Provenance and Annotation of Data and Processes 7th International Provenance and Annotation Workshop, IPAW 2018, London, UK, July 9-10, 2018, Proceedings

This book constitutes the refereed proceedings of the 7th International Provenance and Annotation Workshop, IPAW 2018, held in London, UK, in July 2018.The 12 revised full papers, 19 poster papers, and 2 demonstration papers presented were carefully reviewed and selected from 50 submissions. The pap...

Full description

Saved in:
Bibliographic Details
Main Authors Belhajjame, Khalid, Gehani, Ashish, Alper, Pinar
Format eBook
LanguageEnglish
Published Netherlands Springer Nature 2018
Springer International Publishing AG
Springer
Edition1
SeriesLNCS sublibrary. SL 3, Information systems and applications, incl. Internet/Web, and HCI
Subjects
Online AccessGet full text
ISBN3319983792
9783319983790
3319983784
9783319983783

Cover

Abstract This book constitutes the refereed proceedings of the 7th International Provenance and Annotation Workshop, IPAW 2018, held in London, UK, in July 2018.The 12 revised full papers, 19 poster papers, and 2 demonstration papers presented were carefully reviewed and selected from 50 submissions. The papers feature a variety of provenance-related topics ranging from the capture and inference of provenance to its use and application.They are organized in topical sections on reproducibility; modeling, simulating and capturing provenance; PROV extensions; scientific workflows; applications; and system demonstrations.
AbstractList This book constitutes the refereed proceedings of the 7th International Provenance and Annotation Workshop, IPAW 2018, held in London, UK, in July 2018.The 12 revised full papers, 19 poster papers, and 2 demonstration papers presented were carefully reviewed and selected from 50 submissions. The papers feature a variety of provenance-related topics ranging from the capture and inference of provenance to its use and application.They are organized in topical sections on reproducibility; modeling, simulating and capturing provenance; PROV extensions; scientific workflows; applications; and system demonstrations.
Author Gehani, Ashish
Belhajjame, Khalid
Alper, Pinar
Author_xml – sequence: 1
  fullname: Belhajjame, Khalid
– sequence: 2
  fullname: Gehani, Ashish
– sequence: 3
  fullname: Alper, Pinar
BookMark eNpNz8tKA0EQBdAWH-jE_MPgRlwEq9_dyxjjAwK6ELdDpVNjYsbuOD3G33dIFFxV3eJwoQp2FFOkA1ZIyb130npx-D-csIKDFtpoDeaUDXN-BwABzjshztj1c5u2FDEGKjEuynGMqcNulWKZ6vIWO9ydexUoZ8rn7LjGJtPwdw7Y6930ZfIwmj3dP07GsxFyp5QeWTQwB2epX1SNVsraBDIKa-JCGkOcjPbWEq9VEAtQqLygBbdOqgDKyQG72hdjXtN3Xqamy9W2oXlK61z53v29CL293NtNmz6_KHfVjgWKXYtNNb2ZGAlglOzlxV4GzNis4qr6SDG9tbhZ5korbkF7-QMz_F76
ContentType eBook
DBID I4C
DEWEY 006
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3319983792
9783319983790
Edition 1
1st Edition 2018
Editor Gehani, Ashish
Belhajjame, Khalid
Alper, Pinar
Editor_xml – sequence: 1
  fullname: Alper, Pinar
– sequence: 2
  fullname: Belhajjame, Khalid
– sequence: 3
  fullname: Gehani, Ashish
ExternalDocumentID 9783319983790
EBC6300643
5417059
GroupedDBID 0D6
0DA
38.
AABBV
ACOUV
AEDXK
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FOYMO
I4C
IEZ
LDH
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
AEJLV
ID FETCH-LOGICAL-a18445-7a60b087e7a64fa733f6ce64afe12366e1e65977e1f4c2d04a492ed17834c0483
ISBN 3319983792
9783319983790
3319983784
9783319983783
IngestDate Fri Nov 08 04:10:06 EST 2024
Fri May 30 22:02:18 EDT 2025
Tue Nov 14 22:52:28 EST 2023
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a18445-7a60b087e7a64fa733f6ce64afe12366e1e65977e1f4c2d04a492ed17834c0483
OCLC 1052565506
PQID EBC6300643
PageCount 272
ParticipantIDs askewsholts_vlebooks_9783319983790
proquest_ebookcentral_EBC6300643
casalini_monographs_5417059
PublicationCentury 2000
PublicationDate 2018
2018-09-05
PublicationDateYYYYMMDD 2018-01-01
2018-09-05
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Cham
PublicationSeriesTitle LNCS sublibrary. SL 3, Information systems and applications, incl. Internet/Web, and HCI
PublicationYear 2018
Publisher Springer Nature
Springer International Publishing AG
Springer
Publisher_xml – name: Springer Nature
– name: Springer International Publishing AG
– name: Springer
SSID ssj0002089822
Score 2.1908102
Snippet This book constitutes the refereed proceedings of the 7th International Provenance and Annotation Workshop, IPAW 2018, held in London, UK, in July 2018.The 12...
SourceID askewsholts
proquest
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Database management-Congresses
Special computer methods
Subtitle 7th International Provenance and Annotation Workshop, IPAW 2018, London, UK, July 9-10, 2018, Proceedings
TableOfContents References -- Automating Provenance Capture in Software Engineering with UML2PROV -- 1 Introduction -- 2 Overview: The UML2PROV Approach -- 3 From Class Diagrams to Templates -- 3.1 A Taxonomy of Operations Stereotypes -- 3.2 Class Diagrams to Templates Transformation Patterns -- 4 Implementation -- 4.1 Implementation of the Mapping Patterns -- 4.2 Generation of Artefacts -- 5 Analysis and Discussion -- 6 Related Work -- 7 Conclusions and Future Work -- References -- Simulated Domain-Specific Provenance -- 1 Motivations and Approach -- 2 Provenance Templates -- 2.1 Variable Domains -- 3 Domain-Specific Constraints for Templates -- 3.1 Constraint Types -- 3.2 Solving Constraints -- 4 Processes and Simulation -- 4.1 Processes -- 4.2 Simulation -- 5 Implementation and Architecture -- 6 Evaluation -- 7 Related Work -- 8 Conclusions and Future Work -- References -- PROV Extensions -- Versioned-PROV: A PROV Extension to Support Mutable Data Entities -- 1 Introduction -- 2 Running Example -- 3 Versioned-PROV -- 3.1 Concepts -- 3.2 Mapping Example -- 4 Evaluation -- 5 Related Work -- 6 Final Remarks -- References -- Using the Provenance from Astronomical Workflows to Increase Processing Efficiency -- 1 Introduction -- 2 Astronomy Application -- 2.1 The Image Processing Pipeline -- 2.2 Use Cases -- 3 Provenance in Astronomy Simulations -- 4 Evaluation -- 4.1 Use Case 1 -- 4.2 Use Case 2 -- 5 Related Work -- 5.1 Provenance in Astronomy and e-Science -- 5.2 PROV-TEMPLATES -- 6 Conclusions -- References -- Scientific Workflows -- Discovering Similar Workflows via Provenance Clustering: A Case Study -- 1 Introduction -- 2 Background -- 2.1 Next Generation Gene Sequencing (NGS) -- 2.2 Related Work -- 3 Clustering Workflow Provenance -- 3.1 Provenance Clustering Framework -- 3.2 Data Model: Abstract Provenance Graphs -- 3.3 Feature Extraction
3.4 Measuring Graph Similarity -- 3.5 Clustering Algorithm -- 4 Preliminary Experiments -- 4.1 Provenance Datasets -- 4.2 Analysis over Real Datasets -- 4.3 Analysis over Synthetic Datasets -- 4.4 Running Time Analysis -- 5 Conclusion -- References -- Validation and Inference of Schema-Level Workflow Data-Dependency Annotations -- 1 Introduction -- 2 Workflow Dependency Annotations -- 3 Reasoning over Dependency Types -- 3.1 Dependency Types -- 3.2 Composing Dependency Annotations -- 3.3 Additional Annotation Constraints -- 4 Prototype Implementation -- 5 Related Work -- 6 Conclusion and Future Work -- References -- Applications -- Belief Propagation Through Provenance Graphs -- 1 Introduction -- 2 Background -- 2.1 Provenance -- 2.2 Belief Propagation -- 3 Food Supply Chain as a Use Case -- 3.1 Food Provenance and Food Regulations -- 3.2 Modular Process Risk Model (MPRM) -- 4 The prFrame Framework -- 4.1 Food Risk Model with Monte-Carlo Simulation -- 4.2 Belief Propagation in the Provenance Network -- 4.3 Methodology to Infer Risk of Contamination -- 5 Evaluation of the Methodology -- 5.1 The Effect of the Distance and Position Between Nodes -- 5.2 Analysis of the Result -- 6 Conclusion and Future Work -- References -- Using Provenance to Efficiently Propagate SPARQL Updates on RDF Source Graphs -- 1 Introduction -- 2 Related Work -- 3 Running Example -- 4 The RGPROV Vocabulary -- 5 The Model and Algorithms -- 5.1 System Architecture -- 5.2 Update Propagation per Set Theoretic Operations -- 5.3 Partial Re-derivation Algorithms -- 6 Results -- 7 Conclusion and Future Work -- References -- System Demonstrations -- Implementing Data Provenance in Health Data Analytics Software -- Abstract -- 1 Introduction -- 2 Use Case -- 3 Summary -- References -- Quine: A Temporal Graph System for Provenance Storage and Analysis -- Abstract -- 1 Introduction
Intro -- Preface -- Organization -- Contents -- Reproducibility -- Provenance Annotation and Analysis to Support Process Re-computation -- 1 Introduction -- 1.1 Version Changes and Their Scope -- 1.2 Problem Formulation and Contributions -- 1.3 Example: Versioning in Genomics -- 2 Recomputation Fronts and Restart Trees -- 2.1 Recomputation Fronts -- 2.2 Building a Restart Tree -- 3 Computing the Re-computation Front -- 4 Related Work -- 5 Discussion and Conclusions -- References -- Provenance of Dynamic Adaptations in User-Steered Dataflows -- Abstract -- 1 Introduction -- 2 Related Work -- 3 Workflows, Computational Steering and Data Provenance -- 3.1 Dataflow-Oriented Approach and Runtime Provenance -- 3.2 A Diagram for Runtime Provenance in HPC Workflows -- 4 Provenance of Dynamic Adaptation in User-Steered Dataflows -- 5 Specializing PROV-DfA Concepts -- 5.1 Simulation Parameter Tuning -- 5.2 Online Adaptation of Iterative Simulations -- 5.3 Data Reduction -- 6 Case Study -- 7 Conclusion -- Acknowledgement -- References -- Classification of Provenance Triples for Scientific Reproducibility: A Comparative Evaluation of Deep Learning Models in the ProvCaRe Project -- Abstract -- 1 Introduction -- 2 Method -- 2.1 ProvCaRe S3 Model and Ontology -- 2.2 Training of Deep Learning Models -- 2.3 Deep Learning Model Architectures -- 3 Result and Discussion -- 3.1 Classification Results -- 3.2 Comparative Evaluation Results -- 4 Conclusion -- Acknowledgement -- References -- Modeling, Simulating and Capturing Provenance -- A Provenance Model for the European Union General Data Protection Regulation -- 1 Introduction -- 2 Background and Related Work -- 2.1 GDPR Background -- 2.2 Related Work -- 3 GDPR Data Provenance Model -- 4 Using the GDPR Data Provenance Model -- 4.1 Design Patterns -- 4.2 Verifying Compliance -- 5 Discussion -- 6 Conclusion
1.1 Highly Connected Temporal Data -- 1.2 Queries on Complex Structures over Time -- 1.3 Evolving Schema -- 1.4 Scalability for Large Datasets -- 2 Demonstration Topics -- 3 Conclusion -- Acknowledgments -- References -- Joint IPAW/TaPP Poster Session -- Capturing Provenance for Runtime Data Analysis in Computational Science and Engineering Applications -- Abstract -- 1 Introduction -- 2 DfA-prov Making CSE Applications Provenance-Aware -- 3 Conclusions -- Acknowledgments -- References -- UniProv - Provenance Management for UNICORE Workflows in HPC Environments -- Abstract -- 1 Introduction -- 2 Interoperable Provenance Framework for UNICORE -- 3 Capturing and Storing Provenance Data -- Acknowledgements -- References -- Towards a PROV Ontology for Simulation Models -- 1 Introduction -- 2 Exploiting PROV-DM for Simulation Model Development -- 3 Towards an PROV Ontology for Simulation Model Development -- References -- Capturing the Provenance of Internet of Things Deployments -- 1 Introduction -- 2 Describing IoT System Deployments -- 3 Future Work -- References -- Towards Transparency of IoT Message Brokers -- 1 Introduction -- 2 The MQTT-PLAN Ontology -- 3 Discussion and Future Work -- References -- Provenance-Based Root Cause Analysis for Revenue Leakage Detection: A Telecommunication Case Study -- 1 Introduction -- 2 The Proposed Approach -- 3 Running Examples -- 4 Results -- References -- Case Base Reasoning Decision Support Using the DecPROV Ontology for Decision Modelling -- 1 Decision Modelling Need and a Domain -- 2 Standardised PROV Decision Modelling -- 3 Case-Based Reasoning with Decisions -- 4 Current Work -- 5 Future Work -- References -- Bottleneck Patterns in Provenance -- 1 Introduction -- 2 Classification of Bottlenecks -- 3 Bottlenecks Patterns -- References -- Architecture for Template-Driven Provenance Recording -- 1 Introduction
2 Methodology -- 3 Architecture -- 4 Conclusions and Future Work -- References -- Combining Provenance Management and Schema Evolution -- 1 Introduction -- 2 Problem and Poster Description -- 2.1 Calculation of a Minimal Sub-database -- 2.2 Unification of Provenance and Evolution -- 2.3 Query Q -- 2.4 Evolution E -- 2.5 Data Provenance Qprov -- References -- Provenance for Entity Resolution -- 1 Motivation -- 2 Provenance Model for Abstract ER Pipelines -- 3 Implementing Provenance Capture for HIL ER Rules -- 4 Conclusion and Outlook -- References -- Where Provenance in Database Storage -- 1 Introduction -- 2 Background and Related Work -- 3 Motivating Where Provenance in DBMSes -- 4 Forensic Evidence in Where Provenance -- 5 Conclusion -- References -- Streaming Provenance Compression -- 1 Introduction -- 2 Contributions -- References -- Structural Analysis of Whole-System Provenance Graphs -- 1 Introduction -- 2 Graph Types in WSP -- 3 Setup -- 4 Results -- 5 Conclusions -- References -- A Graph Testing Framework for Provenance Network Analytics -- Abstract -- 1 Introduction -- 2 A Multi-model Graph Analysis Framework -- 3 Future Work -- References -- Provenance for Astrophysical Data -- 1 Introduction -- 2 Use Cases for Provenace in Astronomy -- 2.1 Cherenkov Telescope Array -- 2.2 Spectroscopic Surveys -- 2.3 APPLAUSE Database - Scanning Historical Photoplates -- 2.4 MUSE Data Reduction Pipeline -- 2.5 RAVE Survey -- 3 Special Requirements in Modelling Provenance in Astronomy -- 4 Integration into the IVOA Ecosystem -- 5 Summary -- References -- Data Provenance in Agriculture -- Abstract -- 1 Introduction -- 2 Experiments in Soils Science -- 3 Open Soils -- 4 Concluding Remarks -- Acknowledgments -- References -- Extracting Provenance Metadata from Privacy Policies -- 1 Motivation -- 2 Provenance Metadata -- 3 Potential Applications
4 Conclusion
Title Provenance and Annotation of Data and Processes
URI http://digital.casalini.it/9783319983790
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6300643
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319983790
Volume 11017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ5YvdiL71hfIcZ4Q6FseRyrVo2v9FBNb2SBJbU2UAt68Nc7w2PBamL0QmADbLIfzM7OzvcNwJHm2G3dMx0VvY0AFyh6oPLAZCrOTnrINY93PCI43z-Y14_sZtgZVsXrMnZJ6p34Hz_ySv6DKrYhrsSS_QOy8qXYgOeILx4RYTzOOb_yMge3P4vRSMls_24Uxan0_S54yuskgCpL8Iy2x8djnldGvx2hDx7IBBwxyss7IWKj50RGibuTaY5qn5i79SCBbs8FCcog4VyYsRbp6l59WVgaBnHvDCsvMiMtJf2_1cQh0_l6Z-ek3IXOzfH0VaWKXrTzXZQ3aUDDstD2LHV7N3dPMv7V1mySDiS6TdlXrtNY67sJTZ68oLHHiSBNyHPgCSfC6LeJM_MGBquwJIgisgYLIlqHlbIwhlLYyXVo1lQeN-C0QktBWJQKLSUOFUIra5ZobcLTZW9wfq0WdSpUjutj1lEtbmqeZlsCT1jILcMITV-YjIeCxG1MoQuTdP6EHjK_HWiMM6ctAp2KnPik6b8Fi1EciW1QbGYwEXJmGI7P_NDyGAn8ab6PPVh6IFpwWBsS932S7aknbm3cHK0Fu-VIuYhArn2euB1G2klOC5Ry8Nzs6SIN2K1g3Pn9ll1Yrj60PVhMZ29iH_2z1DsooP4EC1I8UQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Provenance+and+Annotation+of+Data+and+Processes&rft.au=Belhajjame%2C+Khalid&rft.au=Gehani%2C+Ashish&rft.au=Alper%2C+Pinar&rft.date=2018-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319983783&rft.volume=11017&rft.externalDocID=EBC6300643
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833199%2F9783319983790.jpg