Nanolayer research : methodology and technology for green chemistry

This book introduces the advanced researches of nanolayers under noting recent trends of methodology and technology from basic to application for green science ) principle of nanolayers (2) methodology and technology of nanolayers (3) application of nanolayers

Saved in:
Bibliographic Details
Main Author 今栄, 東洋子
Format eBook Book
LanguageEnglish
Published Amsterdam Elsevier 2017
Edition1
Subjects
Online AccessGet full text
ISBN0444637397
9780444637390
DOI10.1016/C2015-0-00781-X

Cover

Table of Contents:
  • 6.5. Surface Dynamic of Surface Molecules Studied by SFG -- 6.5.1. Photoinduced Surface Dynamics of CO Adsorbed on a Platinum Electrode -- 6.6. General Conclusion -- Acknowledgment -- References -- Chapter 7: Nanolayer Analysis by X-Ray Absorption Fine Structure Spectroscopy -- 7.1. Fundamental Aspects of XAFS -- 7.1.1. XANES -- 7.1.2. EXAFS -- 7.2. Experimental Development of XAFS -- 7.2.1. Electron Yield and Fluorescent Yield Methods -- 7.2.2. Depth-Resolved XAFS for Nanolayers -- 7.2.3. Time-Resolved XAFS for Nanolayers -- 7.2.4. Space-Resolved XAFS for Nanolayers -- 7.3. Selected Applications to Green Chemistry -- 7.4. Future Prospects of XAFS -- References -- Chapter 8: Nanolayer Analysis by Photoelectron Spectroscopy -- 8.1. Principle of Photoelectron Spectroscopy -- 8.2. Highly Energy-Resolved PES for Chemical and Electronic Analysis -- 8.3. ARPES for Band Structure of Nanolayers -- 8.4. Spin-Resolved Photoelectron Spectroscopy -- 8.5. Time-Resolved Photoelectron Spectroscopy for Transient Phenomena or Surface Dynamics -- 8.6. Spatially Resolved PES for Green NanoMaterials and NanoDevices -- 8.7. Hard XPS for Bulk and Interface Analysis -- 8.8. In Situ and Operando PES During Green Chemical Reactions and Green Device Operation -- 8.9. Summary and Future Prospects -- References -- Chapter 9: Layer-by-Layer Nanolayers for Green Science -- 9.1. Introduction -- 9.2. Basics of LbL Assembly -- 9.3. Application Example of LbL Assembly: Multienzyme Reactor -- 9.4. Environmental Sensor With Graphene LbL Assembly -- 9.5. Environmental Sensor With LbL Assembly With Hierarchic Structure -- 9.6. Stimuli-Free Material Release From LbL Assembly -- 9.7. Conclusions: Toward Nanoarchitectonics -- Acknowledgments -- References -- Chapter 10: Graphene-Based Nanolayers Toward Energy Storage Device -- 10.1. What Is Graphene? -- 10.2. Synthesis of Graphene
  • Front Cover -- Nanolayer Research: Methodology and Technology for Green Chemistry -- Copyright -- Contents -- Contributors -- Chapter 1: Overview of Nanolayers: Formulation and Characterization Methods -- 1.1. Introduction -- 1.2. Formulation of Nanolayers -- 1.2.1. Monolayers at Interface -- 1.2.1.1. Monolayer at gas (air)-liquid interface -- 1.2.1.2. Monolayer at gas-solid interface -- 1.2.1.3. Monolayer at liquid-solid interface -- 1.2.1.4. Monolayer at finite interface -- 1.2.2. Multilayers at Interface -- 1.3. Characterization Methods of Nanolayers -- 1.3.1. Characterization of Nanolayers by Microscopy -- 1.3.1.1. Transmission electron microscope -- 1.3.1.2. Atomic force microscope -- 1.3.2. Characterization of Nanolayers by Electromagnetics -- 1.3.2.1. Light scattering -- 1.3.2.2. Small angle scattering -- 1.3.2.3. Reflectometry -- 1.3.3. Characterization of Nanolayers by Spectroscopy -- 1.3.3.1. X-ray spectroscopy -- 1.3.3.2. Vibration spectroscopy -- 1.3.3.3. Surface plasmon resonance spectroscopy -- 1.4. Conclusions -- Acknowledgments -- References -- Chapter 2: Electrical Double Layer at Nanolayer Interface -- 2.1. Introduction -- 2.2. Gouy-Chapman-Stern Model for Electrical Double Layer -- 2.3. Electrical Double Layer Around a Planar Surface -- 2.4. Electrical Double Layer Around Spherical and Cylindrical Surfaces -- 2.4.1. Spherical Surface -- 2.4.2. Cylindrical Surface -- 2.5. Electrical Double Layer Across a Nanolayer of Porous Material -- 2.6. Electrical Double Layer Across a Nanolayer of Polyelectrolytes -- 2.7. Discrete Charge Effect -- 2.8. Modified Poisson-Boltzmann Equation -- 2.9. Conclusion -- References -- Chapter 3: Scanning Probe Microscopy Techniques for Modern Nanomaterials -- 3.1. Introduction -- 3.2. Submolecular Imaging of Two-Dimensional Supramolecular Systems by SPM
  • 5.5.1.1.1. Li-ion battery anodes -- Anatase -- Copper -- Carbon -- Silicon -- 5.5.1.1.2. Li-ion battery cathodes -- LiFePO4 -- LiMn2O4 -- LiMn1.5Ni0.5O4 -- LiCoO2 -- 5.5.1.2. Fuel cells-Nafion -- 5.5.1.3. Capacitor -- 5.5.1.4. Aqueous battery cathode -- 5.5.1.5. Nonenergy storage/conversion electrochemistry -- 5.5.1.6. Redox active polymers -- 5.5.2. Examples -- 5.5.2.1. In operando neutron reflectometry measurement of the evolution of the solid electrolyte interphase in Li-ion bat ... -- 5.5.2.2. Detailed investigations of phase segregation in polymer electrolytes -- 5.5.2.3. Studies of diffusion using isotopic labeled lithium -- 5.5.3. Summary -- 5.6. Conclusions -- References -- Chapter 6: Interfacial Molecular Structure and Dynamics at Solid Surface Studied by Sum Frequency Generation Spectroscopy -- 6.1. Introduction -- 6.2. Sum Frequency Generation Spectroscopy -- 6.2.1. Brief Description of SFG -- 6.2.2. Origin of SFG Process -- 6.2.3. SFG Spectroscopy -- 6.2.4. Experimental Arrangement for SFG Measurements -- 6.2.4.1. Laser and detection systems -- 6.2.4.2. Spectroscopic cells -- 6.2.4.2.1. Spectroelectrochemical cell -- 6.2.4.2.2. Flow cell -- 6.3. Structure of Organic Monolayer Studied by SFG -- 6.3.1. Evidence for Epitaxial Arrangement and High Conformational Order of an Organic Monolayer on Si(111) by SFG Spectro ... -- 6.3.1.1. Theoretical basis -- 6.3.1.2. Determination of the molecular orientation by SFG -- 6.3.2. Interfacial Molecular Structures of Polyelectrolyte Brush in Contact with Dry Nitrogen, Water Vapor Studied by SFG ... -- 6.4. Interfacial Water Structure Studied by SFG -- 6.4.1. SFG Study on Potential-Dependent Structure of Water at Pt Electrode/Electrolyte Solution Interface -- 6.4.2. Humidity-Dependent Structure of Surface Water on Perfluorosulfonated Ionomer Thin Film Studied by SFG
  • 10.2.1. Top-Down Methods -- 10.2.1.1. Mechanical exfoliation -- 10.2.1.2. Oxidation-reduction (via GO) -- 10.2.1.3. Intercalation-exfoliation (via GIC) -- 10.2.2. Bottom-Up Methods -- 10.3. Characterization of Graphene -- 10.3.1. Morphology of Graphene -- 10.3.2. Electronic Structure of Graphene -- 10.3.3. Surface Property of Graphene -- 10.4. Graphene-Based Supercapacitor -- 10.4.1. Basics of Electric Double Layer -- 10.4.2. Electric Double Layer at Interface of Electrode and Electrolyte Solution -- 10.4.3. Materials for Supercapacitors -- 10.4.3.1. Materials for EDLCs -- 10.4.3.2. Materials for pseudocapacitors -- 10.4.3.3. Materials for hybrid supercapacitors -- 10.5. Conclusions and Future Directions -- References -- Index -- Back Cover
  • 3.3. On-Site STM Imaging of Covalently Bonded 2D Supramolecular Structures by Surface-Mediated Selective Polycondensation -- 3.4. Surface Characterization of 2D Nanomaterials by AFM and KPFM -- 3.5. Characterizations of Advanced Materials for Polymer Electrolyte Fuel Cells by SPM Techniques -- 3.6. Recent Thin Film Organic and/or Inorganic Solar Cells -- 3.7. KPFM for Determination of the Work Function in Solar Cells -- 3.8. Morphology and Work Function Distribution of Bulk Heterojunction Solar Cells -- 3.9. Local Photovoltaic Characteristics of Bulk Heterojunction Solar Cells -- 3.10. Local Photovoltaic Inorganic and Organic/Inorganic Hybrid Solar Cells -- 3.11. Conclusions and Outlook -- References -- Chapter 4: Surface-Enhanced Spectroscopy for Surface Characterization -- 4.1. Introduction -- 4.2. Types of Surface-Enhanced Spectroscopies -- 4.3. Metallic Nanostructures for Surface Enhanced Spectroscopies -- 4.4. Physicochemical Phenomenon of Materials in the Vicinity of Metal Nanostructures -- 4.5. Practical Methods for Surface-Enhanced Spectroscopies -- 4.6. Recent Applications: Beyond the Spectroscopies -- 4.7. Conclusions -- References -- Chapter 5: Nanolayer Analysis by Neutron Reflectometry -- 5.1. Introduction -- 5.2. Theory of Neutron Reflectometry -- 5.2.1. Introduction -- 5.2.2. Specular Theory -- 5.2.3. Phase Recovery -- 5.2.4. Isotope Substitution -- 5.2.5. Near-Specular Techniques -- 5.3. Practical Aspects -- 5.3.1. Neutron Reflectometers -- 5.3.2. Data Collection -- 5.3.3. Data Fitting -- 5.3.4. Sample Requirements -- 5.3.5. In Operando Neutron Reflectometry/Electrochemical Cell Design Considerations -- 5.4. Modern Data Analysis -- 5.4.1. Maximum Likelihood Analysis -- 5.4.2. Uncertainty Analysis -- 5.5. Current Examples -- 5.5.1. General Review of Many Types of Green Energy Applications -- 5.5.1.1. Li-ion batteries