Machine learning

Machine Learning, a vital and core area of artificial intelligence (AI), is propelling the AI field ever further and making it one of the most compelling areas of computer science research. This textbook offers a comprehensive and unbiased introduction to almost all aspects of machine learning, from...

Full description

Saved in:
Bibliographic Details
Main Authors Zhou, Zhi-Hua (Computer scientist), Liu, Shaowu
Format eBook Book
LanguageEnglish
Published Singapore Springer 2021
Springer Singapore
Edition1
Subjects
Online AccessGet full text
ISBN9811519668
9789811519666
DOI10.1007/978-981-15-1967-3

Cover

Abstract Machine Learning, a vital and core area of artificial intelligence (AI), is propelling the AI field ever further and making it one of the most compelling areas of computer science research. This textbook offers a comprehensive and unbiased introduction to almost all aspects of machine learning, from the fundamentals to advanced topics. It consists of 16 chapters divided into three parts: Part 1 (Chapters 1-3) introduces the fundamentals of machine learning, including terminology, basic principles, evaluation, and linear models; Part 2 (Chapters 4-10) presents classic and commonly used machine learning methods, such as decision trees, neural networks, support vector machines, Bayesian classifiers, ensemble methods, clustering, dimension reduction and metric learning; Part 3 (Chapters 11-16) introduces some  advanced topics, covering feature selection and sparse learning, computational learning theory, semi-supervised learning, probabilistic graphical models, rule learning, and reinforcement learning. Each chapter includes exercises and further reading, so that readers can explore areas of interest. The book can be used as an undergraduate or postgraduate textbook for computer science, computer engineering, electrical engineering, data science, and related majors. It is also a useful reference resource for researchers and practitioners of machine learning.
AbstractList Machine Learning, a vital and core area of artificial intelligence (AI), is propelling the AI field ever further and making it one of the most compelling areas of computer science research. This textbook offers a comprehensive and unbiased introduction to almost all aspects of machine learning, from the fundamentals to advanced topics. It consists of 16 chapters divided into three parts: Part 1 (Chapters 1-3) introduces the fundamentals of machine learning, including terminology, basic principles, evaluation, and linear models; Part 2 (Chapters 4-10) presents classic and commonly used machine learning methods, such as decision trees, neural networks, support vector machines, Bayesian classifiers, ensemble methods, clustering, dimension reduction and metric learning; Part 3 (Chapters 11-16) introduces some  advanced topics, covering feature selection and sparse learning, computational learning theory, semi-supervised learning, probabilistic graphical models, rule learning, and reinforcement learning. Each chapter includes exercises and further reading, so that readers can explore areas of interest. The book can be used as an undergraduate or postgraduate textbook for computer science, computer engineering, electrical engineering, data science, and related majors. It is also a useful reference resource for researchers and practitioners of machine learning.
Author Liu, Shaowu
Zhou, Zhi-Hua (Computer scientist)
Author_xml – sequence: 1
  fullname: Zhou, Zhi-Hua (Computer scientist)
– sequence: 2
  fullname: Liu, Shaowu
BackLink https://cir.nii.ac.jp/crid/1130008121912460174$$DView record in CiNii
BookMark eNpFkMtLxDAQxiM-0K4LXr15EMRD3UyS5nHUsj5gxYt4DWmaunVLujZV_30TK3qZ4SO_75vMZGjP994hdAr4CjAWCyVkriTkUOSguMjpDsqihiIpvvsvuDxAGRDOeCEEl4doHsIbxpgIwgQhR-jk0dh1691Z58zgW_96jPYb0wU3_-0z9HK7fC7v89XT3UN5vcoNSCrjSGvAxohKOAUVo7WRgjaG1LJuLBM2vlXSKixB1KSxHDtLsDPEGQDLC0Vn6HIKNmHjvsK678agPztX9f0m6Ljh30I0souJDdsh_tENeqIA63SPROuIayh0MujkuJgc26F__3Bh1D_B1vlxMJ1e3pRcYMlUIs8n0rettm2qADTeSAIBBYRxDILRb5jzZmA
ContentType eBook
Book
Copyright Springer Nature Singapore Pte Ltd. 2021. Translation from the Chinese Simplified language edition: Machine Learning by Zhi-Hua Zhou, and Shaowu Liu, © Tsinghua University Press 2016. Published by Tsinghua University Press. All Rights Reserved.
Copyright_xml – notice: Springer Nature Singapore Pte Ltd. 2021. Translation from the Chinese Simplified language edition: Machine Learning by Zhi-Hua Zhou, and Shaowu Liu, © Tsinghua University Press 2016. Published by Tsinghua University Press. All Rights Reserved.
DBID RYH
DEWEY 006.31
DOI 10.1007/978-981-15-1967-3
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9811519676
9789811519673
Edition 1
1st Edition 2021
ExternalDocumentID 9789811519673
485899
EBC6708493
BC10009054
GroupedDBID 38.
AABBV
AABLV
ABLLD
ABNDO
ACBPT
ACWLQ
AEJLV
AEKFX
AELOD
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
IEZ
OCUHQ
ORHYB
RYH
SBO
TPJZQ
Z7R
Z7U
Z7X
Z83
Z85
ID FETCH-LOGICAL-a18387-3ca1c722b7e91b43da873fa2d8dfc47cc72b8c90817d2fc60ec20ea2ea11c6593
ISBN 9811519668
9789811519666
IngestDate Mon Jun 02 02:50:21 EDT 2025
Fri May 23 03:30:33 EDT 2025
Fri May 30 21:28:04 EDT 2025
Fri Jun 27 00:11:14 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q325.5-.7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a18387-3ca1c722b7e91b43da873fa2d8dfc47cc72b8c90817d2fc60ec20ea2ea11c6593
Notes Translation from Chinese edition (Tsinghua University Press, c2016)
Includes bibliographical references and index
OCLC 1264657768
PQID EBC6708493
PageCount 460
ParticipantIDs askewsholts_vlebooks_9789811519673
springer_books_10_1007_978_981_15_1967_3
proquest_ebookcentral_EBC6708493
nii_cinii_1130008121912460174
PublicationCentury 2000
PublicationDate c2021
2021
20210821
2021-08-20
PublicationDateYYYYMMDD 2021-01-01
2021-08-21
2021-08-20
PublicationDate_xml – year: 2021
  text: c2021
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationYear 2021
Publisher Springer
Springer Singapore
Publisher_xml – name: Springer
– name: Springer Singapore
SSID ssj0002724722
Score 2.717329
Snippet Machine Learning, a vital and core area of artificial intelligence (AI), is propelling the AI field ever further and making it one of the most compelling areas...
SourceID askewsholts
springer
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Computer Science
Data Mining and Knowledge Discovery
Machine Learning
Mathematics of Computing
TableOfContents 8.4 Combination Strategies -- 8.5 Diversity -- 8.6 Further Reading -- Exercises -- Break Time -- References -- 9 Clustering -- 9.1 Clustering Problem -- 9.2 Performance Measure -- 9.3 Distance Calculation -- 9.4 Prototype Clustering -- 9.5 Density Clustering -- 9.6 Hierarchical Clustering -- 9.7 Further Reading -- Exercises -- Break Time -- References -- 10 Dimensionality Reduction and Metric Learning -- 10.1 k-Nearest Neighbor Learning -- 10.2 Low-Dimensional Embedding -- 10.3 Principal Component Analysis -- 10.4 Kernelized PCA -- 10.5 Manifold Learning -- 10.6 Metric Learning -- 10.7 Further Reading -- Exercises -- Break Time -- References -- 11 Feature Selection and Sparse Learning -- 11.1 Subset Search and Evaluation -- 11.2 Filter Methods -- 11.3 Wrapper Methods -- 11.4 Embedded Methods and L1 Regularization -- 11.5 Sparse Representation and Dictionary Learning -- 11.6 Compressed Sensing -- 11.7 Further Reading -- Exercises -- Break Time -- References -- 12 Computational Learning Theory -- 12.1 Basic Knowledge -- 12.2 PAC Learning -- 12.3 Finite Hypothesis Space -- 12.4 VC Dimension -- 12.5 Rademacher Complexity -- 12.6 Stability -- 12.7 Further Reading -- Exercises -- Break Time -- References -- 13 Semi-Supervised Learning -- 13.1 Unlabeled Samples -- 13.2 Generative Methods -- 13.3 Semi-Supervised SVM -- 13.4 Graph-Based Semi-Supervised Learning -- 13.5 Disagreement-Based Methods -- 13.6 Semi-Supervised Clustering -- 13.7 Further Reading -- Exercises -- Break Time -- References -- 14 Probabilistic Graphical Models -- 14.1 Hidden Markov Model -- 14.2 Markov Random Field -- 14.3 Conditional Random Field -- 14.4 Learning and Inference -- 14.5 Approximate Inference -- 14.6 Topic Model -- 14.7 Further Reading -- Exercises -- Break Time -- References -- 15 Rule Learning -- 15.1 Basic Concepts -- 15.2 Sequential Covering -- 15.3 Pruning Optimization
Intro -- Preface -- Contents -- Symbols -- 1 Introduction -- 1.1 Introduction -- 1.2 Terminology -- 1.3 Hypothesis Space -- 1.4 Inductive Bias -- 1.5 Brief History -- 1.6 Application Status -- 1.7 Further Reading -- Exercises -- Break Time -- References -- 2 Model Selection and Evaluation -- 2.1 Empirical Error and Overfitting -- 2.2 Evaluation Methods -- 2.3 Performance Measure -- 2.4 Comparison Test -- 2.5 Bias and Variance -- 2.6 Further Reading -- Exercises -- Break Time -- References -- 3 Linear Models -- 3.1 Basic Form -- 3.2 Linear Regression -- 3.3 Logistic Regression -- 3.4 Linear Discriminant Analysis -- 3.5 Multiclass Classification -- 3.6 Class Imbalance Problem -- 3.7 Further Reading -- Exercises -- Break Time -- References -- 4 Decision Trees -- 4.1 Basic Process -- 4.2 Split Selection -- 4.3 Pruning -- 4.4 Continuous and Missing Values -- 4.5 Multivariate Decision Trees -- 4.6 Further Reading -- Exercises -- Break Time -- References -- 5 Neural Networks -- 5.1 Neuron Model -- 5.2 Perceptron and Multi-layer Network -- 5.3 Error Backpropagation Algorithm -- 5.4 Global Minimum and Local Minimum -- 5.5 Other Common Neural Networks -- 5.6 Deep Learning -- 5.7 Further Reading -- Exercises -- Break Time -- References -- 6 Support Vector Machine -- 6.1 Margin and Support Vector -- 6.2 Dual Problem -- 6.3 Kernel Function -- 6.4 Soft Margin and Regularization -- 6.5 Support Vector Regression -- 6.6 Kernel Methods -- 6.7 Further Reading -- Exercises -- Break Time -- References -- 7 Bayes Classifiers -- 7.1 Bayesian Decision Theory -- 7.2 Maximum Likelihood Estimation -- 7.3 Naïve Bayes Classifier -- 7.4 Semi-Naïve Bayes Classifier -- 7.5 Bayesian Network -- 7.6 EM Algorithm -- 7.7 Further Reading -- Exercises -- Break Time -- References -- 8 Ensemble Learning -- 8.1 Individual and Ensemble -- 8.2 Boosting -- 8.3 Bagging and Random Forest
15.4 First-Order Rule Learning -- 15.5 Inductive Logic Programming -- 15.6 Further Reading -- Exercises -- Break Time -- References -- 16 Reinforcement Learning -- 16.1 Task and Reward -- 16.2 K-Armed Bandit -- 16.3 Model-Based Learning -- 16.4 Model-Free Learning -- 16.5 Value Function Approximation -- 16.6 Imitation Learning -- 16.7 Further Reading -- Exercises -- Break Time -- References -- Appendix A Matrix -- A.1 Basic Operations -- A.2 Derivative -- A.3 Singular Value Decomposition -- Appendix B Optimization -- B.1 Lagrange Multiplier Method -- B.2 Quadratic Programming -- B.3 Semidefinite Programming -- B.4 Gradient Descent Method -- B.5 Coordinate Descent Method -- Appendix C Probability Distributions -- C.1 Common Probability Distributions -- C.2 Conjugate Distribution -- C.3 Kullback-Leibler Divergence -- Index
Title Machine learning
URI https://cir.nii.ac.jp/crid/1130008121912460174
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6708493
http://link.springer.com/10.1007/978-981-15-1967-3
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9789811519673
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdYeWEv41MUGKoQD7wYxU5sx4-sKqqmwQtj2ptlOw6LmFqJtiDx1_Nz6iRtQULwYiW245PvnLvznc9HyGuVVa4QmlMJFkkLbjV1ITBay7oUrnJB2Bgo_OGjnH8uzq_F9ZA3rI0uWbu3_ucf40r-h6qoA11jlOw_ULYfFBV4Bn1RgsIoD5Tf_jXlXmqPQIYu58OXwfy73LTuhpuGzje2ddGmtA0p9LGJMR795v-iabt_urHLH5tdAwBnBwaAzgC4tzHUJTQ9_FzbjCa_scnhZAQ6UiYouoLXDDKhP6l3No0OAA3F7ogcKZWNyN13s_OLq96OxRWP901u7zIawGID3L-UnTc5Xei7B_OYHNvVVzB0MPv1ChJ-0TR72v6Bg7qV-5f3ySjGgjwgd8LiITnpUDlJDPEROUmEmHSEeEyu3s8up3OackxQC2YWGay3zGMCTgXNXJFXtlR5bXlVVrUvlEebK72G5qQqXnuZBc-zYHmwjHkpdP6EjBbLRXhKJlxVlUCjL60svJPas8wLD4009zpnckxe7UzVfL9t_eErs4M4lY_JKTBgfBNLFp2NAA2xAj0Me2dVjMmkw41pv0-HeM3sbCpVVhYaQ7zpcGa2ELq7qQHJAJRhwkRgJn_2F2jPyb1hyb0go_W3TTiFFrZ2L9NC-AVH-CGs
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Machine+learning&rft.au=Zhou%2C+Zhi-Hua+%28Computer+scientist%29&rft.au=Liu%2C+Shaowu&rft.date=2021-01-01&rft.pub=Springer&rft.isbn=9789811519666&rft_id=info:doi/10.1007%2F978-981-15-1967-3&rft.externalDocID=BC10009054
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97898115%2F9789811519673.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-981-15-1967-3