Introduction to regression analysis

Regression analysis has been one of the most widely used statistical methodologies for analyzing relationships among variables during the past fifty years. Due to its flexibility, usefulness, applicability, theoretical and technical succinctness, it has become a basic statistical tool for solving pr...

Full description

Saved in:
Bibliographic Details
Main Authors Golberg, M. A, Cho, H. A
Format eBook Book
LanguageEnglish
Published Southampton WIT Press 2003
MIT Press
Edition1
Subjects
Online AccessGet full text
ISBN1853126241
9781853126246

Cover

Abstract Regression analysis has been one of the most widely used statistical methodologies for analyzing relationships among variables during the past fifty years. Due to its flexibility, usefulness, applicability, theoretical and technical succinctness, it has become a basic statistical tool for solving problems in the real world. In order to apply regression analysis effectively, it is necessary to understand both the underlying theory and its practical application. This book explores conventional topics as well as recent practical developments, linking theory with application. Intended to continue from where most basic statistics texts end, it is designed primarily for advanced undergraduates, graduate students and researchers in various fields of engineering, chemical and physical sciences, mathematical sciences and statistics.
AbstractList Regression analysis has been one of the most widely used statistical methodologies for analyzing relationships among variables during the past fifty years. Due to its flexibility, usefulness, applicability, theoretical and technical succinctness, it has become a basic statistical tool for solving problems in the real world. In order to apply regression analysis effectively, it is necessary to understand both the underlying theory and its practical application. This book explores conventional topics as well as recent practical developments, linking theory with application. Intended to continue from where most basic statistics texts end, it is designed primarily for advanced undergraduates, graduate students and researchers in various fields of engineering, chemical and physical sciences, mathematical sciences and statistics.
This book is an introduction to regression analysis for upper division and graduate students in science, engineering, social science and medicine. The emphasis is on the classical linear model using least squares estimation and inference. In addition, topics of current interest, such as regression diagnostics, ridge and logistic regression are treated as well. In contrast to other books at this level, the theoretical foundation of the subject is presented in some detail based on extensive use of matrix algebra. Throughout the text model building and evaluation are emphasised and illustrated with many numerical examples.
An introduction to regression analysis for upper division and graduate students in science, engineering, social science and medicine. The emphasis is on the classical linear model using least squares estimation and inference. In addition, topics of current interest, such as regression diagnostics, ridge and logistic regression are treated as well.
Author Cho, H. A
Golberg, M. A
Author_xml – sequence: 1
  fullname: Golberg, M. A
– sequence: 2
  fullname: Cho, H. A
BackLink https://cir.nii.ac.jp/crid/1130000794254683392$$DView record in CiNii
BookMark eNpV0EtLAzEQAOCID2xr_0NBUTwU8to8jlqqFgpeih5DXtvGrkndbJX-e3e7XsxhwsA3M8wMwVlM0Z-AseQCCVowymQBT8EQiYIgzDBFF2AgIGaSSC4vwTjnD9i-lgkiB-B6EZs6ub1tQoqTJk1qv659zl2mo64OOeQrcF7qKvvx3z8Cb0_z1exlunx9XswellONhGByajxxjluCsXO2oJDrEhqOiXGeec64MKWAsODSaWE4kqbk2IqSW01LQYgjI3DfN9Z563_yJlVNVt-VNylts_q3Ymtve7ur09fe50YdmfXtPrpS88eZFKiQuIU3PYwhKBu6iBDpbsAlxQVl7egju-tZWO_2pgp5E-Ja7erwqeuDel-sHrsSAhn5BYtwaIE
ContentType eBook
Book
DBID WFRRJ
RYH
DEWEY 519.5/36
DatabaseName WIT Press
CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Statistics
Mathematics
EISBN 9781845646950
1845646959
Edition 1
ExternalDocumentID 9781845646950
EBC981592
BA67121967
WITB0000306
GroupedDBID 089
20A
38.
A4J
AABBV
ABCYV
ABMRC
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CZZ
EBSCA
HH1
J-X
JJU
MYL
PVBBV
WFRRJ
RYH
ID FETCH-LOGICAL-a18869-be3dd7c322ddc5407af0b723bde6e7678bf800579da8b719bf72c8f7ca4f833d3
ISBN 1853126241
9781853126246
IngestDate Fri Nov 08 05:39:46 EST 2024
Fri May 30 22:08:59 EDT 2025
Thu Jun 26 21:24:30 EDT 2025
Mon Apr 28 10:19:07 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum QA278.2
LCCallNum_Ident QA278.2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a18869-be3dd7c322ddc5407af0b723bde6e7678bf800579da8b719bf72c8f7ca4f833d3
Notes Includes bibliographical references (p. [421]-428) and index
OCLC 802693979
PQID EBC981592
PageCount 453
ParticipantIDs askewsholts_vlebooks_9781845646950
proquest_ebookcentral_EBC981592
nii_cinii_1130000794254683392
igpublishing_primary_WITB0000306
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2003.
c2004
2003
2003-12-19
PublicationDateYYYYMMDD 2003-01-01
2004-01-01
2003-12-19
PublicationDate_xml – year: 2003
  text: 2003.
PublicationDecade 2000
PublicationPlace Southampton
PublicationPlace_xml – name: Southampton
PublicationYear 2003
2004
Publisher WIT Press
MIT Press
Publisher_xml – name: WIT Press
– name: MIT Press
SSID ssj0000695839
Score 1.8999076
Snippet Regression analysis has been one of the most widely used statistical methodologies for analyzing relationships among variables during the past fifty years. Due...
This book is an introduction to regression analysis for upper division and graduate students in science, engineering, social science and medicine. The emphasis...
An introduction to regression analysis for upper division and graduate students in science, engineering, social science and medicine. The emphasis is on the...
SourceID askewsholts
proquest
nii
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Regression analysis
SubjectTermsDisplay Regression analysis
TableOfContents Introduction to regression analysis -- Contents -- Preface -- Dedication -- 1. Introduction -- 2. Some Basic Results in Probability and Statistics -- 3. Simple Linear Regression -- 4. Random Vectors and Matrix Algebra -- 5. Multiple Regression -- 6. Residuals, Diagnostics and Transformations -- 7. Further Applications of Regression Techniques -- 8. Selection of a Regression Model -- 9. Multicollinearity: Diagnosis and Remedies -- Appendix -- Bibliography -- Index.
6.1 Introduction -- 6.2 Residuals -- 6.3 Residual Plots -- 6.4 PRESS Residuals -- 6.5 Transformations -- 6.6 Correlated Errors -- 6. 7 Generalized Least Squares -- 6.8 Exercises -- 7. Further Applications of Regression Techniques -- 7.1 Introduction -- 7.2 Polynomial Models in One Variable -- 7.3 Radial Basis Functions -- 7.4 Dummy Variables -- 7.5 Interactions -- 7.6 Logistic Regression Revisited -- 7.7 The Generalized Linear Model -- 7.8 Exercises -- 8. Selection of a Regression Model -- 8.1 Introduction -- 8.2 Consequences of Model Mispecification -- 8.3 Criteria Functions -- 8.4 Various Methods for Model Selection -- 8.5 Exercises -- 9. Multicollinearity: Diagnosis and Remedies -- 9.1 Introduction -- 9.2 Detecting Multicollinearity -- 9.3 Other Multicollinearity Diagnostics -- 9.4 Combatting Multicollinearity -- 9.5 Biased Estimation -- 9.6 Other Alternatives to OLS -- 9.7 Exercises -- Appendix -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z
Cover -- Introduction to Regression Analysis -- Copyright Page -- Dedication -- Contents -- Preface -- 1. Introduction -- 1.1 A Brief History of Regression -- 1.2 Typical Applications of Regression Analysis -- 1.3 Computer Usage -- 2. Some Basic Results in Probability and Statistics -- 2.1 Introduction -- 2.2 Probability Spaces -- 2.3 Random Variables -- 2.4 The Probability Distribution of X -- 2.5 Some Random Variables and their Distributions -- 2.6 Joint Probability Distributions -- 2.7 Expectation -- 2.8 The Normal and Related Random Variables -- 2.9 Statistical Estimation -- 2.10 Properties of Estimators -- 2.11 Confidence Intervals -- 2.12 Hypothesis Testing -- 2.13 Hypothesis Testing and Confidence Intervals -- 2.14 Exercises -- 3. Simple Linear Regression -- 3.1 Introduction -- 3.2 The Error Model -- 3.3 Estimating σ2 -- 3.4 Properties of (β0, β1, S2) -- 3.5 The Gauss-Markov Theorem -- 3.6 Confidence Intervals for (β0, β1) -- 3.7 Hypothesis Tests for (β0, β1 ) -- 3.8 The ANOVA Approach to Testing -- 3.9 Assessing Model Validity -- 3.10 Transformations -- 3.11 Exercises -- 4. Random Vectors and Matrix Algebra -- 4.1 Introduction -- 4.2 Matrices and Vectors -- 4.3 Fundamentals of Matrix Algebra -- 4.4 Matrices and Linear Transformations -- 4.5 The Geometry of Vectors -- 4.6 Orthogonal Matrices -- 4. 7 The Multivariate Normal Distribution -- 4.8 Solving Systems of Equations -- 4.9 The Singular Value Decomposition -- 4.10 Exercises -- 5. Multiple Regression -- 5.1 Introduction -- 5.2 The General Linear Model -- 5.3 Least Squares Estimation -- 5.4 Properties of (β, S2, ε) -- 5.5 The Gauss-Markov Theorem -- 5.6 Testing the Fit- the Basic ANOVA Table -- 5.7 Confidence Intervals and t-Tests for the Coefficients -- 5.8 The Extra Sum of Squares Principle -- 5.9 Prediction -- 5.10 Exercises -- 6. Residuals, Diagnostics and Transformations
Title Introduction to regression analysis
URI http://portal.igpublish.com/iglibrary/search/WITB0000306.html
https://cir.nii.ac.jp/crid/1130000794254683392
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=981592
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781845646950
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6VnMipUFBDobVob8iR117v40gQVYpET2nLzdoniooSRFwO_PrOrh8JaaWKXlb2Hsb2jDWP3W--BfjEJFNoW50K6W1KCWep9JqmzlihlMuEj-enXH9l02_06qa8WeO4YndJrcfm6a99Jf9jVZxDu4Yu2RdYtheKE3iN9sURLYzjVvLb3_bA84apNRgPs8cHd9vgWQO0uGEZ6YE1y7sOwtVC5M_Ox-tN_bhSOh13c139T7fqf_Rwz9AaTWEYojDJWU63aKZj4JqcM07QUzG-AzucZ9GdkX5lKmOyxLQp9tu3UkhLjtVLHcJQrX6iG0YXXa8Czevtfb9shmF6MZ__EdxixJ69hkHo4tiDV26xD8Prnpx29QY-bmovqZfJWntJp70D-P75cnYxTduzIlJFhGAy1a6wlhv0T9aawCqofKZ5XmjrmOMYkrUXsfPWKqE5kdrz3AjPjaJeFIUtDmGwWC7cW0gcBm1tvCuFzigxVGW6tAW1nktjqChHcLrx8dXjXdzXXlVRQ4GeBxWYjSDZ1El135CHVD--zCZZrETZCE5QT5WZh5GEfUVM2CQNJxTgG8l8BB86DVbxES1et7qcXEiBeWh-9A8J72B3_cscw6B--OVOMImq9fto898yZxYg
linkProvider WIT Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Introduction+to+regression+analysis&rft.au=Golberg%2C+Michael+A.&rft.au=Cho%2C+H.+A.&rft.date=2004-01-01&rft.pub=MIT+Press&rft.isbn=9781853126246&rft.externalDocID=BA67121967
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97818456%2F9781845646950.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FWITB0000306_null_0_320.png