Smart Structures and Materials Selected Papers from the 7th ECCOMAS Thematic Conference on Smart Structures and Materials

This work was compiled with expanded and reviewed contributions from the 7th ECCOMAS Thematic Conference on Smart Structures and Materials, that was held from 3 to 6 June 2015 at Ponta Delgada, Azores, Portugal. The Conference provided a comprehensive forum for discussing the current state of the ar...

Full description

Saved in:
Bibliographic Details
Main Authors Araujo, Aurelio L, Mota Soares, Carlos A
Format eBook
LanguageEnglish
Published Cham Springer Nature 2016
Springer International Publishing AG
Springer International Publishing
Springer
Edition1
SeriesComputational Methods in Applied Sciences
Subjects
Online AccessGet full text
ISBN9783319445076
3319445073
9783319445052
3319445057
ISSN1871-3033
DOI10.1007/978-3-319-44507-6

Cover

Table of Contents:
  • 6.4 Comparison of Control Concepts Applied to the Reference Smart Beam Structure -- 6.4.1 Bode Magnitude Plot -- 6.4.2 Step Response -- 6.5 Robustness Analysis of the Controllers -- 6.5.1 The Full Factorial Simulation -- 6.5.2 Results and Discussion -- 6.6 Conclusion -- References -- 7 Adaptive Inductor for Vibration Damping in Presence of Uncertainty -- 7.1 Introduction -- 7.2 Linear RL Shunt -- 7.2.1 Optimal Tuning -- 7.3 Robustness of RL Shunt -- 7.3.1 Sensitivity to R -- 7.3.2 Sensitivity to ωe -- 7.4 Adaptive RL Shunt -- 7.4.1 Adaptation Law -- 7.4.2 Measurement of Q and x -- 7.4.3 Sensitivity of Δφ -- 7.5 Experiments -- 7.5.1 Setup -- 7.5.2 Electrical Circuits -- 7.5.3 Results -- 7.6 Conclusion -- References -- 8 Active Control of the Hinge of a Flapping Wing with Electrostatic Sticking to Modify the Passive Pitching Motion -- 8.1 Introduction -- 8.2 Passive Pitching Flapping Motion -- 8.2.1 Flapping Wing Design -- 8.2.2 Passive Pitching and Wing Kinematics -- 8.3 Electrostatically Controlled Hinge Theory -- 8.3.1 Proposed Elastic Hinge Design -- 8.3.2 Voltage-Induced Stresses Between Stacked Layers -- 8.3.3 Behavior of the Active Hinge During Large Deflections -- 8.3.4 Voltage-Dependent Hinge Properties -- 8.4 Equation of Motion of Passive Pitching Motion -- 8.5 Experimental Analysis -- 8.5.1 Realization of Wing with Active Hinge -- 8.5.2 Experimental Setup -- 8.5.3 Experimental Results -- 8.6 Numerical Analysis and Comparison to Experimental Results -- 8.7 Conclusions and Recommendations -- References -- 9 Control System Design for a Morphing Wing Trailing Edge -- Abstract -- 9.1 Introduction -- 9.2 System Architecture -- 9.3 Actuators Selection and Layout -- 9.4 Sensor System Layout -- 9.5 Control Logic -- 9.6 Results -- 9.7 Conclusions and Future Developments -- Acknowledgements -- References
  • 3.6.1 Martensite Unloading -- 3.6.2 Martensite Reloading -- 3.7 Experimental Validation and Discussion -- 3.7.1 Monotonic Loading and Unloading and Parameter Identification -- 3.7.2 Austenite Complete Cyclic Loading -- 3.7.3 Austenite Partial Cyclic Loading -- 3.7.4 Martensite Cyclic Loading -- 3.7.5 Experimental Validation on Different Wire Samples -- 3.8 Conclusion -- References -- 4 Experimental Investigations of Actuators Based on Carbon Nanotube Architectures -- 4.1 Introduction -- 4.2 Experimental Set-Up -- 4.2.1 Set-Up of the Actuated Tensile Test and Test Procedure -- 4.2.2 Quality Assessment and Sample Preparation -- 4.2.3 Mathematical Formulae for Calculating Experimental Results -- 4.3 Results and Discussion -- 4.3.1 Quality Assessment of CNT-Based Architectures -- 4.3.2 Results of CNT-Papers Tested in Actuated-Tensile Mode -- 4.3.3 Results of CNT-Arrays Tested by Actuated Tensile Testing -- 4.4 Conclusion -- References -- 5 Efficient Experimental Validation of Stochastic Sensitivity Analyses of Smart Systems -- Abstract -- 5.1 Introduction -- 5.2 Variance-Based Sensitivity Analysis of a Piezoelectric Beam -- 5.2.1 Stochastic Sensitivity Analysis -- 5.2.2 Mathematical Model of Piezoelectric Beam Dynamics -- 5.2.3 Control Design -- 5.2.4 Numerical Results of a Monte Carlo Simulation -- 5.3 Experimental Validation of Stochastic Sensitivity Analyses -- 5.3.1 Model-Based Experimental Design -- 5.3.2 Experimental Setup -- 5.3.3 Experimental Validation -- 5.4 Conclusions -- References -- 6 Design of Control Concepts for a Smart Beam Structure with Sensitivity Analysis of the System -- 6.1 Introduction -- 6.2 The Smart Beam Structure -- 6.2.1 Finite Element Model -- 6.2.2 Model Order Reduction -- 6.3 Control Concepts -- 6.3.1 Linear Quadratic Regulator -- 6.3.2 Lead Control
  • 13.5.2 First Order Reliability Method (FORM) -- 13.5.3 Stochastic Response Surface Method -- 13.6 Results and Discussion -- 13.6.1 Reliability Analysis Results -- 13.6.1.1 Reliability Analysis Using Tip Deflection Limit State -- 13.6.1.2 Reliability Analysis Using First-Ply Failure Limit State -- 13.7 Concluding Remarks -- Acknowledgements -- References -- 14 Robust Multi-objective Evolutionary Optimization-Based Inverse Identification of Three-Dimensional Elastic Behaviour of Multilayer Unidirectional Fibre Composites -- Abstract -- 14.1 Introduction -- 14.2 Identifiable 3D Elastic Behaviours of Composites -- 14.3 Robust Multi-objective Evolutionary Optimization-Based Inverse Identification Methodology -- 14.4 Multilayer UD CFRP Composite Plate Elastic Behaviour Inverse Identification -- 14.4.1 Identifiable Three-Dimensional Elastic Behaviours Analyses -- 14.4.2 A Priori Sensitivity-Based Identifiable Behaviours Analyses -- 14.5 Summary Conclusions -- Acknowledgement -- Appendix A -- Appendix B -- Appendix C -- References
  • 10 Towards the Industrial Application of Morphing Aircraft Wings-Development of the Actuation Kinematics of a Droop Nose -- Abstract -- 10.1 Introduction -- 10.2 Development of the Actuation Kinematics of a Droop Nose -- 10.3 Computational Modeling -- 10.3.1 Numerical Optimization -- 10.3.2 Geometrical Construction Method -- 10.4 Weight Estimation of the Mechanical Actuation System -- 10.5 Conclusions -- Acknowledgements -- References -- 11 Artificial Muscles Design Methodology Applied to Robotic Fingers -- 11.1 Introduction -- 11.2 Artificial Muscle Design Methodology -- 11.2.1 Particularized Methodology for Robotic Fingers -- 11.3 Under Actuated Robotic Finger ProMain-I -- 11.3.1 Kinematic Model of the ProMain-I Finger -- 11.3.2 Dynamic Model of the ProMain-I Finger -- 11.4 Experimental Set-Up -- 11.4.1 First Experiment: Measure of the Human Hand Pinch Force -- 11.4.2 Second Experiment: Measure of the Robotic Finger Pinch Force -- 11.5 Requirements and Characterization of the Artificial Muscle -- 11.5.1 Parameters Quantification -- 11.5.2 Material Selection -- 11.6 Conclusions -- References -- 12 Methods for Assessment of Composite Aerospace Structures -- Abstract -- 12.1 Introduction -- 12.2 Composite Samples -- 12.3 Electromechanical Impedance Method (EMI) -- 12.4 Laser Doppler Vibrometry -- 12.4.1 Vibration-Based Method -- 12.4.2 Guided Waves-Based Method -- 12.5 Terahertz Spectroscopy -- 12.6 Conclusions -- Acknowledgements -- References -- 13 Design Optimization and Reliability Analysis of Variable Stiffness Composite Structures -- Abstract -- 13.1 Introduction -- 13.2 Discrete Material Optimization (DMO) -- 13.3 Problem Formulation -- 13.4 Optimization Strategy -- 13.4.1 Move Limit Strategy -- 13.4.2 Penalty Continuation Scheme -- 13.5 Reliability Analysis -- 13.5.1 Monte Carlo Simulation (MCS) Approach
  • Intro -- Preface -- Contents -- 1 Role of the Structural Nonlinearity in Enhancing the Performance of a Vibration Energy Harvester Based on the Electrets Materials -- Abstract -- 1.1 Introduction -- 1.2 Investigation -- 1.2.1 State-of-the-Art of the Design of a Electrets-Based Vibration Energy Harvester -- 1.2.2 Configurations of the Electrets-Based Vibration Energy Harvester -- 1.2.3 Goals of This Study -- 1.3 Analysis -- 1.3.1 A Basic Model of the Electrets-Based Vibration Energy Harvester -- 1.3.2 Modeling of Continuous Beam Configuration: Linear Approach -- 1.3.3 Modeling of Continuous Beam Configuration: Nonlinear Approach -- 1.4 Advantages of the Structural Nonlinearity in the Design of the Electrets-Based Energy Harvester -- 1.4.1 Stiffening Effect on a Clamped-Clamped Structure -- 1.4.2 Role of the Constraint Compliance on the Stiffening Effect -- 1.5 Some Design Criteria for the Electrets-Based Energy Harvester -- 1.5.1 Clamped-Sliding Configuration -- 1.5.2 Clamped-Clamped Configuration -- 1.5.3 Application of Additional Constraints -- 1.6 Conclusion -- References -- 2 Numerical Analysis of Fracture of Pre-stressed Ferroelectric Actuator Taking into Account Cohesive Zone for Damage Accumulation -- 2.1 Introduction -- 2.2 Ferroelectric Materials Constitutive Behavior and Electromechanical Cyclic Cohesive Zone Model -- 2.3 Numerical Simulation -- 2.4 Conclusions -- References -- 3 Modelling the Constitutive Behaviour of Martensite and Austenite in Shape Memory Alloys Using Closed-Form Analytical Continuous Equations -- 3.1 Introduction -- 3.2 SMA Model Base Equation -- 3.3 SMA Model Algorithm -- 3.4 Model Initialization: Parameter Identification -- 3.5 Model Parameter Update: Parameter Calculation for Austenite -- 3.5.1 Austenite Unloading -- 3.5.2 Austenite Reloading -- 3.6 Model Parameter Update: Parameter Calculation for Martensite