Mineral exploration modeling by convolutional neural network and continuous genetic algorithm: a case study in Khorasan Razavi, Iran

Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on the experience of specialists. As the images of nature are composed of structures with relatively high similarity, special methods should be used to dis...

Full description

Saved in:
Bibliographic Details
Published inArabian journal of geosciences Vol. 15; no. 21
Main Authors Tahmooresi, Mandana, Babaei, Behnam, Dehghan, Saeed
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-7511
1866-7538
DOI10.1007/s12517-022-10889-7

Cover

Abstract Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on the experience of specialists. As the images of nature are composed of structures with relatively high similarity, special methods should be used to discover generalizable patterns by extracting and learning the data characteristics. In this paper, convolutional neural network (CNN) algorithms were applied to classify the images relevant to the field of mineral exploration. Input data included the segments of magnetic profiles, ASTER, and Landsat 8 OLI images utilized to determine the effect of the cross-sectional area of magnetic bodies on the magnetic profiles and recognize alterations and fault zones, respectively. In the second part, the continuous genetic algorithm (CGA) was integrated with CNN (CGACNN) to systematically tune CNN hyperparameters. CNNs were trained based on the field survey findings. CNN, CGACNN, and image processing codes were written and implemented in MATLAB. The results show that in comparison with conventional methods, CNNs have more accuracy and can be used to explore minerals intelligently to avoid time-consuming and labor-demanding procedures.
AbstractList Abstract Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on the experience of specialists. As the images of nature are composed of structures with relatively high similarity, special methods should be used to discover generalizable patterns by extracting and learning the data characteristics. In this paper, convolutional neural network (CNN) algorithms were applied to classify the images relevant to the field of mineral exploration. Input data included the segments of magnetic profiles, ASTER, and Landsat 8 OLI images utilized to determine the effect of the cross-sectional area of magnetic bodies on the magnetic profiles and recognize alterations and fault zones, respectively. In the second part, the continuous genetic algorithm (CGA) was integrated with CNN (CGACNN) to systematically tune CNN hyperparameters. CNNs were trained based on the field survey findings. CNN, CGACNN, and image processing codes were written and implemented in MATLAB. The results show that in comparison with conventional methods, CNNs have more accuracy and can be used to explore minerals intelligently to avoid time-consuming and labor-demanding procedures.
Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on the experience of specialists. As the images of nature are composed of structures with relatively high similarity, special methods should be used to discover generalizable patterns by extracting and learning the data characteristics. In this paper, convolutional neural network (CNN) algorithms were applied to classify the images relevant to the field of mineral exploration. Input data included the segments of magnetic profiles, ASTER, and Landsat 8 OLI images utilized to determine the effect of the cross-sectional area of magnetic bodies on the magnetic profiles and recognize alterations and fault zones, respectively. In the second part, the continuous genetic algorithm (CGA) was integrated with CNN (CGACNN) to systematically tune CNN hyperparameters. CNNs were trained based on the field survey findings. CNN, CGACNN, and image processing codes were written and implemented in MATLAB. The results show that in comparison with conventional methods, CNNs have more accuracy and can be used to explore minerals intelligently to avoid time-consuming and labor-demanding procedures.
ArticleNumber 1647
Author Dehghan, Saeed
Babaei, Behnam
Tahmooresi, Mandana
Author_xml – sequence: 1
  givenname: Mandana
  surname: Tahmooresi
  fullname: Tahmooresi, Mandana
  organization: Mining Department, Mahallat Branch, Islamic Azad University
– sequence: 2
  givenname: Behnam
  surname: Babaei
  fullname: Babaei, Behnam
  email: Dr.Behnam_babaei@yahoo.com
  organization: Mining Department, Mahallat Branch, Islamic Azad University
– sequence: 3
  givenname: Saeed
  surname: Dehghan
  fullname: Dehghan, Saeed
  organization: Mining Department, Mahallat Branch, Islamic Azad University
BookMark eNp9kMtOwzAQRS0EEs8fYGWJLYGx08QOO4R4VBQhIVhbk9hpXVK72AlQ1nw4aYtAYsFqRvY9Hs_ZJZvOO0PIIYMTBiBOI-MZEwlwnjCQskjEBtlhMs8TkaVy86dnbJvsxjgFyCUIuUM-76wzARtq3ueND9ha7-jMa9NYN6blglbevfqmW573KWe6sCrtmw_PFJ1eBlrrOt9FOjb9ha0oNmMfbDuZnVGkFUZDY9vpBbWO3k76IREdfcAPfLXHdBjQ7ZOtGptoDr7rHnm6uny8uElG99fDi_NRgkwKkTA2qExaAXBEreta6zIvTZ5VDHWNuSgBZIaFFAgDkAUvakTMIK8HItWlzNM9crR-dx78S2diq6a-C_1eUXHBi4IVaQZ9Sq5TVfAxBlOryrYrMW1A2ygGaulcrZ2r3rlaOVeiR_kfdB7sDMPifyhdQ7EPu7EJv7_6h_oC9OqZYg
CitedBy_id crossref_primary_10_1007_s00603_023_03353_9
crossref_primary_10_1007_s11053_023_10286_1
Cites_doi 10.1007/s11053-020-09742-z
10.1007/s42979-021-00815-1
10.1007/s13369-021-06080-x
10.3390/rs13234860
10.1007/s11053-021-09984-5
10.1007/s12583-020-1399-2
10.3390/rs10020307
10.1007/s12517-016-2539-y
10.1007/s12583-020-1365-z
10.1016/j.apgeochem.2020.104747
10.1016/J.IFACOL.2020.12.712
10.1007/s11053-021-09934-1
10.1088/1742-6596/1894/1/012104
10.1016/j.jksus.2021.101414
10.1007/s12517-021-07306-w
10.22606/gr.2017.23005
10.1007/s11053-019-09536-y
10.1016/j.cageo.2020.104481
10.9719/EEG.2020.53.4.425
10.3390/ijgi6090275
10.1155/2016/5392453
10.3906/yer-1809-13
10.1038/s41598-018-26200-2
10.3390/min11050506
10.31035/cg2021044
10.1016/B978-0-12-821379-7.00005-9
10.1190/segam2018-2995341.1
10.1002/0471671746
10.48550/arXiv.1702.02073
10.5194/isprsarchives-XL-1-W1-239-2013
ContentType Journal Article
Copyright Saudi Society for Geosciences 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Saudi Society for Geosciences 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
DOI 10.1007/s12517-022-10889-7
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-7538
ExternalDocumentID 10_1007_s12517_022_10889_7
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
1N0
203
23M
2JN
2JY
2KG
2VQ
30V
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
PT4
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z85
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-a1877-114ce3c002aaddffddb6be65c1adfa67b0085a987a0408929faaa506f473db863
IEDL.DBID U2A
ISSN 1866-7511
IngestDate Wed Sep 17 23:57:43 EDT 2025
Thu Apr 24 22:52:09 EDT 2025
Wed Oct 01 02:28:54 EDT 2025
Fri Feb 21 02:44:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Continuous genetic algorithm (CGA)
Convolutional neural network (CNN)
Mineral exploration
Iran
Khorasan Razavi
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a1877-114ce3c002aaddffddb6be65c1adfa67b0085a987a0408929faaa506f473db863
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
PQID 2729919350
PQPubID 2044009
ParticipantIDs proquest_journals_2729919350
crossref_citationtrail_10_1007_s12517_022_10889_7
crossref_primary_10_1007_s12517_022_10889_7
springer_journals_10_1007_s12517_022_10889_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221100
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Arabian journal of geosciences
PublicationTitleAbbrev Arab J Geosci
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Ghrefat, Kahal, Kamal, Alfaifi, Saleh (CR10) 2021
Mohammadzadeh, Mirzaei, Nouraliee, Porkhial (CR19) 2016
Wang, Shu, Ming, Gang, Y-L, Long, J-M (CR33) 2019; 28
Li, Zuo, Yihui, Yong (CR15) 2021; 30
Parsa, Carranza, Ahmadi (CR21) 2022; 31
Wang, Cao (CR32) 2021
Fu, Aldrich (CR9) 2020; 53
Suhasini, Bhavani (CR28) 2021; 8
Es-Sabbar, Mourad, Abdelhafid, Si (CR8) 2020; 53
CR17
Wang, Zuo, Liu (CR34) 2021
CR36
Yang, Zhang, Yang, Hong, Shi (CR37) 2021; 30
CR35
Arivazhagan, Anbazhagan (CR2) 2017; 2
CR11
CR31
CR30
Sarker Iqbal (CR23) 2021
de Pires Lima, Duarte, Nicholson, Slatt, Marfurt (CR6) 2020
Mohajane, Ali, Oudija, Mohammed El, Teodoro (CR18) 2017
Li, Xiaohui, Feng, Jowitt, Mingming, Jie, Zhou, Xiangling, Can, Wu (CR14) 2020
Shoji, Noguchi, Otsuki, Hino (CR25) 2018
CR4
Latifovic, Pouliot, Campbell (CR13) 2018; 10
CR5
CR7
CR27
Shi, Jianping, Chang, Chang, Yang (CR24) 2021; 32
Zeng, Xiao, Ji, Wang (CR38) 2020
CR22
Anudu, Onuba, Onwuemesi, Ikpokonte (CR1) 2012; 16
Aszemi, Dominic (CR3) 2019; 10
Tahmooresi, Babaei, Dehghan (CR29) 2021; 14
Zeng, Han, Liu (CR39) 2021
Li, Peng, Ran, Xue, Chaie (CR16) 2022; 5
Singer (CR26) 2021; 32
Karimpouli, Pejman, Saenger (CR12) 2019; 29
Ni, Zhang, Liu, Yan, Li (CR20) 2016
R de Pires Lima (10889_CR6) 2020
T Li (10889_CR15) 2021; 30
H Sarker Iqbal (10889_CR23) 2021
M Wang (10889_CR33) 2019; 28
Y-S Li (10889_CR16) 2022; 5
M Tahmooresi (10889_CR29) 2021; 14
10889_CR30
10889_CR31
GK Anudu (10889_CR1) 2012; 16
10889_CR11
J Wang (10889_CR32) 2021
10889_CR35
Y Fu (10889_CR9) 2020; 53
10889_CR36
N Yang (10889_CR37) 2021; 30
10889_CR17
MM Mohammadzadeh (10889_CR19) 2016
NM Aszemi (10889_CR3) 2019; 10
H Ghrefat (10889_CR10) 2021
C Suhasini (10889_CR28) 2021; 8
S Karimpouli (10889_CR12) 2019; 29
D Shoji (10889_CR25) 2018
H Zeng (10889_CR39) 2021
S Arivazhagan (10889_CR2) 2017; 2
M Mohajane (10889_CR18) 2017
10889_CR5
H Li (10889_CR14) 2020
10889_CR4
B Es-Sabbar (10889_CR8) 2020; 53
10889_CR7
X Zeng (10889_CR38) 2020
M Parsa (10889_CR21) 2022; 31
10889_CR22
C Ni (10889_CR20) 2016
DA Singer (10889_CR26) 2021; 32
Li Shi (10889_CR24) 2021; 32
10889_CR27
Z Wang (10889_CR34) 2021
R Latifovic (10889_CR13) 2018; 10
References_xml – volume: 30
  start-page: 27
  year: 2021
  end-page: 38
  ident: CR15
  article-title: Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-020-09742-z
– year: 2021
  ident: CR23
  article-title: Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-021-00815-1
– year: 2021
  ident: CR32
  article-title: Deep learning reservoir porosity prediction using integrated neural network
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-06080-x
– year: 2021
  ident: CR34
  article-title: Lithological mapping based on fully convolutional network and multi-source geological data
  publication-title: Remote Sens
  doi: 10.3390/rs13234860
– volume: 31
  start-page: 37
  year: 2022
  end-page: 50
  ident: CR21
  article-title: Deep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral deposits
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09984-5
– ident: CR22
– volume: 32
  start-page: 288
  year: 2021
  end-page: 292
  ident: CR26
  article-title: How deep learning networks could be designed to locate mineral deposits
  publication-title: J Earth Sci
  doi: 10.1007/s12583-020-1399-2
– volume: 10
  start-page: 1
  year: 2018
  end-page: 19
  ident: CR13
  article-title: Assessment of convolution neural networks for surficial geology mapping in the south Rae geological region, northwest territories, Canada
  publication-title: Remote Sens
  doi: 10.3390/rs10020307
– ident: CR4
– year: 2016
  ident: CR19
  article-title: Integrated magnetic and gravity surveys for geothermal exploration in central Iran
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2539-y
– ident: CR30
– volume: 32
  start-page: 327
  issue: 2
  year: 2021
  end-page: 347
  ident: CR24
  article-title: Mineral prospectivity prediction via convolutional neural networks based on geological big data
  publication-title: J Earth Sci
  doi: 10.1007/s12583-020-1365-z
– year: 2020
  ident: CR14
  article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian-Zhangbaling area, Anhui Province, China
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2020.104747
– volume: 53
  start-page: 11920
  issue: 2
  year: 2020
  end-page: 11925
  ident: CR9
  article-title: Deep learning in mining and mineral processing operations: a review
  publication-title: IFAC PapersOnLine
  doi: 10.1016/J.IFACOL.2020.12.712
– volume: 30
  start-page: 3905
  year: 2021
  end-page: 3923
  ident: CR37
  article-title: A convolutional neural network of GoogLeNet applied in mineral prospectivity prediction based on multi-source geo information
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09934-1
– year: 2021
  ident: CR39
  article-title: Mineral detection from hyperspectral images using a spatial-spectral residual convolution neural network
  publication-title: J Phys: Conf Ser
  doi: 10.1088/1742-6596/1894/1/012104
– ident: CR35
– year: 2021
  ident: CR10
  article-title: Utilization of multispectral landsat-8 remote sensing data for lithological mapping of southwestern Saudi Arabia
  publication-title: J King Saud Univ-Sci
  doi: 10.1016/j.jksus.2021.101414
– volume: 8
  start-page: 1686
  issue: 2
  year: 2021
  end-page: 1690
  ident: CR28
  article-title: Minerals classification using convolutional neural network
  publication-title: Int Res J Eng Technol (IRJET)
– ident: CR27
– volume: 14
  start-page: 1012
  year: 2021
  ident: CR29
  article-title: Intelligent geochemical exploration modeling using multiclass support vector machine and integration it with continuous genetic algorithm in Gonabad region, Khorasan Razavi
  publication-title: Iran. Arab J Geosci
  doi: 10.1007/s12517-021-07306-w
– volume: 16
  start-page: 25
  issue: 1
  year: 2012
  end-page: 33
  ident: CR1
  article-title: Analysis of aeromagnetic data over Wamba and its adjoining areas in north-central Nigeria
  publication-title: Earth Sci Res J
– volume: 10
  start-page: 269
  issue: 6
  year: 2019
  end-page: 278
  ident: CR3
  article-title: Hyperparameter optimization in convolutional neural network using genetic algorithms
  publication-title: Int J Adv Comput Sci Appl (IJACSA)
– volume: 2
  start-page: 196
  issue: 3
  year: 2017
  end-page: 209
  ident: CR2
  article-title: ASTER Data analyses for lithological discrimination of sittampundi anorthositic complex, Southern India
  publication-title: Geosci Res
  doi: 10.22606/gr.2017.23005
– volume: 29
  start-page: 1675
  issue: 1
  year: 2019
  end-page: 1685
  ident: CR12
  article-title: Coal cleat/fracture segmentation using convolutional neural networks
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09536-y
– year: 2020
  ident: CR6
  article-title: Petrographic microfacies classification with deep convolutional neural networks
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2020.104481
– ident: CR17
– ident: CR31
– ident: CR11
– volume: 53
  start-page: 425
  issue: 4
  year: 2020
  end-page: 440
  ident: CR8
  article-title: Lithological and structural lineament mapping from landsat 8 OLI images in Ras Kammouna arid area (Eastern Anti-Atlas, Morocco)
  publication-title: Econ Environ Geol
  doi: 10.9719/EEG.2020.53.4.425
– year: 2017
  ident: CR18
  article-title: Mapping forest species in the central middle atlas of Morocco (Azrou forest) through remote sensing techniques
  publication-title: Int J Geo-Inf
  doi: 10.3390/ijgi6090275
– ident: CR36
– ident: CR5
– ident: CR7
– year: 2016
  ident: CR20
  publication-title: Lineament length and density analyses based on the segment tracing algorithm: a case study of the Gaosong field in Gejiu Tin mine
  doi: 10.1155/2016/5392453
– volume: 28
  start-page: 457
  year: 2019
  end-page: 469
  ident: CR33
  article-title: Diagenesis and diagenetic facies distribution prediction of Chang 8 tight oil reservoir in Maling area, Ordos Basin, NW China
  publication-title: Turk J Earth Sci
  doi: 10.3906/yer-1809-13
– year: 2018
  ident: CR25
  article-title: Classification of volcanic ash particles using a convolutional neural network and probability
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-26200-2
– year: 2020
  ident: CR38
  article-title: Mineral identification based on deep learning that combines image and Mohs hardness
  publication-title: Minerals
  doi: 10.3390/min11050506
– volume: 5
  start-page: 71
  year: 2022
  end-page: 83
  ident: CR16
  article-title: Soil geochemical prospecting prediction method based on deep convolutional neural networks—taking Daqiao Gold Deposit in Gansu Province, China as an example
  publication-title: China Geol
  doi: 10.31035/cg2021044
– ident: 10889_CR5
– ident: 10889_CR31
– year: 2016
  ident: 10889_CR19
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2539-y
– ident: 10889_CR27
  doi: 10.1016/B978-0-12-821379-7.00005-9
– year: 2020
  ident: 10889_CR38
  publication-title: Minerals
  doi: 10.3390/min11050506
– ident: 10889_CR7
– volume: 16
  start-page: 25
  issue: 1
  year: 2012
  ident: 10889_CR1
  publication-title: Earth Sci Res J
– year: 2021
  ident: 10889_CR10
  publication-title: J King Saud Univ-Sci
  doi: 10.1016/j.jksus.2021.101414
– volume: 32
  start-page: 288
  year: 2021
  ident: 10889_CR26
  publication-title: J Earth Sci
  doi: 10.1007/s12583-020-1399-2
– volume: 29
  start-page: 1675
  issue: 1
  year: 2019
  ident: 10889_CR12
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09536-y
– volume: 31
  start-page: 37
  year: 2022
  ident: 10889_CR21
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09984-5
– year: 2020
  ident: 10889_CR14
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2020.104747
– year: 2021
  ident: 10889_CR23
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-021-00815-1
– ident: 10889_CR35
  doi: 10.1190/segam2018-2995341.1
– volume-title: Lineament length and density analyses based on the segment tracing algorithm: a case study of the Gaosong field in Gejiu Tin mine
  year: 2016
  ident: 10889_CR20
  doi: 10.1155/2016/5392453
– volume: 53
  start-page: 425
  issue: 4
  year: 2020
  ident: 10889_CR8
  publication-title: Econ Environ Geol
  doi: 10.9719/EEG.2020.53.4.425
– year: 2021
  ident: 10889_CR39
  publication-title: J Phys: Conf Ser
  doi: 10.1088/1742-6596/1894/1/012104
– ident: 10889_CR11
  doi: 10.1002/0471671746
– ident: 10889_CR22
  doi: 10.48550/arXiv.1702.02073
– year: 2018
  ident: 10889_CR25
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-26200-2
– volume: 30
  start-page: 27
  year: 2021
  ident: 10889_CR15
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-020-09742-z
– volume: 28
  start-page: 457
  year: 2019
  ident: 10889_CR33
  publication-title: Turk J Earth Sci
  doi: 10.3906/yer-1809-13
– volume: 10
  start-page: 269
  issue: 6
  year: 2019
  ident: 10889_CR3
  publication-title: Int J Adv Comput Sci Appl (IJACSA)
– volume: 5
  start-page: 71
  year: 2022
  ident: 10889_CR16
  publication-title: China Geol
  doi: 10.31035/cg2021044
– ident: 10889_CR30
– ident: 10889_CR4
– volume: 2
  start-page: 196
  issue: 3
  year: 2017
  ident: 10889_CR2
  publication-title: Geosci Res
  doi: 10.22606/gr.2017.23005
– year: 2021
  ident: 10889_CR34
  publication-title: Remote Sens
  doi: 10.3390/rs13234860
– ident: 10889_CR36
– volume: 8
  start-page: 1686
  issue: 2
  year: 2021
  ident: 10889_CR28
  publication-title: Int Res J Eng Technol (IRJET)
– volume: 10
  start-page: 1
  year: 2018
  ident: 10889_CR13
  publication-title: Remote Sens
  doi: 10.3390/rs10020307
– ident: 10889_CR17
  doi: 10.5194/isprsarchives-XL-1-W1-239-2013
– volume: 30
  start-page: 3905
  year: 2021
  ident: 10889_CR37
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09934-1
– volume: 14
  start-page: 1012
  year: 2021
  ident: 10889_CR29
  publication-title: Iran. Arab J Geosci
  doi: 10.1007/s12517-021-07306-w
– year: 2021
  ident: 10889_CR32
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-06080-x
– year: 2020
  ident: 10889_CR6
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2020.104481
– volume: 53
  start-page: 11920
  issue: 2
  year: 2020
  ident: 10889_CR9
  publication-title: IFAC PapersOnLine
  doi: 10.1016/J.IFACOL.2020.12.712
– volume: 32
  start-page: 327
  issue: 2
  year: 2021
  ident: 10889_CR24
  publication-title: J Earth Sci
  doi: 10.1007/s12583-020-1365-z
– year: 2017
  ident: 10889_CR18
  publication-title: Int J Geo-Inf
  doi: 10.3390/ijgi6090275
SSID ssj0068078
Score 2.2519932
Snippet Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on the...
Abstract Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial neural networks
Earth and Environmental Science
Earth science
Earth Sciences
Fault zones
Genetic algorithms
Image classification
Image processing
Labour
Landsat
Machine learning
Methods
Mineral exploration
Minerals
Modelling
Neural networks
Original Paper
Remote sensing
Satellite imagery
Surveying
Title Mineral exploration modeling by convolutional neural network and continuous genetic algorithm: a case study in Khorasan Razavi, Iran
URI https://link.springer.com/article/10.1007/s12517-022-10889-7
https://www.proquest.com/docview/2729919350
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: AFBBN
  dateStart: 20080701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: U2A
  dateStart: 20080701
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RfAiPrFayx682UC3aXYTb0Vaq6UexEI9hdlN1gZqKm0q1LM_3NltYlFU8JRDJhvIzM4j-803hJzrhmpIN-CO1pI7rSBiDmgdGZR5y1fNIGbCdCMP7nhv2LodeaO8KWxeoN2LI0nrqdfNboZdyzHoc2axOWKTlD1D54VWPGy2C__LDYO6KbN8zh2B-UTeKvPzGl_D0TrH_HYsaqNNd5fs5Gkiba_0ukc24nSfbF3bMbzLA_I-SCxbNI0thM5-XWqH2uBqVC6pAZPnRoVShrTSXizkm0IaGYEsSRdY91M0IdPJSGHyNJ0l2fj5kgJVGN2o5Z6lSUr7Y3zJHFJ6D2_wmtTpDYa4QzLsdh6uek4-T8EB5gvhYOmjYlehDwT0aqiRSHIZc08xiDRwIU3-BYEvAHe2j3mTBgCvwXVLuJH0uXtESuk0jY8JjbVgGiUUNxN0tfIl51K5Hg9ARYqxCmHFZw1VTjZuZl5MwjVNslFFiKoIrSpCUSEXn8-8rKg2_pSuFtoK8203D5tYKgSYknqNCqkXGlzf_n21k_-Jn5LtpjUi8yumSkrZbBGfYXKSyRopt68f-52atckPCsPemQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED5BEYIXxtgQhY75YW8QVDeJnfCGpkJZaR-mVoKn6OzEEI2lE00nwTM_nLObrALBJJ7ykIuT-C7nu_i77wC-mbZuKz8WnjFKeEGccg-NSS3KPIh0J864tNXIg6HojYMfl-FlVRQ2rdHu9Zak89SLYjfLruVZ9Dl32By5DCsBJSidBqycnF31u7UHFpZD3SZakRCepIiiKpZ5fZTnC9IiynyxMerWm9MPMK6fdA4z-XU0K9WRfnhB4vjeV9mEjSoAZSdzi_kIS1mxBatnrsHv_Sd4HOSOh5plDpzn9MZcuxy6AVP3zMLUK3MlKUuH6Q4OTM6wSK1AmRezyWzKyDhtjSTD2-vJXV7e_D5myDStm8yx2rK8YP0buskUC_YTH_BvfsjOafH8DOPT7uh7z6s6NXjIIyk9Sqp05mvyrkj-knSdKqEyEWqOqUEhlY3sMI4kks-IKCIziBi2hQmkn6pI-NvQKCZFtgMsM5IbktDC9uY1OlJCKO2HIkadas6bwGt1JbqiMbfdNG6TBQGznd2EZjdxs5vIJhz8u-bPnMTjv9Kt2gqS6oOeJh1KQmIKdsN2Ew5rpS5Ovz3a7vvEv8JabzS4SC7Oh_09WO84G7E_fFrQKO9m2RcKgUq1X1n8E8ER_O4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZYEdNeJn5NdBTwA28jom4SO9lbNSiUrtU0Ualv0dmJIRKkiKZI7Hl_-O7cZGUIJvGUh1wcKd_Zd46_-46xQ9s2be3H0rNWSy-IU-GBtSmxzIPIdOJMKKpGHo7k-Ti4mISTJ1X8ju1eH0kuahpIpakoj-9Se7wsfCOlLY-Y6MLxdNQ7thqQUAJ69LjTrddiSWrqtOWKpPQU5hZV2czLY_wbmpb55rMjUhd5euvsY5Uy8u4C4w22khWbbO3MteR93GK_h7lTjuaZo9O5L81dgxscjetHTsTyysHQigQs3cXRvzkUKRmUeTGfzmcc3YmqGjncXE3v8_L69isHbjDScadDy_OCD67xJTMo-E_4BQ_5Ee9juNtm497p5bdzr-qt4IGIlPJwG2Qy3-B6CLjCITqpljqToRGQWpBKUy4GcaQAZ3mEOZQFgLAtbaD8VEfS_8QaxbTIdhjPrBIWLYykbrrWRFpKbfxQxmBSI0STifqzJqYSHqf-FzfJUjKZoEgQisRBkagm-_L3mbuF7MZ_rVs1Wkk1BWdJB7cNMaanYbvJjmoEl7dfH-3z28wP2PsfJ73ke3802GUfOs6f6A9NizXK-3m2hzlLqfedW_4BitjkLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mineral+exploration+modeling+by+convolutional+neural+network+and+continuous+genetic+algorithm%3A+a+case+study+in+Khorasan+Razavi%2C+Iran&rft.jtitle=Arabian+journal+of+geosciences&rft.au=Tahmooresi+Mandana&rft.au=Babaei+Behnam&rft.au=Dehghan+Saeed&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-7511&rft.eissn=1866-7538&rft.volume=15&rft.issue=21&rft_id=info:doi/10.1007%2Fs12517-022-10889-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-7511&client=summon