Think complexity : complexity science and computational modeling

Complexity science uses computation to explore the physical and social sciences. In Think Complexity, you'll use graphs, cellular automata, and agent-based models to study topics in physics, biology, and economics.Whether you're an intermediate-level Python programmer or a student of compu...

Full description

Saved in:
Bibliographic Details
Main Author Downey, Allen
Format eBook Book
LanguageEnglish
Published Sebastopol O'Reilly 2018
O'Reilly Media, Incorporated
Edition2
Subjects
Online AccessGet full text
ISBN9781492040200
1492040207

Cover

Abstract Complexity science uses computation to explore the physical and social sciences. In Think Complexity, you'll use graphs, cellular automata, and agent-based models to study topics in physics, biology, and economics.Whether you're an intermediate-level Python programmer or a student of computational modeling, you'll delve into examples of complex systems through a series of worked examples, exercises, case studies, and easy-to-understand explanations.In this updated second edition, you will:Work with NumPy arrays and SciPy methods, including basic signal processing and Fast Fourier TransformStudy abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machinesGet Jupyter notebooks filled with starter code and solutions to help you re-implement and extend original experiments in complexity; and models of computation like Turmites, Turing machines, and cellular automataExplore the philosophy of science, including the nature of scientific laws, theory choice, and realism and instrumentalismIdeal as a text for a course on computational modeling in Python, Think Complexity also helps self-learners gain valuable experience with topics and ideas they might not encounter otherwise.
AbstractList Complexity science uses computation to explore the physical and social sciences. In Think Complexity, you'll use graphs, cellular automata, and agent-based models to study topics in physics, biology, and economics.Whether you're an intermediate-level Python programmer or a student of computational modeling, you'll delve into examples of complex systems through a series of worked examples, exercises, case studies, and easy-to-understand explanations.In this updated second edition, you will:Work with NumPy arrays and SciPy methods, including basic signal processing and Fast Fourier TransformStudy abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machinesGet Jupyter notebooks filled with starter code and solutions to help you re-implement and extend original experiments in complexity; and models of computation like Turmites, Turing machines, and cellular automataExplore the philosophy of science, including the nature of scientific laws, theory choice, and realism and instrumentalismIdeal as a text for a course on computational modeling in Python, Think Complexity also helps self-learners gain valuable experience with topics and ideas they might not encounter otherwise.
Author Downey, Allen
Author_xml – sequence: 1
  fullname: Downey, Allen
BackLink https://cir.nii.ac.jp/crid/1130282272679170048$$DView record in CiNii
BookMark eNqNkEtLAzEUhSM-0Nb-h1kI4qJw85okrtShPqDgprgdYubWxqZJbaY-_r1j66Lu3JzLOXycA7dHDmKKuEcGRmkqDAMBVMH-rmcAR6RHQXBDueL6mAxyfgUARrUExk_I1WTm47xwabEM-Onbr-Jy12TnMTosbGw28bq1rU_RhmKRGgw-vpySw6kNGQe_t0-ebkeT6n44frx7qK7HQ8u6NTo0DTgpUVOmBbUUNUqBQmNJWVNOp0wKplCX3BgrjDXc6VKDAmm6hArBeZ9cbIttnuNHnqXQ5vo94HNK81z_-cH_WVl27PmWXa7S2xpzW28wh7Fd2VCPbiopJOUb8mxLRu9r53-UUg5MM6ZYqUy3DELzbx4mcbw
ContentType eBook
Book
DBID RYH
DEWEY 005.133
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781492040170
1492040177
9781492040156
1492040150
Edition 2
Second edition.
ExternalDocumentID 9781492040170
9781492040156
EBC5451356
BB27242657
GroupedDBID 20A
38.
AABBV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CZZ
OHILO
OODEK
RYH
ID FETCH-LOGICAL-a20211-9d0c55e812841a1e8e54e48e612d6ff25427e86399a49a93c8680705939914433
ISBN 9781492040200
1492040207
IngestDate Fri Nov 08 04:38:51 EST 2024
Fri Nov 08 04:36:27 EST 2024
Fri May 30 23:03:23 EDT 2025
Thu Jun 26 23:47:49 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QA76.73.P98 .D696 2018
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a20211-9d0c55e812841a1e8e54e48e612d6ff25427e86399a49a93c8680705939914433
Notes Includes bibliographical references and index
OCLC 1043913738
PQID EBC5451356
PageCount 200
ParticipantIDs askewsholts_vlebooks_9781492040170
askewsholts_vlebooks_9781492040156
proquest_ebookcentral_EBC5451356
nii_cinii_1130282272679170048
PublicationCentury 2000
PublicationDate 2018
2018-07-11
PublicationDateYYYYMMDD 2018-01-01
2018-07-11
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Sebastopol
PublicationPlace_xml – name: Sebastopol
PublicationYear 2018
Publisher O'Reilly
O'Reilly Media, Incorporated
Publisher_xml – name: O'Reilly
– name: O'Reilly Media, Incorporated
SSID ssj0002185023
ssib032329433
Score 2.1860323
Snippet Complexity science uses computation to explore the physical and social sciences. In Think Complexity, you'll use graphs, cellular automata, and agent-based...
SourceID askewsholts
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Computational complexity
Python (Computer program language)
TableOfContents Intro -- Copyright -- Table of Contents -- Preface -- Who Is This Book For? -- Changes from the First Edition -- Using the Code -- Conventions Used in This Book -- O'Reilly Safari -- How to Contact Us -- Contributor List -- Chapter 1. Complexity Science -- The Changing Criteria of Science -- The Axes of Scientific Models -- Different Models for Different Purposes -- Complexity Engineering -- Complexity Thinking -- Chapter 2. Graphs -- What Is a Graph? -- NetworkX -- Random Graphs -- Generating Graphs -- Connected Graphs -- Generating ER Graphs -- Probability of Connectivity -- Analysis of Graph Algorithms -- Exercises -- Chapter 3. Small World Graphs -- Stanley Milgram -- Watts and Strogatz -- Ring Lattice -- WS Graphs -- Clustering -- Shortest Path Lengths -- The WS Experiment -- What Kind of Explanation Is That? -- Breadth-First Search -- Dijkstra's Algorithm -- Exercises -- Chapter 4. Scale-Free Networks -- Social Network Data -- WS Model -- Degree -- Heavy-Tailed Distributions -- Barabási-Albert Model -- Generating BA Graphs -- Cumulative Distributions -- Explanatory Models -- Exercises -- Chapter 5. Cellular Automatons -- A Simple CA -- Wolfram's Experiment -- Classifying CAs -- Randomness -- Determinism -- Spaceships -- Universality -- Falsifiability -- What Is This a Model Of? -- Implementing CAs -- Cross-Correlation -- CA Tables -- Exercises -- Chapter 6. Game of Life -- Conway's GoL -- Life Patterns -- Conway's Conjecture -- Realism -- Instrumentalism -- Implementing Life -- Exercises -- Chapter 7. Physical Modeling -- Diffusion -- Reaction-Diffusion -- Percolation -- Phase Change -- Fractals -- Fractals and Percolation Models -- Exercises -- Chapter 8. Self-Organized Criticality -- Critical Systems -- Sand Piles -- Implementing the Sand Pile -- Heavy-Tailed Distributions -- Fractals -- Pink Noise -- The Sound of Sand
Reductionism and Holism -- SOC, Causation, and Prediction -- Exercises -- Chapter 9. Agent-Based Models -- Schelling's Model -- Implementation of Schelling's Model -- Segregation -- Sugarscape -- Wealth Inequality -- Implementing Sugarscape -- Migration and Wave Behavior -- Emergence -- Exercises -- Chapter 10. Herds, Flocks, and Traffic Jams -- Traffic Jams -- Random Perturbation -- Boids -- The Boid Algorithm -- Arbitration -- Emergence and Free Will -- Exercises -- Chapter 11. Evolution -- Simulating Evolution -- Fitness Landscape -- Agents -- Simulation -- No Differentiation -- Evidence of Evolution -- Differential Survival -- Mutation -- Speciation -- Summary -- Exercises -- Chapter 12. Evolution of Cooperation -- Prisoner's Dilemma -- The Problem of Nice -- Prisoner's Dilemma Tournaments -- Simulating Evolution of Cooperation -- The Tournament -- The Simulation -- Results -- Conclusions -- Exercises -- Appendix A. Reading List -- Index -- About the Author -- Colophon
Title Think complexity : complexity science and computational modeling
URI https://cir.nii.ac.jp/crid/1130282272679170048
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5451356
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781492040156
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781492040170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFI7bntyLd5w6KeJrpZekSX1yG5Mh6INM8a20aQrDMcV1IuKP90vXbPUCXl5CE9pAv1PO-b6TnIaQY1dlEqw1sBE7lU1p7NtxBtUaQPSEiZt4LNG1w5dXweCGXtyxu9rKW7W6JE9O5Ou3dSX_sSrGYFddJfsHyy4mxQCuYV-0sDDaT-R30TXGhYScbwdXL5pHa2Ff6ZpinbJo7XGWm5xfcfKNCVeawEKFz7PWHX2oSjUJ4IpPSQC9MeZajcZj4z7m8hDqx3O0QHSW3n6xB6_b9biOz4zXSZ1zLVztQWeRn0LoZ4jnRS1cOQs3v8gyszZJM57ewxnDUedTROfJaPQlphWBerhOGrp4Y4PU1GSTrJkjK6zSg22RswI5awmVdVrtlLhZwM36gJtlcNsmt-f9YW9gl4dI2LGHl3DtMHUkY0roQOzGrhKKUUWFArVLgyyDQPa4EpqoxTSMQ1-KQMAPshAjUJu-v0Mak4eJ2iVWloLvKjDKlDlUSiFo6Hgyk2noxCkGW-Sogkf0PC4WvKfREjSo5V_cxJ0WaQPLSI506-rFZRA57gU81P9TpKJFLINyVDxfbuWN-t0eOLHrs2Dvhyn2yerySzogjfxpptogWHlyWHwJ7z4NHpE
linkProvider University of Minnesota
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Think+complexity+%3A+complexity+science+and+computational+modeling&rft.au=Downey%2C+Allen&rft.date=2018-01-01&rft.pub=O%27Reilly&rft.isbn=9781492040200&rft.externalDocID=BB27242657
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814920%2F9781492040156.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814920%2F9781492040170.jpg