 2018 end-page: 7602 ident: Bib0019 article-title: Future person localization in first-person videos publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2018 ident: Bib0002 article-title: Social : Socially acceptable trajectories with generative adversarial networks publication-title: CVPR – start-page: 201 year: 2012 end-page: 214 ident: Bib0003 article-title: Activity forecasting publication-title: European Conference on Computer Vision – volume: 40 start-page: 1639 issue: 7 year: 2017 end-page: 1652 ident: Bib0014 article-title: Learning and inferring “dark matter” and predicting human intents and trajectories in videos publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 1186–1194 year: 2018 ident: Bib0037 article-title: SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) – year: 2017 ident: Bib0006 article-title: Social attention: Modeling attention in human crowds – start-page: 12085 year: 2019 end-page: 12094 ident: Bib0038 article-title: -Sr-lstm: State refinement for towards pedestrian trajectory prediction publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 261 year: 2009 end-page: 268 ident: Bib0025 article-title: You'll never walk alone: Modeling social behavior for multi-target tracking publication-title: IEEE 12th International Conference on Computer Vision (ICCV) – volume: 3 year: 2020 ident: Bib0035 article-title: Pedestrian trajectory prediction based on deep convolutional LSTM network publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2020.2981118 – year: 2018 ident: Bib0012 article-title: Understanding human behaviors in crowds by imitating the decision-making process publication-title: Thirty-Second AAAI Conference on Artificial Intelligence – volume: 509 start-page: 827 issue: 11 year: 2018 end-page: 844 ident: Bib0028 article-title: A data-driven neural network approach to simulate pedestrian movement publication-title: Physica A-statistical Mechanics and Its Applications – start-page: 201 year: 2012 end-page: 214 ident: Bib0009 article-title: Activity forecasting publication-title: Proceedings of the 2012 European Conference on Computer Vision, LNCS 7575 – start-page: 961 year: 2016 end-page: 971 ident: Bib0001 article-title: Social : Human trajectory prediction in crowded spaces publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 655 year: 2007 end-page: 664 ident: Bib0024 article-title: Crowds by example publication-title: Computer Graphics Forum – year: 2018 ident: Bib0015 article-title: Scene-: A model for human trajectory prediction[J] – year: 2018 ident: Bib0016 article-title: A transferable pedestrian motion prediction model for intersections with different geometries – year: 2016 ident: Bib0023 article-title: MOT16: A benchmark for multi-object tracking[J] – ident: e_1_3_1_31_2 doi: 10.1016/j.physa.2019.121742 – ident: e_1_3_1_6_2 doi: 10.1109/ICCV.2009.5459260 – start-page: 0 volume-title: Proceedings of the European Conference on Computer Vision (ECCV) year: 2018 ident: e_1_3_1_19_2 – ident: e_1_3_1_21_2 doi: 10.1109/CVPR.2016.596 – start-page: 261 year: 2009 ident: e_1_3_1_26_2 article-title: You'll never walk alone: Modeling social behavior for multi-target tracking publication-title: IEEE 12th International Conference on Computer Vision (ICCV) – ident: e_1_3_1_27_2 – start-page: 1186–1194 year: 2018 ident: e_1_3_1_38_2 article-title: SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) – ident: e_1_3_1_39_2 doi: 10.1109/CVPR.2019.01236 – ident: e_1_3_1_30_2 doi: 10.1016/j.physa.2015.12.041 – start-page: 263 year: 2016 ident: e_1_3_1_12_2 article-title: Pedestrian behavior understanding and prediction with deep neural networks publication-title: European Conference on Computer Vision – start-page: 201 year: 2012 ident: e_1_3_1_14_2 article-title: Activity forecasting publication-title: European Conference on Computer Vision – ident: e_1_3_1_25_2 doi: 10.1111/j.1467-8659.2007.01089.x – ident: e_1_3_1_15_2 doi: 10.1109/TPAMI.2017.2728788 – ident: e_1_3_1_29_2 doi: 10.1016/j.physa.2018.06.045 – ident: e_1_3_1_8_2 doi: 10.1038/35035023 – ident: e_1_3_1_35_2 doi: 10.1145/3229047 – ident: e_1_3_1_37_2 doi: 10.1109/TITS.2018.2873118 – start-page: 94 year: 2014 ident: e_1_3_1_22_2 article-title: Facial landmark detection by deep multi-task learning publication-title: European Conference on Computer Vision – volume-title: CVPR year: 2018 ident: e_1_3_1_3_2 – start-page: 201 year: 2012 ident: e_1_3_1_10_2 article-title: Activity forecasting publication-title: Proceedings of the 2012 European Conference on Computer Vision, LNCS 7575 – ident: e_1_3_1_34_2 doi: 10.1145/3374214 – ident: e_1_3_1_28_2 – ident: e_1_3_1_9_2 doi: 10.1109/TPAMI.2011.64 – ident: e_1_3_1_4_2 doi: 10.1007/978-3-642-33765-9_15 – ident: e_1_3_1_17_2 – ident: e_1_3_1_18_2 doi: 10.1109/CVPR.2019.00144 – start-page: 5725 year: 2019 ident: e_1_3_1_5_2 article-title: Peeking into the future: Predicting future person activities and locations in videos publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: e_1_3_1_11_2 doi: 10.1109/CVPR.2018.00553 – ident: e_1_3_1_16_2 – ident: e_1_3_1_24_2 – start-page: 961 year: 2016 ident: e_1_3_1_2_2 article-title: Social : Human trajectory prediction in crowded spaces publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: e_1_3_1_7_2 doi: 10.1109/ICRA.2018.8460504 – ident: e_1_3_1_20_2 doi: 10.1109/CVPR.2018.00792 – ident: e_1_3_1_32_2 doi: 10.1016/j.physa.2018.06.090 – ident: e_1_3_1_33_2 doi: 10.1007/978-3-319-10599-4_40 – ident: e_1_3_1_36_2 doi: 10.1109/TITS.2020.2981118 – ident: e_1_3_1_23_2 doi: 10.1109/CVPR.2015.7298935 – ident: e_1_3_1_13_2 doi: 10.1609/aaai.v32i1.12316  | 
    
| SSID | ssj0015613 | 
    
| Score | 2.301591 | 
    
| Snippet | Future pedestrian trajectory prediction offers great prospects for many practical applications such as unmanned vehicles, building evacuation design and... | 
    
| SourceID | crossref acm  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Information systems Information systems applications  | 
    
| SubjectTermsDisplay | Information systems -- Information systems applications | 
    
| Title | Pedestrian Trajectory Prediction in Heterogeneous Traffic using Facial Keypoints-based Convolutional Encoder-decoder Network | 
    
| URI | https://dl.acm.org/doi/10.1145/3410444 | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1557-6051 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015613 issn: 1533-5399 databaseCode: ADMLS dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHBAuI5SUfuK0MaWK7ybFaWFUsRUi7K5XTyq9IQSJZLSkCxE_hxzJjO492kXhc0sodW0nmq2c8nvlMyHNnEytzbViiHGfclCkrRGJY7qTMLQeHRGC98-qdXJ7zN2uxnkx-jrKWNq1-Yb7_tq7kf7QKbaBXrJL9B832g0IDfAf9whU0DNe_0vF7Z50_d6NGkvKPPgDvK_5sZbokxiXmuzQwhMNkVxBDzojDjQ8RHCsfMD9x3y6bqm4_M7RpFqsAv8T7RtbhGsver5h1_hNLhDGZa-zVLo5WeNZEd_C434EIoUbXHrbXgvfrSvkA7WkTzaZPLwjz34mq-j2g0ILSX-ERe9EPmxC0XaqqVc04bAErXkyd41szbcaQFjcYotgm5gzWV7Px9JymIxjy0Vw7GxntMPJ1c8CROQMMNbLiDRav2-XfMYR9emIo1hYXseMNspeCzUimZG_xavX2tN-lwsVX4OMNjxKKsrHry9gVfR7zaeTzjJyXszvkdlx10EWA0F0ycfU-uTXiorxHfgxgogOY6AAmWtV0C0w0gol6MNEAJroDJroFJroDJhrBdJ-cH78-O1qyeDQHU2kiW8bhb8y1KV2WFul8VghhJTimppQuN9xanVinMydVyQstrZQ2c3lqteazuUqNzh6Qad3U7iGhAmRKnXNuBAd3URQluMhGJcZqqaxOD8g-vMKLy0C-0unkgNDulfY_7ajt0Z9FHpObAzafkGl7tXFPwcls9bOo61-Y34O9 | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pedestrian+Trajectory+Prediction+in+Heterogeneous+Traffic+using+Facial+Keypoints-based+Convolutional+Encoder-decoder+Network&rft.jtitle=ACM+transactions+on+Internet+technology&rft.au=Xiao%2C+Song&rft.au=Chen%2C+Kai&rft.au=Ren%2C+Xiaoxiang&rft.au=Yuan%2C+Haitao&rft.date=2022-11-14&rft.issn=1533-5399&rft.eissn=1557-6051&rft.volume=22&rft.issue=4&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1145%2F3410444&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3410444 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1533-5399&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1533-5399&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1533-5399&client=summon |