On Using Feedback Control to Contend with Nature’s Randomness
Probability distributions are often used to characterize the randomness of nature. In stochastic model predictive control (SMPC), disturbances are described by a probability distribution that is used within a stochastic optimization problem to construct a feedback control law. While powerful, these...
        Saved in:
      
    
          | Published in | Industrial & engineering chemistry research Vol. 62; no. 5; pp. 2175 - 2190 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            American Chemical Society
    
        08.02.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0888-5885 1520-5045  | 
| DOI | 10.1021/acs.iecr.2c02970 | 
Cover
| Abstract | Probability distributions are often used to characterize the randomness of nature. In stochastic model predictive control (SMPC), disturbances are described by a probability distribution that is used within a stochastic optimization problem to construct a feedback control law. While powerful, these probability distributions are themselves subject to their own type of uncertainty, often called distributional uncertainty. In this work, we establish that SMPC, under suitable assumptions, provides a nonzero margin of robustness to this distributional uncertainty. This inherent distributional robustness is afforded by feedback and careful algorithm design. Through a small example, we demonstrate the implications of this result for incorrectly modeled, out-of-sample, and even unmodeled disturbances. This result also covers scenario-based approximations of stochastic optimal control problems and unifies the description of robustness for nominal and stochastic model predictive control. | 
    
|---|---|
| AbstractList | Probability distributions are often used to characterize the randomness of nature. In stochastic model predictive control (SMPC), disturbances are described by a probability distribution that is used within a stochastic optimization problem to construct a feedback control law. While powerful, these probability distributions are themselves subject to their own type of uncertainty, often called distributional uncertainty. In this work, we establish that SMPC, under suitable assumptions, provides a nonzero margin of robustness to this distributional uncertainty. This inherent distributional robustness is afforded by feedback and careful algorithm design. Through a small example, we demonstrate the implications of this result for incorrectly modeled, out-of-sample, and even unmodeled disturbances. This result also covers scenario-based approximations of stochastic optimal control problems and unifies the description of robustness for nominal and stochastic model predictive control. | 
    
| Author | Rawlings, James B. McAllister, Robert D.  | 
    
| AuthorAffiliation | Department of Chemical Engineering | 
    
| AuthorAffiliation_xml | – name: Department of Chemical Engineering | 
    
| Author_xml | – sequence: 1 givenname: Robert D. orcidid: 0000-0002-5687-6875 surname: McAllister fullname: McAllister, Robert D. email: rdmcallister@ucsb.edu – sequence: 2 givenname: James B. surname: Rawlings fullname: Rawlings, James B.  | 
    
| BookMark | eNp9kM9KAzEQh4NUsK3ePeYB3Jpkk272JFJsFYoFsedlmj-a2iaSpIg3X8PX80nctT0JepqBmW_4zTdAPR-8QeickhEljF6CSiNnVBwxRVhdkSPUp4KRQhAueqhPpJSFkFKcoEFKa0KIEJz30dXC42Vy_glPjdErUC94EnyOYYNz-GmN1_jN5Wd8D3kXzdfHZ8IP4HXYepPSKTq2sEnm7FCHaDm9eZzcFvPF7G5yPS-A1iIXpdBqbK3hFWe1kpyD5GYsNfDSVkparlYVmNpoTUtbrihnwKCNDy1Qc0XLIRrv76oYUorGNsplyK7LCm7TUNJ0GppWQ9NpaA4aWpD8Al-j20J8_w-52CPdZB120bef_b3-DTfodHw | 
    
| CitedBy_id | crossref_primary_10_1016_j_compchemeng_2023_108277 crossref_primary_10_1021_acs_iecr_3c00051  | 
    
| Cites_doi | 10.1109/TAC.2022.3157131 10.1109/MCS.2016.2602087 10.1002/rnc.4409 10.1016/j.arcontrol.2016.04.006 10.1016/S0005-1098(97)00171-4 10.1109/TAC.2020.3030884 10.1016/j.automatica.2007.08.009 10.1016/j.sysconle.2009.08.004 10.1109/CDC.2011.6160293 10.2307/1905261 10.1109/TAC.2021.3122365 10.1287/opre.1090.0795 10.1109/TAC.2014.2335274 10.1016/j.automatica.2020.109095 10.1109/TAC.2008.2010886 10.2307/1910260 10.1109/TAC.2010.2086553 10.1016/j.automatica.2018.04.013 10.1007/978-94-011-0135-6_8 10.1016/j.sysconle.2017.03.005 10.1307/mmj/1029003026 10.1016/j.automatica.2014.07.014 10.1109/TAC.2009.2017970 10.1016/j.jprocont.2013.08.008 10.1016/j.automatica.2004.04.014 10.1109/TAC.2016.2625048 10.1002/aic.16551 10.1109/ACC.2015.7170854 10.1002/aic.690450805 10.1016/j.compchemeng.2020.107174 10.1109/TAC.1981.1102781 10.1016/j.automatica.2010.06.034 10.1016/j.jprocont.2016.03.005 10.1007/978-3-540-71050-9  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 American Chemical Society | 
    
| Copyright_xml | – notice: 2022 American Chemical Society | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1021/acs.iecr.2c02970 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1520-5045 | 
    
| EndPage | 2190 | 
    
| ExternalDocumentID | 10_1021_acs_iecr_2c02970 a399985315  | 
    
| GroupedDBID | -~X .DC .K2 4.4 55A 5GY 5VS 6TJ 7~N 8W4 AABXI ABFLS ABFRP ABMVS ABPTK ABQRX ABUCX ACGFO ACJ ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED~ F5P GGK GNL IH9 JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 ~02 53G AAYXX ABBLG ABLBI AGXLV BAANH CITATION CUPRZ  | 
    
| ID | FETCH-LOGICAL-a195t-35dc6ffe47429c844a84e68da43f7c8f4cb7ae9edd13f3b142a2a520a47494c13 | 
    
| IEDL.DBID | ACS | 
    
| ISSN | 0888-5885 | 
    
| IngestDate | Tue Jul 01 04:24:02 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Fri Feb 10 03:11:02 EST 2023  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a195t-35dc6ffe47429c844a84e68da43f7c8f4cb7ae9edd13f3b142a2a520a47494c13 | 
    
| ORCID | 0000-0002-5687-6875 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | crossref_citationtrail_10_1021_acs_iecr_2c02970 crossref_primary_10_1021_acs_iecr_2c02970 acs_journals_10_1021_acs_iecr_2c02970  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230208 2023-02-08  | 
    
| PublicationDateYYYYMMDD | 2023-02-08 | 
    
| PublicationDate_xml | – month: 02 year: 2023 text: 20230208 day: 08  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Industrial & engineering chemistry research | 
    
| PublicationTitleAlternate | Ind. Eng. Chem. Res | 
    
| PublicationYear | 2023 | 
    
| Publisher | American Chemical Society | 
    
| Publisher_xml | – name: American Chemical Society | 
    
| References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Ogunnaike B. A. (ref2/cit2) 2010 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Varadarajan V. S. (ref40/cit40) 1958; 19 Frogner C. (ref32/cit32) 2015 ref39/cit39 Paulson J. A. (ref10/cit10) 2015 ref14/cit14 ref8/cit8 ref5/cit5 Shafieezadeh Abadeh S. (ref35/cit35) 2018; 31 Arjovsky M. (ref33/cit33) 2017 ref43/cit43 Rawlings J. B. (ref30/cit30) 2020 ref34/cit34 ref37/cit37 ref28/cit28 Villani C. (ref31/cit31) 2009; 338 ref20/cit20 ref17/cit17 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 Ogunnaike B. A. (ref1/cit1) 1994 ref4/cit4 Bertsekas D. (ref23/cit23) 2017; 1 ref24/cit24 ref38/cit38 ref7/cit7  | 
    
| References_xml | – ident: ref21/cit21 doi: 10.1109/TAC.2022.3157131 – volume: 19 start-page: 23 year: 1958 ident: ref40/cit40 publication-title: Sankhya – ident: ref7/cit7 doi: 10.1109/MCS.2016.2602087 – ident: ref20/cit20 doi: 10.1002/rnc.4409 – ident: ref8/cit8 doi: 10.1016/j.arcontrol.2016.04.006 – ident: ref42/cit42 doi: 10.1016/S0005-1098(97)00171-4 – ident: ref36/cit36 doi: 10.1109/TAC.2020.3030884 – ident: ref15/cit15 doi: 10.1016/j.automatica.2007.08.009 – ident: ref11/cit11 doi: 10.1016/j.sysconle.2009.08.004 – ident: ref41/cit41 doi: 10.1109/CDC.2011.6160293 – ident: ref24/cit24 doi: 10.2307/1905261 – ident: ref22/cit22 doi: 10.1109/TAC.2021.3122365 – ident: ref34/cit34 doi: 10.1287/opre.1090.0795 – ident: ref19/cit19 doi: 10.1109/TAC.2014.2335274 – ident: ref17/cit17 doi: 10.1016/j.automatica.2020.109095 – ident: ref9/cit9 doi: 10.1109/TAC.2008.2010886 – volume-title: Process Dynamics, Modeling, and Control year: 1994 ident: ref1/cit1 – ident: ref25/cit25 doi: 10.2307/1910260 – ident: ref13/cit13 doi: 10.1109/TAC.2010.2086553 – ident: ref18/cit18 doi: 10.1016/j.automatica.2018.04.013 – ident: ref27/cit27 doi: 10.1007/978-94-011-0135-6_8 – ident: ref5/cit5 doi: 10.1016/j.sysconle.2017.03.005 – volume-title: Model Predictive Control: Theory, Design, and Computation year: 2020 ident: ref30/cit30 – volume: 31 start-page: 8067 year: 2018 ident: ref35/cit35 publication-title: Adv. Neural Inf. Process. Syst. – ident: ref37/cit37 doi: 10.1307/mmj/1029003026 – ident: ref4/cit4 doi: 10.1016/j.automatica.2014.07.014 – volume: 1 volume-title: Dynamic programming and Optimal Control year: 2017 ident: ref23/cit23 – ident: ref12/cit12 doi: 10.1109/TAC.2009.2017970 – ident: ref38/cit38 doi: 10.1016/j.jprocont.2013.08.008 – ident: ref3/cit3 doi: 10.1016/j.automatica.2004.04.014 – ident: ref29/cit29 – ident: ref16/cit16 doi: 10.1109/TAC.2016.2625048 – ident: ref43/cit43 doi: 10.1002/aic.16551 – start-page: 937 year: 2015 ident: ref10/cit10 publication-title: Proc. 2015 Am. Control Conf. doi: 10.1109/ACC.2015.7170854 – ident: ref28/cit28 doi: 10.1002/aic.690450805 – ident: ref39/cit39 doi: 10.1016/j.compchemeng.2020.107174 – ident: ref26/cit26 doi: 10.1109/TAC.1981.1102781 – volume-title: Random Phenomena year: 2010 ident: ref2/cit2 – ident: ref14/cit14 doi: 10.1016/j.automatica.2010.06.034 – ident: ref6/cit6 doi: 10.1016/j.jprocont.2016.03.005 – start-page: 28 year: 2015 ident: ref32/cit32 publication-title: Adv. Neural Inf. Process. Syst. – volume: 338 volume-title: Optimal Transport: Old and New year: 2009 ident: ref31/cit31 doi: 10.1007/978-3-540-71050-9 – start-page: 214 year: 2017 ident: ref33/cit33 publication-title: Int. Conf. Mach. Learn.  | 
    
| SSID | ssj0005544 | 
    
| Score | 2.421778 | 
    
| Snippet | Probability distributions are often used to characterize the randomness of nature. In stochastic model predictive control (SMPC), disturbances are described by... | 
    
| SourceID | crossref acs  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 2175 | 
    
| SubjectTerms | Process Systems Engineering | 
    
| Title | On Using Feedback Control to Contend with Nature’s Randomness | 
    
| URI | http://dx.doi.org/10.1021/acs.iecr.2c02970 | 
    
| Volume | 62 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society (ACS) Journals customDbUrl: eissn: 1520-5045 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005544 issn: 0888-5885 databaseCode: ACS dateStart: 19870101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5EL3rwLdYXe9CDh02TzSabnKQUS_FQQS30FvYxAammYtKLJ_-Gf89f4u4m2uKLQg4hZMJm2M3M7Hz5PoROBfdjGXNFgPqasFRpIiVwokH6CmhgDoe2GMT9IbsaRaMZTc73Dj4N2kKV3r1JoTyqrNCSKc9XaMy5he91urczOEfkhFvNorF_EiVR05L87Qk2EKlyLhDNRZTeRi1NVDoiQgskGXvTSnrq5SdN4wKD3UTrTWKJO_VM2EJLUGyjtTm6wR10cV1gBxHAPROzpFBj3K2R6riauFMoNLY7s3jg-D7fX99KfCMKPXm0X8RdNOxd3nX7pBFQICJIo4qEkVZxngMz9W-qEsZEwiBOtGBhzlWSMyW5gBS0DsI8tNtBgoqI-sIYpEwF4R5aLiYF7CPshxQ4iCT1pW39ccsbJ4UGU91JKWTUQmfm3bNmAZSZ623TILMXrUOyxiEt1P70eqYaFnIrhvHwj8X5l8VTzcDx570HC47iEK1a2XiHvk6O0HL1PIVjk1xU8sTNqg8slssp | 
    
| linkProvider | American Chemical Society | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KPagH32J95qAHD9vuI9nHSUqxVK0Vagu9LXktSHUr7vbiyb_h3_OXmKTbB6KisIcl7ITJkOxkMl--ATilge0zP-CWdG1h4YgLizEZWEIym0vXUY9BW3T8Vh9fD8igBM70LoxSIlM9ZSaJP2cXcGq67UHtpKou1_WWVJS-RHzs6Hir3rifozqIqd-q1o6-UBSSIjP5XQ_aH_FswR8tOJbmOnRnKhk8ybA6zlmVv35ha_yXzhuwVmwzUX0yLzahJNMtWF0gH9yGi7sUGcAAaioPxigfosYEt47ykXmVqUD6nBZ1DPvnx9t7hro0FaMn_X_cgX7zstdoWUU5BYs6EcktjwjuJ4nEKhqOeIgxDbH0Q0GxlwQ8TDBnAZWRFMLxEk8fDlGXEtemSiDC3PF2oZyOUrkHyPZcGUgaRjbTicBAs8gxKqSK9RijjFTgTI09LpZDFptMt-vEulEbJC4MUoHa1PgxLzjJdWmMx18kzmcSzxM-jh-_3f-jFiew3OrdtuP2VefmAFZ0QXmDyw4PoZy_jOWR2nbk7NhMtE9K2tOL | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1VRUJwYEeU1Qc4cEibxc5yQqgQlUUFAUW9Rd4ioUJakfTCid_g9_gSbDctFQIEUg6RFVsTx5OZ8Ty_Adinge0zP-CWdG1h4YgLizEZWEIym0vXUZdBW7T9Vgefd0m3AmR8FkYJkauRcpPE11o9EGnJMOA0dPuD8qbqLtc1l1SkPkN8penaI2refiI7iKnhqvRHHyoKSZmd_G4EbZN4PmWTpoxLvAj3E7EMpqRXHxaszl--MDb-W-4lWCjdTXQ8Wh_LUJHZCsxPkRCuwtFVhgxwAMXKkjHKe6g5wq-jom9uZSaQ3q9FbcMC-v76lqMbmon-k_5PrkEnPr1rtqyyrIJFnYgUlkcE99NUYhUVRzzEmIZY-qGg2EsDHqaYs4DKSArheKmnN4moS4lrU9Uhwtzx1qGa9TO5Acj2XBlIGkY20wnBQLPJMSqkivkYo4zU4EC9e1KqRZ6YjLfrJLpRT0hSTkgNGuMPkPCSm1yXyHj8pcfhpMdgxMvx47Obf5RiD2avT-Lk8qx9sQVzuq68gWeH21AtnodyR3kfBds1a-0DQlfWDg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Using+Feedback+Control+to+Contend+with+Nature%E2%80%99s+Randomness&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=McAllister%2C+Robert+D.&rft.au=Rawlings%2C+James+B.&rft.date=2023-02-08&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=62&rft.issue=5&rft.spage=2175&rft.epage=2190&rft_id=info:doi/10.1021%2Facs.iecr.2c02970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_iecr_2c02970 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |