Mineral exploration modeling by convolutional neural network and continuous genetic algorithm: a case study in Khorasan Razavi, Iran
Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on the experience of specialists. As the images of nature are composed of structures with relatively high similarity, special methods should be used to dis...
        Saved in:
      
    
          | Published in | Arabian journal of geosciences Vol. 15; no. 21 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.11.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1866-7511 1866-7538  | 
| DOI | 10.1007/s12517-022-10889-7 | 
Cover
| Abstract | Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on the experience of specialists. As the images of nature are composed of structures with relatively high similarity, special methods should be used to discover generalizable patterns by extracting and learning the data characteristics. In this paper, convolutional neural network (CNN) algorithms were applied to classify the images relevant to the field of mineral exploration. Input data included the segments of magnetic profiles, ASTER, and Landsat 8 OLI images utilized to determine the effect of the cross-sectional area of magnetic bodies on the magnetic profiles and recognize alterations and fault zones, respectively. In the second part, the continuous genetic algorithm (CGA) was integrated with CNN (CGACNN) to systematically tune CNN hyperparameters. CNNs were trained based on the field survey findings. CNN, CGACNN, and image processing codes were written and implemented in MATLAB. The results show that in comparison with conventional methods, CNNs have more accuracy and can be used to explore minerals intelligently to avoid time-consuming and labor-demanding procedures. | 
    
|---|---|
| AbstractList | Abstract Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on the experience of specialists. As the images of nature are composed of structures with relatively high similarity, special methods should be used to discover generalizable patterns by extracting and learning the data characteristics. In this paper, convolutional neural network (CNN) algorithms were applied to classify the images relevant to the field of mineral exploration. Input data included the segments of magnetic profiles, ASTER, and Landsat 8 OLI images utilized to determine the effect of the cross-sectional area of magnetic bodies on the magnetic profiles and recognize alterations and fault zones, respectively. In the second part, the continuous genetic algorithm (CGA) was integrated with CNN (CGACNN) to systematically tune CNN hyperparameters. CNNs were trained based on the field survey findings. CNN, CGACNN, and image processing codes were written and implemented in MATLAB. The results show that in comparison with conventional methods, CNNs have more accuracy and can be used to explore minerals intelligently to avoid time-consuming and labor-demanding procedures. Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on the experience of specialists. As the images of nature are composed of structures with relatively high similarity, special methods should be used to discover generalizable patterns by extracting and learning the data characteristics. In this paper, convolutional neural network (CNN) algorithms were applied to classify the images relevant to the field of mineral exploration. Input data included the segments of magnetic profiles, ASTER, and Landsat 8 OLI images utilized to determine the effect of the cross-sectional area of magnetic bodies on the magnetic profiles and recognize alterations and fault zones, respectively. In the second part, the continuous genetic algorithm (CGA) was integrated with CNN (CGACNN) to systematically tune CNN hyperparameters. CNNs were trained based on the field survey findings. CNN, CGACNN, and image processing codes were written and implemented in MATLAB. The results show that in comparison with conventional methods, CNNs have more accuracy and can be used to explore minerals intelligently to avoid time-consuming and labor-demanding procedures.  | 
    
| ArticleNumber | 1647 | 
    
| Author | Dehghan, Saeed Babaei, Behnam Tahmooresi, Mandana  | 
    
| Author_xml | – sequence: 1 givenname: Mandana surname: Tahmooresi fullname: Tahmooresi, Mandana organization: Mining Department, Mahallat Branch, Islamic Azad University – sequence: 2 givenname: Behnam surname: Babaei fullname: Babaei, Behnam email: Dr.Behnam_babaei@yahoo.com organization: Mining Department, Mahallat Branch, Islamic Azad University – sequence: 3 givenname: Saeed surname: Dehghan fullname: Dehghan, Saeed organization: Mining Department, Mahallat Branch, Islamic Azad University  | 
    
| BookMark | eNp9kMtOwzAQRS0EEs8fYGWJLYGx08QOO4R4VBQhIVhbk9hpXVK72AlQ1nw4aYtAYsFqRvY9Hs_ZJZvOO0PIIYMTBiBOI-MZEwlwnjCQskjEBtlhMs8TkaVy86dnbJvsxjgFyCUIuUM-76wzARtq3ueND9ha7-jMa9NYN6blglbevfqmW573KWe6sCrtmw_PFJ1eBlrrOt9FOjb9ha0oNmMfbDuZnVGkFUZDY9vpBbWO3k76IREdfcAPfLXHdBjQ7ZOtGptoDr7rHnm6uny8uElG99fDi_NRgkwKkTA2qExaAXBEreta6zIvTZ5VDHWNuSgBZIaFFAgDkAUvakTMIK8HItWlzNM9crR-dx78S2diq6a-C_1eUXHBi4IVaQZ9Sq5TVfAxBlOryrYrMW1A2ygGaulcrZ2r3rlaOVeiR_kfdB7sDMPifyhdQ7EPu7EJv7_6h_oC9OqZYg | 
    
| CitedBy_id | crossref_primary_10_1007_s00603_023_03353_9 crossref_primary_10_1007_s11053_023_10286_1  | 
    
| Cites_doi | 10.1007/s11053-020-09742-z 10.1007/s42979-021-00815-1 10.1007/s13369-021-06080-x 10.3390/rs13234860 10.1007/s11053-021-09984-5 10.1007/s12583-020-1399-2 10.3390/rs10020307 10.1007/s12517-016-2539-y 10.1007/s12583-020-1365-z 10.1016/j.apgeochem.2020.104747 10.1016/J.IFACOL.2020.12.712 10.1007/s11053-021-09934-1 10.1088/1742-6596/1894/1/012104 10.1016/j.jksus.2021.101414 10.1007/s12517-021-07306-w 10.22606/gr.2017.23005 10.1007/s11053-019-09536-y 10.1016/j.cageo.2020.104481 10.9719/EEG.2020.53.4.425 10.3390/ijgi6090275 10.1155/2016/5392453 10.3906/yer-1809-13 10.1038/s41598-018-26200-2 10.3390/min11050506 10.31035/cg2021044 10.1016/B978-0-12-821379-7.00005-9 10.1190/segam2018-2995341.1 10.1002/0471671746 10.48550/arXiv.1702.02073 10.5194/isprsarchives-XL-1-W1-239-2013  | 
    
| ContentType | Journal Article | 
    
| Copyright | Saudi Society for Geosciences 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: Saudi Society for Geosciences 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 7UA C1K F1W H96 L.G  | 
    
| DOI | 10.1007/s12517-022-10889-7 | 
    
| DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology | 
    
| EISSN | 1866-7538 | 
    
| ExternalDocumentID | 10_1007_s12517_022_10889_7 | 
    
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 1N0 203 23M 2JN 2JY 2KG 2VQ 30V 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P PT4 QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z85 ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7UA C1K F1W H96 L.G  | 
    
| ID | FETCH-LOGICAL-a1877-114ce3c002aaddffddb6be65c1adfa67b0085a987a0408929faaa506f473db863 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1866-7511 | 
    
| IngestDate | Wed Sep 17 23:57:43 EDT 2025 Thu Apr 24 22:52:09 EDT 2025 Wed Oct 01 02:28:54 EDT 2025 Fri Feb 21 02:44:28 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 21 | 
    
| Keywords | Continuous genetic algorithm (CGA) Convolutional neural network (CNN) Mineral exploration Iran Khorasan Razavi  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a1877-114ce3c002aaddffddb6be65c1adfa67b0085a987a0408929faaa506f473db863 | 
    
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3  | 
    
| PQID | 2729919350 | 
    
| PQPubID | 2044009 | 
    
| ParticipantIDs | proquest_journals_2729919350 crossref_citationtrail_10_1007_s12517_022_10889_7 crossref_primary_10_1007_s12517_022_10889_7 springer_journals_10_1007_s12517_022_10889_7  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20221100 | 
    
| PublicationDateYYYYMMDD | 2022-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2022 text: 20221100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Heidelberg  | 
    
| PublicationTitle | Arabian journal of geosciences | 
    
| PublicationTitleAbbrev | Arab J Geosci | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | Ghrefat, Kahal, Kamal, Alfaifi, Saleh (CR10) 2021 Mohammadzadeh, Mirzaei, Nouraliee, Porkhial (CR19) 2016 Wang, Shu, Ming, Gang, Y-L, Long, J-M (CR33) 2019; 28 Li, Zuo, Yihui, Yong (CR15) 2021; 30 Parsa, Carranza, Ahmadi (CR21) 2022; 31 Wang, Cao (CR32) 2021 Fu, Aldrich (CR9) 2020; 53 Suhasini, Bhavani (CR28) 2021; 8 Es-Sabbar, Mourad, Abdelhafid, Si (CR8) 2020; 53 CR17 Wang, Zuo, Liu (CR34) 2021 CR36 Yang, Zhang, Yang, Hong, Shi (CR37) 2021; 30 CR35 Arivazhagan, Anbazhagan (CR2) 2017; 2 CR11 CR31 CR30 Sarker Iqbal (CR23) 2021 de Pires Lima, Duarte, Nicholson, Slatt, Marfurt (CR6) 2020 Mohajane, Ali, Oudija, Mohammed El, Teodoro (CR18) 2017 Li, Xiaohui, Feng, Jowitt, Mingming, Jie, Zhou, Xiangling, Can, Wu (CR14) 2020 Shoji, Noguchi, Otsuki, Hino (CR25) 2018 CR4 Latifovic, Pouliot, Campbell (CR13) 2018; 10 CR5 CR7 CR27 Shi, Jianping, Chang, Chang, Yang (CR24) 2021; 32 Zeng, Xiao, Ji, Wang (CR38) 2020 CR22 Anudu, Onuba, Onwuemesi, Ikpokonte (CR1) 2012; 16 Aszemi, Dominic (CR3) 2019; 10 Tahmooresi, Babaei, Dehghan (CR29) 2021; 14 Zeng, Han, Liu (CR39) 2021 Li, Peng, Ran, Xue, Chaie (CR16) 2022; 5 Singer (CR26) 2021; 32 Karimpouli, Pejman, Saenger (CR12) 2019; 29 Ni, Zhang, Liu, Yan, Li (CR20) 2016 R de Pires Lima (10889_CR6) 2020 T Li (10889_CR15) 2021; 30 H Sarker Iqbal (10889_CR23) 2021 M Wang (10889_CR33) 2019; 28 Y-S Li (10889_CR16) 2022; 5 M Tahmooresi (10889_CR29) 2021; 14 10889_CR30 10889_CR31 GK Anudu (10889_CR1) 2012; 16 10889_CR11 J Wang (10889_CR32) 2021 10889_CR35 Y Fu (10889_CR9) 2020; 53 10889_CR36 N Yang (10889_CR37) 2021; 30 10889_CR17 MM Mohammadzadeh (10889_CR19) 2016 NM Aszemi (10889_CR3) 2019; 10 H Ghrefat (10889_CR10) 2021 C Suhasini (10889_CR28) 2021; 8 S Karimpouli (10889_CR12) 2019; 29 D Shoji (10889_CR25) 2018 H Zeng (10889_CR39) 2021 S Arivazhagan (10889_CR2) 2017; 2 M Mohajane (10889_CR18) 2017 10889_CR5 H Li (10889_CR14) 2020 10889_CR4 B Es-Sabbar (10889_CR8) 2020; 53 10889_CR7 X Zeng (10889_CR38) 2020 M Parsa (10889_CR21) 2022; 31 10889_CR22 C Ni (10889_CR20) 2016 DA Singer (10889_CR26) 2021; 32 Li Shi (10889_CR24) 2021; 32 10889_CR27 Z Wang (10889_CR34) 2021 R Latifovic (10889_CR13) 2018; 10  | 
    
| References_xml | – volume: 30 start-page: 27 year: 2021 end-page: 38 ident: CR15 article-title: Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping publication-title: Nat Resour Res doi: 10.1007/s11053-020-09742-z – year: 2021 ident: CR23 article-title: Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions publication-title: SN Comput Sci doi: 10.1007/s42979-021-00815-1 – year: 2021 ident: CR32 article-title: Deep learning reservoir porosity prediction using integrated neural network publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-06080-x – year: 2021 ident: CR34 article-title: Lithological mapping based on fully convolutional network and multi-source geological data publication-title: Remote Sens doi: 10.3390/rs13234860 – volume: 31 start-page: 37 year: 2022 end-page: 50 ident: CR21 article-title: Deep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral deposits publication-title: Nat Resour Res doi: 10.1007/s11053-021-09984-5 – ident: CR22 – volume: 32 start-page: 288 year: 2021 end-page: 292 ident: CR26 article-title: How deep learning networks could be designed to locate mineral deposits publication-title: J Earth Sci doi: 10.1007/s12583-020-1399-2 – volume: 10 start-page: 1 year: 2018 end-page: 19 ident: CR13 article-title: Assessment of convolution neural networks for surficial geology mapping in the south Rae geological region, northwest territories, Canada publication-title: Remote Sens doi: 10.3390/rs10020307 – ident: CR4 – year: 2016 ident: CR19 article-title: Integrated magnetic and gravity surveys for geothermal exploration in central Iran publication-title: Arab J Geosci doi: 10.1007/s12517-016-2539-y – ident: CR30 – volume: 32 start-page: 327 issue: 2 year: 2021 end-page: 347 ident: CR24 article-title: Mineral prospectivity prediction via convolutional neural networks based on geological big data publication-title: J Earth Sci doi: 10.1007/s12583-020-1365-z – year: 2020 ident: CR14 article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian-Zhangbaling area, Anhui Province, China publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2020.104747 – volume: 53 start-page: 11920 issue: 2 year: 2020 end-page: 11925 ident: CR9 article-title: Deep learning in mining and mineral processing operations: a review publication-title: IFAC PapersOnLine doi: 10.1016/J.IFACOL.2020.12.712 – volume: 30 start-page: 3905 year: 2021 end-page: 3923 ident: CR37 article-title: A convolutional neural network of GoogLeNet applied in mineral prospectivity prediction based on multi-source geo information publication-title: Nat Resour Res doi: 10.1007/s11053-021-09934-1 – year: 2021 ident: CR39 article-title: Mineral detection from hyperspectral images using a spatial-spectral residual convolution neural network publication-title: J Phys: Conf Ser doi: 10.1088/1742-6596/1894/1/012104 – ident: CR35 – year: 2021 ident: CR10 article-title: Utilization of multispectral landsat-8 remote sensing data for lithological mapping of southwestern Saudi Arabia publication-title: J King Saud Univ-Sci doi: 10.1016/j.jksus.2021.101414 – volume: 8 start-page: 1686 issue: 2 year: 2021 end-page: 1690 ident: CR28 article-title: Minerals classification using convolutional neural network publication-title: Int Res J Eng Technol (IRJET) – ident: CR27 – volume: 14 start-page: 1012 year: 2021 ident: CR29 article-title: Intelligent geochemical exploration modeling using multiclass support vector machine and integration it with continuous genetic algorithm in Gonabad region, Khorasan Razavi publication-title: Iran. Arab J Geosci doi: 10.1007/s12517-021-07306-w – volume: 16 start-page: 25 issue: 1 year: 2012 end-page: 33 ident: CR1 article-title: Analysis of aeromagnetic data over Wamba and its adjoining areas in north-central Nigeria publication-title: Earth Sci Res J – volume: 10 start-page: 269 issue: 6 year: 2019 end-page: 278 ident: CR3 article-title: Hyperparameter optimization in convolutional neural network using genetic algorithms publication-title: Int J Adv Comput Sci Appl (IJACSA) – volume: 2 start-page: 196 issue: 3 year: 2017 end-page: 209 ident: CR2 article-title: ASTER Data analyses for lithological discrimination of sittampundi anorthositic complex, Southern India publication-title: Geosci Res doi: 10.22606/gr.2017.23005 – volume: 29 start-page: 1675 issue: 1 year: 2019 end-page: 1685 ident: CR12 article-title: Coal cleat/fracture segmentation using convolutional neural networks publication-title: Nat Resour Res doi: 10.1007/s11053-019-09536-y – year: 2020 ident: CR6 article-title: Petrographic microfacies classification with deep convolutional neural networks publication-title: Comput Geosci doi: 10.1016/j.cageo.2020.104481 – ident: CR17 – ident: CR31 – ident: CR11 – volume: 53 start-page: 425 issue: 4 year: 2020 end-page: 440 ident: CR8 article-title: Lithological and structural lineament mapping from landsat 8 OLI images in Ras Kammouna arid area (Eastern Anti-Atlas, Morocco) publication-title: Econ Environ Geol doi: 10.9719/EEG.2020.53.4.425 – year: 2017 ident: CR18 article-title: Mapping forest species in the central middle atlas of Morocco (Azrou forest) through remote sensing techniques publication-title: Int J Geo-Inf doi: 10.3390/ijgi6090275 – ident: CR36 – ident: CR5 – ident: CR7 – year: 2016 ident: CR20 publication-title: Lineament length and density analyses based on the segment tracing algorithm: a case study of the Gaosong field in Gejiu Tin mine doi: 10.1155/2016/5392453 – volume: 28 start-page: 457 year: 2019 end-page: 469 ident: CR33 article-title: Diagenesis and diagenetic facies distribution prediction of Chang 8 tight oil reservoir in Maling area, Ordos Basin, NW China publication-title: Turk J Earth Sci doi: 10.3906/yer-1809-13 – year: 2018 ident: CR25 article-title: Classification of volcanic ash particles using a convolutional neural network and probability publication-title: Sci Rep doi: 10.1038/s41598-018-26200-2 – year: 2020 ident: CR38 article-title: Mineral identification based on deep learning that combines image and Mohs hardness publication-title: Minerals doi: 10.3390/min11050506 – volume: 5 start-page: 71 year: 2022 end-page: 83 ident: CR16 article-title: Soil geochemical prospecting prediction method based on deep convolutional neural networks—taking Daqiao Gold Deposit in Gansu Province, China as an example publication-title: China Geol doi: 10.31035/cg2021044 – ident: 10889_CR5 – ident: 10889_CR31 – year: 2016 ident: 10889_CR19 publication-title: Arab J Geosci doi: 10.1007/s12517-016-2539-y – ident: 10889_CR27 doi: 10.1016/B978-0-12-821379-7.00005-9 – year: 2020 ident: 10889_CR38 publication-title: Minerals doi: 10.3390/min11050506 – ident: 10889_CR7 – volume: 16 start-page: 25 issue: 1 year: 2012 ident: 10889_CR1 publication-title: Earth Sci Res J – year: 2021 ident: 10889_CR10 publication-title: J King Saud Univ-Sci doi: 10.1016/j.jksus.2021.101414 – volume: 32 start-page: 288 year: 2021 ident: 10889_CR26 publication-title: J Earth Sci doi: 10.1007/s12583-020-1399-2 – volume: 29 start-page: 1675 issue: 1 year: 2019 ident: 10889_CR12 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09536-y – volume: 31 start-page: 37 year: 2022 ident: 10889_CR21 publication-title: Nat Resour Res doi: 10.1007/s11053-021-09984-5 – year: 2020 ident: 10889_CR14 publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2020.104747 – year: 2021 ident: 10889_CR23 publication-title: SN Comput Sci doi: 10.1007/s42979-021-00815-1 – ident: 10889_CR35 doi: 10.1190/segam2018-2995341.1 – volume-title: Lineament length and density analyses based on the segment tracing algorithm: a case study of the Gaosong field in Gejiu Tin mine year: 2016 ident: 10889_CR20 doi: 10.1155/2016/5392453 – volume: 53 start-page: 425 issue: 4 year: 2020 ident: 10889_CR8 publication-title: Econ Environ Geol doi: 10.9719/EEG.2020.53.4.425 – year: 2021 ident: 10889_CR39 publication-title: J Phys: Conf Ser doi: 10.1088/1742-6596/1894/1/012104 – ident: 10889_CR11 doi: 10.1002/0471671746 – ident: 10889_CR22 doi: 10.48550/arXiv.1702.02073 – year: 2018 ident: 10889_CR25 publication-title: Sci Rep doi: 10.1038/s41598-018-26200-2 – volume: 30 start-page: 27 year: 2021 ident: 10889_CR15 publication-title: Nat Resour Res doi: 10.1007/s11053-020-09742-z – volume: 28 start-page: 457 year: 2019 ident: 10889_CR33 publication-title: Turk J Earth Sci doi: 10.3906/yer-1809-13 – volume: 10 start-page: 269 issue: 6 year: 2019 ident: 10889_CR3 publication-title: Int J Adv Comput Sci Appl (IJACSA) – volume: 5 start-page: 71 year: 2022 ident: 10889_CR16 publication-title: China Geol doi: 10.31035/cg2021044 – ident: 10889_CR30 – ident: 10889_CR4 – volume: 2 start-page: 196 issue: 3 year: 2017 ident: 10889_CR2 publication-title: Geosci Res doi: 10.22606/gr.2017.23005 – year: 2021 ident: 10889_CR34 publication-title: Remote Sens doi: 10.3390/rs13234860 – ident: 10889_CR36 – volume: 8 start-page: 1686 issue: 2 year: 2021 ident: 10889_CR28 publication-title: Int Res J Eng Technol (IRJET) – volume: 10 start-page: 1 year: 2018 ident: 10889_CR13 publication-title: Remote Sens doi: 10.3390/rs10020307 – ident: 10889_CR17 doi: 10.5194/isprsarchives-XL-1-W1-239-2013 – volume: 30 start-page: 3905 year: 2021 ident: 10889_CR37 publication-title: Nat Resour Res doi: 10.1007/s11053-021-09934-1 – volume: 14 start-page: 1012 year: 2021 ident: 10889_CR29 publication-title: Iran. Arab J Geosci doi: 10.1007/s12517-021-07306-w – year: 2021 ident: 10889_CR32 publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-06080-x – year: 2020 ident: 10889_CR6 publication-title: Comput Geosci doi: 10.1016/j.cageo.2020.104481 – volume: 53 start-page: 11920 issue: 2 year: 2020 ident: 10889_CR9 publication-title: IFAC PapersOnLine doi: 10.1016/J.IFACOL.2020.12.712 – volume: 32 start-page: 327 issue: 2 year: 2021 ident: 10889_CR24 publication-title: J Earth Sci doi: 10.1007/s12583-020-1365-z – year: 2017 ident: 10889_CR18 publication-title: Int J Geo-Inf doi: 10.3390/ijgi6090275  | 
    
| SSID | ssj0068078 | 
    
| Score | 2.2519932 | 
    
| Snippet | Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on the... Abstract Mineral exploration modeling to identify promising areas is a crucial step in any mineral exploration program. Traditional methods mainly depend on...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Algorithms Artificial neural networks Earth and Environmental Science Earth science Earth Sciences Fault zones Genetic algorithms Image classification Image processing Labour Landsat Machine learning Methods Mineral exploration Minerals Modelling Neural networks Original Paper Remote sensing Satellite imagery Surveying  | 
    
| Title | Mineral exploration modeling by convolutional neural network and continuous genetic algorithm: a case study in Khorasan Razavi, Iran | 
    
| URI | https://link.springer.com/article/10.1007/s12517-022-10889-7 https://www.proquest.com/docview/2729919350  | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-7538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: AFBBN dateStart: 20080701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-7538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: U2A dateStart: 20080701 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RfAiPrFayx682UC3aXYTb0Vaq6UexEI9hdlN1gZqKm0q1LM_3NltYlFU8JRDJhvIzM4j-803hJzrhmpIN-CO1pI7rSBiDmgdGZR5y1fNIGbCdCMP7nhv2LodeaO8KWxeoN2LI0nrqdfNboZdyzHoc2axOWKTlD1D54VWPGy2C__LDYO6KbN8zh2B-UTeKvPzGl_D0TrH_HYsaqNNd5fs5Gkiba_0ukc24nSfbF3bMbzLA_I-SCxbNI0thM5-XWqH2uBqVC6pAZPnRoVShrTSXizkm0IaGYEsSRdY91M0IdPJSGHyNJ0l2fj5kgJVGN2o5Z6lSUr7Y3zJHFJ6D2_wmtTpDYa4QzLsdh6uek4-T8EB5gvhYOmjYlehDwT0aqiRSHIZc08xiDRwIU3-BYEvAHe2j3mTBgCvwXVLuJH0uXtESuk0jY8JjbVgGiUUNxN0tfIl51K5Hg9ARYqxCmHFZw1VTjZuZl5MwjVNslFFiKoIrSpCUSEXn8-8rKg2_pSuFtoK8203D5tYKgSYknqNCqkXGlzf_n21k_-Jn5LtpjUi8yumSkrZbBGfYXKSyRopt68f-52atckPCsPemQ | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED5BEYIXxtgQhY75YW8QVDeJnfCGpkJZaR-mVoKn6OzEEI2lE00nwTM_nLObrALBJJ7ykIuT-C7nu_i77wC-mbZuKz8WnjFKeEGccg-NSS3KPIh0J864tNXIg6HojYMfl-FlVRQ2rdHu9Zak89SLYjfLruVZ9Dl32By5DCsBJSidBqycnF31u7UHFpZD3SZakRCepIiiKpZ5fZTnC9IiynyxMerWm9MPMK6fdA4z-XU0K9WRfnhB4vjeV9mEjSoAZSdzi_kIS1mxBatnrsHv_Sd4HOSOh5plDpzn9MZcuxy6AVP3zMLUK3MlKUuH6Q4OTM6wSK1AmRezyWzKyDhtjSTD2-vJXV7e_D5myDStm8yx2rK8YP0buskUC_YTH_BvfsjOafH8DOPT7uh7z6s6NXjIIyk9Sqp05mvyrkj-knSdKqEyEWqOqUEhlY3sMI4kks-IKCIziBi2hQmkn6pI-NvQKCZFtgMsM5IbktDC9uY1OlJCKO2HIkadas6bwGt1JbqiMbfdNG6TBQGznd2EZjdxs5vIJhz8u-bPnMTjv9Kt2gqS6oOeJh1KQmIKdsN2Ew5rpS5Ovz3a7vvEv8JabzS4SC7Oh_09WO84G7E_fFrQKO9m2RcKgUq1X1n8E8ER_O4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZYEdNeJn5NdBTwA28jom4SO9lbNSiUrtU0Ualv0dmJIRKkiKZI7Hl_-O7cZGUIJvGUh1wcKd_Zd46_-46xQ9s2be3H0rNWSy-IU-GBtSmxzIPIdOJMKKpGHo7k-Ti4mISTJ1X8ju1eH0kuahpIpakoj-9Se7wsfCOlLY-Y6MLxdNQ7thqQUAJ69LjTrddiSWrqtOWKpPQU5hZV2czLY_wbmpb55rMjUhd5euvsY5Uy8u4C4w22khWbbO3MteR93GK_h7lTjuaZo9O5L81dgxscjetHTsTyysHQigQs3cXRvzkUKRmUeTGfzmcc3YmqGjncXE3v8_L69isHbjDScadDy_OCD67xJTMo-E_4BQ_5Ee9juNtm497p5bdzr-qt4IGIlPJwG2Qy3-B6CLjCITqpljqToRGQWpBKUy4GcaQAZ3mEOZQFgLAtbaD8VEfS_8QaxbTIdhjPrBIWLYykbrrWRFpKbfxQxmBSI0STifqzJqYSHqf-FzfJUjKZoEgQisRBkagm-_L3mbuF7MZ_rVs1Wkk1BWdJB7cNMaanYbvJjmoEl7dfH-3z28wP2PsfJ73ke3802GUfOs6f6A9NizXK-3m2hzlLqfedW_4BitjkLQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mineral+exploration+modeling+by+convolutional+neural+network+and+continuous+genetic+algorithm%3A+a+case+study+in+Khorasan+Razavi%2C+Iran&rft.jtitle=Arabian+journal+of+geosciences&rft.au=Tahmooresi+Mandana&rft.au=Babaei+Behnam&rft.au=Dehghan+Saeed&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-7511&rft.eissn=1866-7538&rft.volume=15&rft.issue=21&rft_id=info:doi/10.1007%2Fs12517-022-10889-7&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-7511&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-7511&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-7511&client=summon |