On Using Feedback Control to Contend with Nature’s Randomness

Probability distributions are often used to characterize the randomness of nature. In stochastic model predictive control (SMPC), disturbances are described by a probability distribution that is used within a stochastic optimization problem to construct a feedback control law. While powerful, these...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 62; no. 5; pp. 2175 - 2190
Main Authors McAllister, Robert D., Rawlings, James B.
Format Journal Article
LanguageEnglish
Published American Chemical Society 08.02.2023
Subjects
Online AccessGet full text
ISSN0888-5885
1520-5045
DOI10.1021/acs.iecr.2c02970

Cover

Abstract Probability distributions are often used to characterize the randomness of nature. In stochastic model predictive control (SMPC), disturbances are described by a probability distribution that is used within a stochastic optimization problem to construct a feedback control law. While powerful, these probability distributions are themselves subject to their own type of uncertainty, often called distributional uncertainty. In this work, we establish that SMPC, under suitable assumptions, provides a nonzero margin of robustness to this distributional uncertainty. This inherent distributional robustness is afforded by feedback and careful algorithm design. Through a small example, we demonstrate the implications of this result for incorrectly modeled, out-of-sample, and even unmodeled disturbances. This result also covers scenario-based approximations of stochastic optimal control problems and unifies the description of robustness for nominal and stochastic model predictive control.
AbstractList Probability distributions are often used to characterize the randomness of nature. In stochastic model predictive control (SMPC), disturbances are described by a probability distribution that is used within a stochastic optimization problem to construct a feedback control law. While powerful, these probability distributions are themselves subject to their own type of uncertainty, often called distributional uncertainty. In this work, we establish that SMPC, under suitable assumptions, provides a nonzero margin of robustness to this distributional uncertainty. This inherent distributional robustness is afforded by feedback and careful algorithm design. Through a small example, we demonstrate the implications of this result for incorrectly modeled, out-of-sample, and even unmodeled disturbances. This result also covers scenario-based approximations of stochastic optimal control problems and unifies the description of robustness for nominal and stochastic model predictive control.
Author Rawlings, James B.
McAllister, Robert D.
AuthorAffiliation Department of Chemical Engineering
AuthorAffiliation_xml – name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Robert D.
  orcidid: 0000-0002-5687-6875
  surname: McAllister
  fullname: McAllister, Robert D.
  email: rdmcallister@ucsb.edu
– sequence: 2
  givenname: James B.
  surname: Rawlings
  fullname: Rawlings, James B.
BookMark eNp9kM9KAzEQh4NUsK3ePeYB3Jpkk272JFJsFYoFsedlmj-a2iaSpIg3X8PX80nctT0JepqBmW_4zTdAPR-8QeickhEljF6CSiNnVBwxRVhdkSPUp4KRQhAueqhPpJSFkFKcoEFKa0KIEJz30dXC42Vy_glPjdErUC94EnyOYYNz-GmN1_jN5Wd8D3kXzdfHZ8IP4HXYepPSKTq2sEnm7FCHaDm9eZzcFvPF7G5yPS-A1iIXpdBqbK3hFWe1kpyD5GYsNfDSVkparlYVmNpoTUtbrihnwKCNDy1Qc0XLIRrv76oYUorGNsplyK7LCm7TUNJ0GppWQ9NpaA4aWpD8Al-j20J8_w-52CPdZB120bef_b3-DTfodHw
CitedBy_id crossref_primary_10_1016_j_compchemeng_2023_108277
crossref_primary_10_1021_acs_iecr_3c00051
Cites_doi 10.1109/TAC.2022.3157131
10.1109/MCS.2016.2602087
10.1002/rnc.4409
10.1016/j.arcontrol.2016.04.006
10.1016/S0005-1098(97)00171-4
10.1109/TAC.2020.3030884
10.1016/j.automatica.2007.08.009
10.1016/j.sysconle.2009.08.004
10.1109/CDC.2011.6160293
10.2307/1905261
10.1109/TAC.2021.3122365
10.1287/opre.1090.0795
10.1109/TAC.2014.2335274
10.1016/j.automatica.2020.109095
10.1109/TAC.2008.2010886
10.2307/1910260
10.1109/TAC.2010.2086553
10.1016/j.automatica.2018.04.013
10.1007/978-94-011-0135-6_8
10.1016/j.sysconle.2017.03.005
10.1307/mmj/1029003026
10.1016/j.automatica.2014.07.014
10.1109/TAC.2009.2017970
10.1016/j.jprocont.2013.08.008
10.1016/j.automatica.2004.04.014
10.1109/TAC.2016.2625048
10.1002/aic.16551
10.1109/ACC.2015.7170854
10.1002/aic.690450805
10.1016/j.compchemeng.2020.107174
10.1109/TAC.1981.1102781
10.1016/j.automatica.2010.06.034
10.1016/j.jprocont.2016.03.005
10.1007/978-3-540-71050-9
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.iecr.2c02970
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 2190
ExternalDocumentID 10_1021_acs_iecr_2c02970
a399985315
GroupedDBID -~X
.DC
.K2
4.4
55A
5GY
5VS
6TJ
7~N
8W4
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFO
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
~02
53G
AAYXX
ABBLG
ABLBI
AGXLV
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a195t-35dc6ffe47429c844a84e68da43f7c8f4cb7ae9edd13f3b142a2a520a47494c13
IEDL.DBID ACS
ISSN 0888-5885
IngestDate Tue Jul 01 04:24:02 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Fri Feb 10 03:11:02 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a195t-35dc6ffe47429c844a84e68da43f7c8f4cb7ae9edd13f3b142a2a520a47494c13
ORCID 0000-0002-5687-6875
PageCount 16
ParticipantIDs crossref_citationtrail_10_1021_acs_iecr_2c02970
crossref_primary_10_1021_acs_iecr_2c02970
acs_journals_10_1021_acs_iecr_2c02970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230208
2023-02-08
PublicationDateYYYYMMDD 2023-02-08
PublicationDate_xml – month: 02
  year: 2023
  text: 20230208
  day: 08
PublicationDecade 2020
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Ogunnaike B. A. (ref2/cit2) 2010
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Varadarajan V. S. (ref40/cit40) 1958; 19
Frogner C. (ref32/cit32) 2015
ref39/cit39
Paulson J. A. (ref10/cit10) 2015
ref14/cit14
ref8/cit8
ref5/cit5
Shafieezadeh Abadeh S. (ref35/cit35) 2018; 31
Arjovsky M. (ref33/cit33) 2017
ref43/cit43
Rawlings J. B. (ref30/cit30) 2020
ref34/cit34
ref37/cit37
ref28/cit28
Villani C. (ref31/cit31) 2009; 338
ref20/cit20
ref17/cit17
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
Ogunnaike B. A. (ref1/cit1) 1994
ref4/cit4
Bertsekas D. (ref23/cit23) 2017; 1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref21/cit21
  doi: 10.1109/TAC.2022.3157131
– volume: 19
  start-page: 23
  year: 1958
  ident: ref40/cit40
  publication-title: Sankhya
– ident: ref7/cit7
  doi: 10.1109/MCS.2016.2602087
– ident: ref20/cit20
  doi: 10.1002/rnc.4409
– ident: ref8/cit8
  doi: 10.1016/j.arcontrol.2016.04.006
– ident: ref42/cit42
  doi: 10.1016/S0005-1098(97)00171-4
– ident: ref36/cit36
  doi: 10.1109/TAC.2020.3030884
– ident: ref15/cit15
  doi: 10.1016/j.automatica.2007.08.009
– ident: ref11/cit11
  doi: 10.1016/j.sysconle.2009.08.004
– ident: ref41/cit41
  doi: 10.1109/CDC.2011.6160293
– ident: ref24/cit24
  doi: 10.2307/1905261
– ident: ref22/cit22
  doi: 10.1109/TAC.2021.3122365
– ident: ref34/cit34
  doi: 10.1287/opre.1090.0795
– ident: ref19/cit19
  doi: 10.1109/TAC.2014.2335274
– ident: ref17/cit17
  doi: 10.1016/j.automatica.2020.109095
– ident: ref9/cit9
  doi: 10.1109/TAC.2008.2010886
– volume-title: Process Dynamics, Modeling, and Control
  year: 1994
  ident: ref1/cit1
– ident: ref25/cit25
  doi: 10.2307/1910260
– ident: ref13/cit13
  doi: 10.1109/TAC.2010.2086553
– ident: ref18/cit18
  doi: 10.1016/j.automatica.2018.04.013
– ident: ref27/cit27
  doi: 10.1007/978-94-011-0135-6_8
– ident: ref5/cit5
  doi: 10.1016/j.sysconle.2017.03.005
– volume-title: Model Predictive Control: Theory, Design, and Computation
  year: 2020
  ident: ref30/cit30
– volume: 31
  start-page: 8067
  year: 2018
  ident: ref35/cit35
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref37/cit37
  doi: 10.1307/mmj/1029003026
– ident: ref4/cit4
  doi: 10.1016/j.automatica.2014.07.014
– volume: 1
  volume-title: Dynamic programming and Optimal Control
  year: 2017
  ident: ref23/cit23
– ident: ref12/cit12
  doi: 10.1109/TAC.2009.2017970
– ident: ref38/cit38
  doi: 10.1016/j.jprocont.2013.08.008
– ident: ref3/cit3
  doi: 10.1016/j.automatica.2004.04.014
– ident: ref29/cit29
– ident: ref16/cit16
  doi: 10.1109/TAC.2016.2625048
– ident: ref43/cit43
  doi: 10.1002/aic.16551
– start-page: 937
  year: 2015
  ident: ref10/cit10
  publication-title: Proc. 2015 Am. Control Conf.
  doi: 10.1109/ACC.2015.7170854
– ident: ref28/cit28
  doi: 10.1002/aic.690450805
– ident: ref39/cit39
  doi: 10.1016/j.compchemeng.2020.107174
– ident: ref26/cit26
  doi: 10.1109/TAC.1981.1102781
– volume-title: Random Phenomena
  year: 2010
  ident: ref2/cit2
– ident: ref14/cit14
  doi: 10.1016/j.automatica.2010.06.034
– ident: ref6/cit6
  doi: 10.1016/j.jprocont.2016.03.005
– start-page: 28
  year: 2015
  ident: ref32/cit32
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 338
  volume-title: Optimal Transport: Old and New
  year: 2009
  ident: ref31/cit31
  doi: 10.1007/978-3-540-71050-9
– start-page: 214
  year: 2017
  ident: ref33/cit33
  publication-title: Int. Conf. Mach. Learn.
SSID ssj0005544
Score 2.421778
Snippet Probability distributions are often used to characterize the randomness of nature. In stochastic model predictive control (SMPC), disturbances are described by...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 2175
SubjectTerms Process Systems Engineering
Title On Using Feedback Control to Contend with Nature’s Randomness
URI http://dx.doi.org/10.1021/acs.iecr.2c02970
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Journals
  customDbUrl:
  eissn: 1520-5045
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005544
  issn: 0888-5885
  databaseCode: ACS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5EL3rwLdYXe9CDh02TzSabnKQUS_FQQS30FvYxAammYtKLJ_-Gf89f4u4m2uKLQg4hZMJm2M3M7Hz5PoROBfdjGXNFgPqasFRpIiVwokH6CmhgDoe2GMT9IbsaRaMZTc73Dj4N2kKV3r1JoTyqrNCSKc9XaMy5he91urczOEfkhFvNorF_EiVR05L87Qk2EKlyLhDNRZTeRi1NVDoiQgskGXvTSnrq5SdN4wKD3UTrTWKJO_VM2EJLUGyjtTm6wR10cV1gBxHAPROzpFBj3K2R6riauFMoNLY7s3jg-D7fX99KfCMKPXm0X8RdNOxd3nX7pBFQICJIo4qEkVZxngMz9W-qEsZEwiBOtGBhzlWSMyW5gBS0DsI8tNtBgoqI-sIYpEwF4R5aLiYF7CPshxQ4iCT1pW39ccsbJ4UGU91JKWTUQmfm3bNmAZSZ623TILMXrUOyxiEt1P70eqYaFnIrhvHwj8X5l8VTzcDx570HC47iEK1a2XiHvk6O0HL1PIVjk1xU8sTNqg8slssp
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KPagH32J95qAHD9vuI9nHSUqxVK0Vagu9LXktSHUr7vbiyb_h3_OXmKTbB6KisIcl7ITJkOxkMl--ATilge0zP-CWdG1h4YgLizEZWEIym0vXUY9BW3T8Vh9fD8igBM70LoxSIlM9ZSaJP2cXcGq67UHtpKou1_WWVJS-RHzs6Hir3rifozqIqd-q1o6-UBSSIjP5XQ_aH_FswR8tOJbmOnRnKhk8ybA6zlmVv35ha_yXzhuwVmwzUX0yLzahJNMtWF0gH9yGi7sUGcAAaioPxigfosYEt47ykXmVqUD6nBZ1DPvnx9t7hro0FaMn_X_cgX7zstdoWUU5BYs6EcktjwjuJ4nEKhqOeIgxDbH0Q0GxlwQ8TDBnAZWRFMLxEk8fDlGXEtemSiDC3PF2oZyOUrkHyPZcGUgaRjbTicBAs8gxKqSK9RijjFTgTI09LpZDFptMt-vEulEbJC4MUoHa1PgxLzjJdWmMx18kzmcSzxM-jh-_3f-jFiew3OrdtuP2VefmAFZ0QXmDyw4PoZy_jOWR2nbk7NhMtE9K2tOL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1VRUJwYEeU1Qc4cEibxc5yQqgQlUUFAUW9Rd4ioUJakfTCid_g9_gSbDctFQIEUg6RFVsTx5OZ8Ty_Adinge0zP-CWdG1h4YgLizEZWEIym0vXUZdBW7T9Vgefd0m3AmR8FkYJkauRcpPE11o9EGnJMOA0dPuD8qbqLtc1l1SkPkN8penaI2refiI7iKnhqvRHHyoKSZmd_G4EbZN4PmWTpoxLvAj3E7EMpqRXHxaszl--MDb-W-4lWCjdTXQ8Wh_LUJHZCsxPkRCuwtFVhgxwAMXKkjHKe6g5wq-jom9uZSaQ3q9FbcMC-v76lqMbmon-k_5PrkEnPr1rtqyyrIJFnYgUlkcE99NUYhUVRzzEmIZY-qGg2EsDHqaYs4DKSArheKmnN4moS4lrU9Uhwtzx1qGa9TO5Acj2XBlIGkY20wnBQLPJMSqkivkYo4zU4EC9e1KqRZ6YjLfrJLpRT0hSTkgNGuMPkPCSm1yXyHj8pcfhpMdgxMvx47Obf5RiD2avT-Lk8qx9sQVzuq68gWeH21AtnodyR3kfBds1a-0DQlfWDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Using+Feedback+Control+to+Contend+with+Nature%E2%80%99s+Randomness&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=McAllister%2C+Robert+D.&rft.au=Rawlings%2C+James+B.&rft.date=2023-02-08&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=62&rft.issue=5&rft.spage=2175&rft.epage=2190&rft_id=info:doi/10.1021%2Facs.iecr.2c02970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_iecr_2c02970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon