Bioinformatics algorithms : design and implementation in Python

'Bioinformatics Algorithms' provides a comprehensive book on many of the most important bioinformatics problems, putting forward the best algorithms and showing how to implement them. The book focuses on the use of the Python programming language and its algorithms, which is quickly becomi...

Full description

Saved in:
Bibliographic Details
Main Authors Rocha, Miguel P., Ferreira, Pedro G.
Format eBook Book
LanguageEnglish
Published London Academic Press, an imprint of Elsevier 2018
Elsevier Science & Technology
Academic Press
Edition1
Subjects
Online AccessGet full text
ISBN0128125209
9780128125205
DOI10.1016/C2016-0-02165-4

Cover

Abstract 'Bioinformatics Algorithms' provides a comprehensive book on many of the most important bioinformatics problems, putting forward the best algorithms and showing how to implement them. The book focuses on the use of the Python programming language and its algorithms, which is quickly becoming the most popular language in the bioinformatics field. Readers will find the tools they need to improve their knowledge and skills with regard to algorithm development and implementation, and will also uncover prototypes of bioinformatics applications that demonstrate the main principles underlying real world applications.
AbstractList 'Bioinformatics Algorithms' provides a comprehensive book on many of the most important bioinformatics problems, putting forward the best algorithms and showing how to implement them. The book focuses on the use of the Python programming language and its algorithms, which is quickly becoming the most popular language in the bioinformatics field. Readers will find the tools they need to improve their knowledge and skills with regard to algorithm development and implementation, and will also uncover prototypes of bioinformatics applications that demonstrate the main principles underlying real world applications.
Author Rocha, Miguel P.
Ferreira, Pedro G.
Author_xml – sequence: 1
  fullname: Rocha, Miguel P.
– sequence: 2
  fullname: Ferreira, Pedro G.
BackLink https://cir.nii.ac.jp/crid/1130282271269275648$$DView record in CiNii
BookMark eNpFj0tPwzAQhI14CFp65poDEuIQ8K7j2OaCaFQeUiU4IK6R6zitaWJDHED8ewJFcJnVrr4ZzY7Ijg_eEnIE9Awo5OcFDprSlCLkPM22yIgCSkCOILb_F6r2yAhoNnjEcNgnkxifKaWIoBioA3I5dcH5OnSt7p2JiW6WoXP9qo3JRVLZ6JY-0b5KXPvS2Nb6fsCCT5xPHj77VfCHZLfWTbST3zkmT9ezx-I2nd_f3BVX81SDlMhTrJjOBRdCUKl0bWqsrJS2BqB0YZmyHDSvVCVQM6MXxihNs6pmNQNp-OAek9NNsI5r-xFXoelj-d7YRQjrWCoh__7HgT3ZsC9deH2zsS9_MDPU73RTzqYFzxBRsYE83pDeudK4bwVgFCWiAMwVCp5nkn0B2UlpNg
ContentType eBook
Book
DBID RYH
DEWEY 572.80285
DOI 10.1016/C2016-0-02165-4
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Anatomy & Physiology
EISBN 0128125217
9780128125212
Edition 1
ExternalDocumentID 9780128125212
EBC5422293
BB26824566
GroupedDBID 38.
AAAAS
AABBV
AAFKH
AAJFB
AAJIE
AAKZG
AALRI
AANYM
AAORS
AAWMN
AAXUO
AAZNM
ABGWT
ABIWA
ABLXK
ABMAC
ABQNV
ABQQC
ABRSK
ACDGK
ACKCA
ADCEY
ADRYN
AECLD
AEIUV
ALMA_UNASSIGNED_HOLDINGS
APVFW
ATDNW
AZZ
BBABE
BDLYM
BGHEG
BIQZX
CZZ
DKEWE
HGY
L7C
O7H
RYH
SDK
SRW
UE6
ALBLE
ID FETCH-LOGICAL-a18825-2d3a675777089afcf2de88ef1100be39e51a5d9d72a3cabcc9a04df3f318c52d3
ISBN 0128125209
9780128125205
IngestDate Thu Apr 17 09:17:10 EDT 2025
Fri May 30 22:29:48 EDT 2025
Thu Jun 26 21:17:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QH324.2 .B565 2018
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a18825-2d3a675777089afcf2de88ef1100be39e51a5d9d72a3cabcc9a04df3f318c52d3
Notes Includes bibliographical references (p. 375-381) and index
OCLC 1041017812
PQID EBC5422293
PageCount 402
ParticipantIDs askewsholts_vlebooks_9780128125212
proquest_ebookcentral_EBC5422293
nii_cinii_1130282271269275648
PublicationCentury 2000
PublicationDate c2018
2018
2018-06-12
PublicationDateYYYYMMDD 2018-01-01
2018-06-12
PublicationDate_xml – year: 2018
  text: c2018
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Chantilly
PublicationYear 2018
Publisher Academic Press, an imprint of Elsevier
Elsevier Science & Technology
Academic Press
Publisher_xml – name: Academic Press, an imprint of Elsevier
– name: Elsevier Science & Technology
– name: Academic Press
SSID ssj0002219319
ssib032263132
ssib049016289
Score 2.2105145
Snippet 'Bioinformatics Algorithms' provides a comprehensive book on many of the most important bioinformatics problems, putting forward the best algorithms and...
SourceID askewsholts
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Algorithms
Bioinformatics
Bioinformatics-Data processing
TableOfContents Bibliographical Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 7 Searching Similar Sequences in Databases -- 7.1 Introduction -- 7.2 BLAST Algorithm and Programs -- 7.2.1 Overview of the BLAST Algorithm -- 7.2.2 BLAST Programs -- 7.2.3 Signi cance of the Alignments -- 7.3 Implementing Our Own BLAST -- 7.4 Using BLAST Through BioPython -- Bibliographical Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 8 Multiple Sequence Alignment -- 8.1 Introduction: Problem De nition and Complexity -- 8.2 Classes of Optimization Algorithms for Multiple Sequence Alignment -- 8.2.1 Dynamic Programming -- 8.2.2 Heuristic Algorithms -- 8.3 Implementing Progressive Alignments in Python -- 8.3.1 Representing Alignments: Class MyAlign -- 8.3.2 Pairwise Alignment: Class AlignSeq -- 8.3.3 Implementing Multiple Sequence Alignment: Class MultipleAlign -- 8.4 Handling Alignments in BioPython -- Bibliographical Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 9 Phylogenetic Analysis -- 9.1 Introduction: Problem De nition and Relevance -- 9.2 Classes of Algorithms for Phylogenetic Analysis -- 9.2.1 Distance-Based Methods -- 9.2.2 Maximum Parsimony -- 9.2.3 Statistical Methods -- 9.3 Implementing Distance-Based Algorithms in Python -- 9.3.1 Implementing Binary Trees -- 9.3.2 Implementing the UPGMA Algorithm -- 9.4 BioPython Functions for Phylogenetic Analysis -- Bibliographical Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 10 Motif Discovery Algorithms -- 10.1 Introduction: Problem De nition and Relevance -- 10.2 Brute-Force Algorithms: Exhaustive Search -- 10.3 Branch-and-Bound Algorithms -- 10.4 Heuristic Algorithms
Bibliographic Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 11 Probabilistic Motifs and Stochastic Algorithms -- 11.1 Representing and Searching Probabilistic Motifs -- 11.2 Stochastic Algorithms: Expectation-Maximization -- 11.3 Gibbs Sampling for Motif Discovery -- 11.4 Probabilistic Motifs in BioPython -- Bibliographic Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 12 Hidden Markov Models -- 12.1 Introduction: What Are Hidden Markov Models? -- 12.2 Algorithms and Python Implementation -- 12.2.1 Joint Probability of an Observed Sequence and State Path -- 12.2.2 Probability of an Observed Sequence Over All State Paths -- 12.2.3 Probability of the Remainder of an Observed Sequence -- 12.2.4 Finding the Optimal State Path -- 12.2.5 Learning the Parameters of an HMM Model -- 12.3 HMMs for Database Search -- Bibliographic Notes and Further Reading -- Exercises and Programming Projects -- 13 Graphs: Concepts and Algorithms -- 13.1 Graphs: De nitions and Representations -- 13.2 A Python Class for Graphs -- 13.3 Adjacent Nodes and Degrees -- 13.4 Paths, Searches, and Distances -- 13.5 Cycles -- Bibliographic Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 14 Graphs and Biological Networks -- 14.1 Introduction -- 14.2 Representing Networks With Graphs -- 14.2.1 A Python Class for Metabolic Networks -- 14.2.2 An Example Metabolic Network for a Real Organism -- 14.3 Network Topological Analysis -- 14.3.1 Degree Distribution -- 14.3.2 Shortest Path Analysis -- 14.3.3 Clustering Coef cients -- 14.3.4 Hubs and Centrality Measures -- 14.4 Assessing the Metabolic Potential -- Bibliographic Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects
15 Assembling Reads Into Genomes: Graph-Based Algorithms -- 15.1 Introduction to Genome Assembly and Related Challenges -- 15.2 Overlap Graphs and Hamiltonian Cycles -- 15.2.1 Problem De nition and Exhaustive Search -- 15.2.2 Overlap Graphs -- 15.2.3 Hamiltonian Circuits -- 15.3 DeBruijn Graphs and Eulerian Paths -- 15.3.1 DeBruijn Graphs for Genome Assembly -- 15.3.2 Eulerian Paths -- 15.4 Genome Assembly in Practice -- Bibliographic Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 16 Matching Reads to Reference Sequences -- 16.1 Introduction: Problem De nition and Applications -- 16.2 Pre-Processing the Patterns: Tries -- 16.2.1 De nitions and Algorithms -- 16.2.2 Implementing Tries in Python -- 16.3 Pre-Processing the Sequence: Suf x Trees -- 16.3.1 De nitions and Algorithms -- 16.3.2 Implementing Suf x Trees in Python -- 16.4 Burrows-Wheeler Transforms -- 16.4.1 De nitions and Algorithms -- 16.4.2 Implementation in Python -- 16.4.3 Aligning References to Genomes in Practice -- Bibliographic Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 17 Further Reading and Resources -- 17.1 Complementary Books -- 17.2 Journals and Conferences -- 17.3 Formal Education -- 17.4 Online Resources -- Final Words -- Bibliography -- Index -- Back Cover
Bibliographic References and Further Reading -- Exercises -- 4 Basic Processing of Biological Sequences -- 4.1 Biological Sequences: Representations and Basic Algorithms -- 4.2 Transcription and Reverse Complement -- 4.3 Translation -- 4.4 Seeking Putative Genes: Open Reading Frames -- 4.5 Putting It All Together -- 4.6 A Class for Biological Sequences -- 4.7 Processing Sequences With BioPython -- 4.8 Sequence Annotation Objects in BioPython -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 5 Finding Patterns in Sequences -- 5.1 Introduction: Importance of Pattern Finding in Bioinformatics -- 5.2 Naive Algorithm for Fixed Pattern Finding -- 5.3 Heuristic Algorithm: Boyer-Moore -- 5.4 Deterministic Finite Automata -- 5.5 Finding Flexible Patterns: Regular Expressions -- 5.5.1 De nitions and Regular Expressions in Python -- 5.5.2 Examples in Biological Sequence Analysis -- 5.5.3 Finding Protein Motifs -- 5.5.4 An Application to Restriction Enzymes -- Bibliographic Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 6 Pairwise Sequence Alignment -- 6.1 Introduction: Comparing Sequences and Sequence Alignment -- 6.2 Visual Alignments: Dot Plots -- 6.3 Sequence Alignment as an Optimization Problem -- 6.3.1 Problem De nition and Complexity -- 6.3.2 Objective Function: Substitution Matrices and Gap Penalties -- 6.3.3 Implementing the Calculation of the Objective Function -- 6.4 Dynamic Programming Algorithms for Global Alignment -- 6.4.1 The Needleman-Wunsch Algorithm -- 6.4.2 Implementing the Needleman-Wunsch Algorithm -- 6.5 Dynamic Programming Algorithms for Local Alignment -- 6.5.1 The Smith-Waterman Algorithm -- 6.5.2 Implementing the Smith-Waterman Algorithm -- 6.6 Special Cases of Sequence Alignment -- 6.7 Pairwise Sequence Alignment in BioPython
Front Cover -- Bioinformatics Algorithms -- Copyright -- Contents -- 1 Introduction -- 1.1 Prelude -- 1.2 What is Bioinformatics -- 1.3 Book's Organization -- 2 An Introduction to the Python Language -- 2.1 Features of the Python Language -- 2.2 Variables and Pre-De ned Functions -- 2.2.1 Variable Types -- 2.2.2 Assigning Values to Variables -- 2.2.3 Numerical and Logical Variables -- 2.2.4 Containers -- 2.2.4.1 Lists -- 2.2.4.2 Strings -- 2.2.4.3 Tuples -- 2.2.4.4 Sets -- 2.2.4.5 Dictionaries -- 2.2.5 Variable Comparison -- 2.2.6 Type Conversion -- 2.3 Developing Python Code -- 2.3.1 Indentation -- 2.3.2 User-De ned Functions -- 2.3.3 Conditional Statements -- 2.3.4 Conditional Loops -- 2.3.5 Iterative Loop Statements -- 2.3.6 List Comprehensions -- 2.3.7 Help -- 2.4 Developing Python Programs -- 2.4.1 Data Input and Output -- 2.4.2 Reading and Writing From Files -- 2.4.3 Handling Exceptions -- 2.4.4 Modules -- 2.4.5 Putting It All Together -- 2.5 Object-Oriented Programming -- 2.5.1 De ning Classes and Creating Objects -- 2.5.2 Special Methods -- 2.5.3 Inheritance -- 2.5.4 Modularity -- 2.6 Pre-De ned Classes and Methods -- 2.6.1 Generic Methods for Containers -- 2.6.2 Methods for Lists -- 2.6.3 Methods for Strings -- 2.6.4 Methods for Sets -- 2.6.5 Methods for Dictionaries -- 2.6.6 Assigning and Copying Variables -- Bibliographical Notes and Further Reading -- Exercises and Programming Projects -- Exercises -- Programming Projects -- 3 Cellular and Molecular Biology Fundamentals -- 3.1 The Cell: The Basic Unit of Life -- 3.2 Genetic Information: Nucleic Acids -- 3.2.1 Transcription: RNA Synthesis -- 3.2.2 Translation: Protein Synthesis -- 3.3 Genes: Discrete Units of Genetic Information -- 3.3.1 Gene Structure -- 3.3.2 Regulation of Gene Expression -- 3.4 Human Genome -- 3.5 Biological Resources and Databases
Title Bioinformatics algorithms : design and implementation in Python
URI https://cir.nii.ac.jp/crid/1130282271269275648
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5422293
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780128125212&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZrYLA-bd3GsrVDjL0FZZFk2VZfCgm9MOjIQze6J6ObO7PUgSQtdL9-R5IdJ-lgbC_CFtgH6zPSuX4HoY_GaaV4bgnjxpEEdHoihbSEUpdpOG4tD-z8l1_Si6_J52tx3XVlDdUlKz00v_5YV_I_qMIc4OqrZP8B2fVLYQKuAV8YAWEYd5Tf9W0Tfq3mDeNpZFme3czByP9xuwwWvg1ZGTEscNvmh7dJjdMHzxbQxVlMjPhcVjd3bjaYDjcczAtXhS5Eg6mzi_ngfLjpIqD5jougy7T3FnzMCvXyF1XMNmhrW7ZMyxBiY4KFoujHG220-ScgLSUjAopCKppqnW326vGYpbkPrqZ7aC_LQov78-9rLxiDDRM2gcB11MiTDS3SWn5LyETTTzvy9tG-Wv6EwwAOitUStIO6qh6dqUFRuHqOer545AV64uoD9DQ2-nx4iU62AcMdYPgYR7gwwIW34cJVjSNcr9C3s9OryQVpWlcQRcFmEYRZrsAWgy8e5VKVpmTW5bkrPUOfdlw6QZWw0mZMcaO0MVKNElvyEvZYI-Dp16hXz2v3BmHDEmWsAkXPgTWeaM18Apt2jHMF5rDpow8bq1Dcz0KYfVlsLCJlfXQEi1OYyo_UR6tBM8woS6Xn_0_yPsLtshXh-SY3uDgdT4R3E0r-9i-veIeedT_fIeqtFnfuCDS2lX4fQP8NJhA20Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Bioinformatics+algorithms+%3A+design+and+implementation+in+Python&rft.au=Rocha%2C+Miguel+P.&rft.au=Ferreira%2C+Pedro+G.&rft.date=2018-01-01&rft.pub=Academic+Press%2C+an+imprint+of+Elsevier&rft.isbn=9780128125205&rft_id=info:doi/10.1016%2FC2016-0-02165-4&rft.externalDocID=BB26824566
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801281%2F9780128125212.jpg