Advanced soft computing techniques in data science, IoT and cloud computing

This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. N...

Full description

Saved in:
Bibliographic Details
Main Authors Dash, Sujata, Pani, Subhendu Kumar, Abraham, Ajith, Liang, Yulan
Format eBook Book
LanguageEnglish
Published Cham Springer 2021
Springer International Publishing AG
Springer International Publishing
Edition1
SeriesStudies in Big Data
Subjects
Online AccessGet full text
ISBN9783030756567
3030756564
ISSN2197-6503
2197-6511
DOI10.1007/978-3-030-75657-4

Cover

Abstract This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine-firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine-wavelet (SVM-Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications.All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health.This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.
AbstractList This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine-firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine-wavelet (SVM-Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications.All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health.This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.
This book plays a significant role in improvising human life to a great extent. --
Author Pani, Subhendu Kumar
Liang, Yulan
Dash, Sujata
Abraham, Ajith
Author_xml – sequence: 1
  fullname: Dash, Sujata
– sequence: 2
  fullname: Pani, Subhendu Kumar
– sequence: 3
  fullname: Abraham, Ajith
– sequence: 4
  fullname: Liang, Yulan
BackLink https://cir.nii.ac.jp/crid/1130853166183664663$$DView record in CiNii
BookMark eNpVkVtvEzEQhQ0U1Av5Abz5AQkhsXRmfZn1Y4laqKjES8Wr5dheumSxQ7wp_Hy8SUVVybKlM98cnRmfsqOUU2TsDcJHBKBzQ10jGhDQkNKKGvmMLaomqrIX5HN20qKhRivEF09qmo7-10C8YqfYdgq0EYaO2aKUnwDQEnZa4gn7ehHuXfIx8JL7ifv8a7ObhvSDT9HfpeH3LhY-JB7c5HjxQ6zoB36db7lLgfsx78Jjz2v2sndjiYuH94x9v7q8XX5pbr59vl5e3DQOSUnRtLE1Es0KTNtJRSIEL01QgST10QQEKSD2UsXQuzqHU9TXrArJQz0A4oy9OxiX9TCOc3C7ynldWvmX7GpdKoOqI9lW8v2BdGUd_5S7PE7F3o9xj9snC63s-YPrZluniduDqUWw85fMtBW28nbfYOVjjs02z5ua7N7YxzRt3WgvPy01GSOFqeTbA5mGwfphvhEFdEqg1tgJraXWQvwDhnWMjg
ContentType eBook
Book
Copyright The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
Copyright_xml – notice: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
DBID RYH
DEWEY 006.3
DOI 10.1007/978-3-030-75657-4
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
Business
EISBN 9783030756574
3030756572
EISSN 2197-6511
Edition 1
1st Edition 2021
Editor Pani, Subhendu Kumar
Liang, Yulan
Dash, Sujata
Abraham, Ajith
Editor_xml – sequence: 1
  givenname: Sujata
  surname: Dash
  fullname: Dash, Sujata
  email: sujata238dash@gmail.com
– sequence: 2
  givenname: Subhendu Kumar
  surname: Pani
  fullname: Pani, Subhendu Kumar
  email: skpani.india@gmail.com
– sequence: 3
  givenname: Ajith
  surname: Abraham
  fullname: Abraham, Ajith
  email: abraham.ajith@gmail.com
– sequence: 4
  givenname: Yulan
  surname: Liang
  fullname: Liang, Yulan
  email: liang@umaryland.edu
ExternalDocumentID bks000158742
9783030756574
493779
EBC6799439
BC11059670
Genre Electronic books
GroupedDBID 38.
AABBV
AABLV
AALIM
ABNDO
ACBPT
ACWLQ
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
I4C
IEZ
OCUHQ
ORHYB
RYH
SBO
TPJZQ
WZT
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-a17543-2e29419b09284573ddc49d5d747fe9d10430ef45edfa219a57f641517c07c0003
ISBN 9783030756567
3030756564
ISSN 2197-6503
IngestDate Sun Sep 01 03:27:36 EDT 2024
Fri Nov 08 03:30:10 EST 2024
Wed Oct 30 02:42:38 EDT 2024
Tue Jan 07 00:22:53 EST 2025
Thu Jun 26 22:29:29 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum T58.5 .D37 2021
LCCallNum_Ident Q342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a17543-2e29419b09284573ddc49d5d747fe9d10430ef45edfa219a57f641517c07c0003
Notes Includes bibliographical references
OCLC 1285069397
PQID EBC6799439
PageCount 443
ParticipantIDs skillsoft_books24x7_bks000158742
askewsholts_vlebooks_9783030756574
springer_books_10_1007_978_3_030_75657_4
proquest_ebookcentral_EBC6799439
nii_cinii_1130853166183664663
PublicationCentury 2000
PublicationDate c2021
2021
2021-11-05
2021.
PublicationDateYYYYMMDD 2021-01-01
2021-11-05
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham, Switzerland
– name: Cham
– name: Place of publication not identified
PublicationSeriesTitle Studies in Big Data
PublicationSeriesTitleAlternate Studies in Big Data
PublicationYear 2021
Publisher Springer
Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer
– name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kacprzyk, Janusz
RelatedPersons_xml – sequence: 1
  givenname: Janusz
  surname: Kacprzyk
  fullname: Kacprzyk, Janusz
SSID ssj0002718641
ssib016745702
Score 2.2538862
Snippet This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in...
This book plays a significant role in improvising human life to a great extent. --
SourceID skillsoft
askewsholts
springer
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Big Data
Cloud computing
Computational Intelligence
Computer Science
Cyber-physical systems, IoT
Data Engineering
Engineering
Engineering -- Data processing
Information technology
Internet of things
Soft computing
SubjectTermsDisplay Databases.
Electronic books.
Information technology.
TableOfContents Intro -- Preface -- Acknowledgements -- Contents -- Editors and Contributors -- Abbreviations -- Soft Computing Techniques for IoT Devices -- A Wearable Assistive Device for Safe Travel Using Transfer Learning and IoT for Visually Impaired People -- 1 Introduction -- 2 Review of Literature -- 3 Overview of Proposed System -- 4 Proposed Methodology -- 4.1 Bus Board Detection for Route Information Extraction -- 4.2 Route Recognition -- 4.3 Text to Speech Conversion for Route Identification -- 4.4 An IOT Based Railway Platform Detection -- 4.5 Assistive Device for Visual Mobility and Safe Travel -- 5 Implementation and Results -- 6 Conclusion and Future Work -- References -- Soft Computing Techniques for Physical Layer Security of IoT Devices -- 1 Introduction -- 2 Machine Learning Algorithms for PLS in IoT -- 2.1 PLS Schemes Using K-Nearest Neighbor Algorithm -- 2.2 PLS Scheme Using Support Vector Machine -- 3 Deep Learning Algorithms for PLS in IoT -- 3.1 PLS Scheme Using Deep Neural Network Models -- 3.2 PLS Scheme Using Convolutional Neural Network Models -- 3.3 PLS Scheme Using Long Short-Term Memory Networks -- 3.4 PLS Schemes Based on Recurrent Neural Networks -- 4 Fuzzy Systems for Physical Layer Security for IoT -- 5 Genetic Algorithm for Physical Layer Security for IoT -- 6 Conclusions -- References -- Linear Congruence Generator and Chaos Based Encryption Key Generation for Medical Data Security in IoT Based Health Care System -- 1 Introduction -- 2 Literature Survey -- 3 Problem Domain -- 4 Our Contributions -- 5 Proposed Work -- 5.1 Session Key Generation -- 5.2 Intermediate Key Generation -- 5.3 Encryption Process -- 5.4 Generation of Authentication Code and Transmission File -- 5.5 Decryption Phase -- 6 Result and Discussion -- 6.1 Randomness Analysis of Key
6.1 BMRI Image Segmentation Process -- 6.2 Feature Extraction -- 6.3 Feature Normalization -- 6.4 Data Distribution -- 6.5 Classification Result -- 6.6 Result Analysis -- 7 Conclusion and Future Scope -- References -- Automatic Localization of Optic Disc in Retinal Fundus Image Based on Unsupervised Learning -- 1 Introduction -- 2 Related Work -- 3 Clustering Methods -- 3.1 Agglomerative Clustering -- 3.2 K-Means Clustering -- 3.3 Fuzzy C Mean Clustering -- 3.4 DBSCAN Clustering -- 4 Methodology -- 4.1 Retinal Image Pre-processing -- 5 Results and Discussion -- 5.1 Dataset Description -- 5.2 Result Analysis -- 5.3 Optic Disc Detection -- 5.4 Performance Evaluation -- 5.5 Discussion -- 6 Conclusion -- References -- Soft Computing Techniques in Data Science -- Performance Evaluation of Hybrid Machine Learning Algorithms for Medical Image Classification -- 1 Introduction -- 2 Methodologies -- 2.1 Efficiency of SVM-RBF Kernels for Medical Image Classification -- 2.2 Feature Reduction using PCA -- 2.3 Hybrid Algorithm Based on PSO, GA with Local Search -- 2.4 Deep Learning -- 3 Discussion of Experimental Results -- 4 Conclusion -- References -- Computing Truth Values of Modus Ponens and Modus Tollens Rule for Linguistic Truth-Valued Propositions and Its Application in Taking Decisions in Health Care -- 1 Introduction -- 2 Basic Concepts -- 3 Reasoning with Linguistic Truth-Valued Propositions -- 3.1 Computation of Truth Values of Modus Ponens and Modus Tollens rules for LTVP -- 3.2 Computation of Truth Values of Modus Ponens and Modus Tollens rules for QLTVP -- 4 Output and Results -- 4.1 Examples -- 5 Conclusion -- References -- Analysis of Customers' Reviews Using Soft Computing Classification Algorithms: A Case Study of Amazon -- 1 Introduction -- 2 Literature Survey -- 3 Data Collection and Methodology -- 3.1 Data Collection and Preprocessing
4.3 Dynamic Spatial RBAC Algorithm -- 5 Experimental Results -- 6 Summary -- References -- Analysis of Long Short Term Memory (LSTM) Networks in the Stateful and Stateless Mode for COVID-19 Impact Prediction -- 1 Introduction -- 2 Recurrent Neural Networks -- 2.1 From RNN to LSTM -- 3 LSTM Architecture -- 3.1 Various Gates in the LSTM Architecture -- 3.2 Stateful and Stateless LSTM -- 4 LSTM Research -- 5 COVID19-Prediction Problem -- 6 Defining Models in Keras -- 6.1 Five Step Lifecycle -- 7 LSTM State Management -- 8 Results and Conclusion -- 8.1 A Vanilla RNN -- 8.2 Stateful LSTM -- 8.3 Stateless LSTM Without Shuffling -- 8.4 Stateless with Shuffling -- References -- Soft Computing Techniques for Energy Consumption and Resource Aware Allocation on Cloud: A Progress and Systematic Review -- 1 Introduction -- 2 Motivation -- 3 Background -- 3.1 Framework for Energy Consumption and Resource Aware Allocation -- 3.2 Types of Soft Computing Techniques -- 3.3 Importance of Soft Computing Techniques for Energy Consumption -- 3.4 Research Challenges or Issues -- 3.5 Application Areas -- 4 Reported Work -- 4.1 Soft Computing Techniques for Energy Consumption -- 4.2 Resource Allocation -- 5 Comparative Analysis of Soft Computing Techniques for Energy Consumption and Resource Aware Allocations -- 6 Conclusion -- References -- Automatic Segmentation and Classification of Brain Tumor from MR Images Using DWT-RBFNN -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 3.1 Magnetic Resonance Imaging (MRI) -- 3.2 MRI Database -- 3.3 Wavelet Transform (WT) -- 3.4 DWT Image Filtering -- 4 Preprocessing of MRI Data -- 4.1 Resizing of MRI Images -- 4.2 Image Denoising Using MRDWT-ICA -- 4.3 Tumor Segmentation -- 4.4 Otsu's Thresholding -- 5 RBFNN Classifier -- 5.1 Performance Evaluation Assessment Metrics (PEAM) -- 6 Experimental Result and Discussion
6.2 Comparative Analysis Between Modified Logistic Map and Standard Logistic Map -- 6.3 Statistical Analysis -- 6.4 Key Sensitivity Analysis -- 6.5 Security Analysis -- 6.6 Functionality Analysis of Encryption Technique -- 6.7 Significance of Authentication in Our Proposed Scheme -- 7 Conclusion -- References -- Content Based Video Retrieval-Methods, Techniques and Applications -- 1 Introduction -- 2 State-of-the-Art Techniques -- 3 Content Based Video Retrieval (CBVR) -- 3.1 Keyframe Extraction -- 3.2 Feature Vectors for CBVR -- 3.3 The Proposed Method -- 3.4 Performance Analysis -- 4 Applications -- 5 Conclusion -- References -- Building the World of Internet of Things -- 1 Introduction: The Information Revolution -- 2 Sensors -- 3 Networks -- 4 Augmented Intelligence -- 5 Augmented Behavior -- 6 Standards -- 7 Conclusion -- References -- Applicability of Machine Learning Algorithms for Intelligent Farming -- 1 Introduction -- 2 Literature Review -- 3 Data Analysis and Its Techniques Used in Machine Learning -- 3.1 Feature Selection -- 4 Background Statistics of ML Algorithms -- 4.1 Chi-Square Statistics -- 4.2 Euclidean Distance -- 5 Classification Algorithms Used -- 5.1 K-Nearest Neighbor's -- 5.2 Support-Vector Machine (SVM) -- 5.3 Logistic Regression -- 5.4 Decision Trees -- 6 Implementation -- 6.1 Gathering Data -- 6.2 Analyzing Gathered Data -- 6.3 Results -- 6.4 Integrating IoT and ML for Intelligent Farming-A Future Approach -- 7 Conclusion and Future Scope -- References -- Soft Computing Techniques in Cloud Computing and Computer Networking -- Hybrid Cloud Data Protection Using Machine Learning Approach -- 1 Introduction -- 2 Problem Statement -- 3 De-duplication -- 4 Cloud Security Protection Framework with Machine Learning Modules -- 4.1 Cloud Client Classification Using Enhanced C4.5 Algorithm -- 4.2 De-duplication Processing Algorithm
Role of Artificial Intelligence in COVID-19 Pandemic
3.2 Data Representation -- 3.3 Classifications -- 4 Experimental Results and Discussions -- 5 Conclusions -- References -- Pattern Mining-FTISPAM Using Hybrid Genetic Algorithm -- 1 Introduction -- 2 Fuzzy Time-Interval Sequential Patterns Using Hybrid Genetic Algorithm -- 3 Overview of the FTISPAM-HGA -- 4 Fuzzy Time Interval Sequential Pattern Mining -- 5 Hybrid Genetic Algorithm -- 6 Fuzzy Time Interval Sequential Pattern Mining Using HGA Algorithm -- 7 Patterns Matching Using SCI -- 8 Significant Pattern Evaluation -- 9 Experimental Results and Discussion -- 10 Conclusion -- References -- Soft Computing Techniques for Medical Diagnosis, Prognosis and Treatment -- 1 Introduction -- 1.1 Healthcare Data -- 1.2 Types of AI in Healthcare -- 2 Intelligent Systems for Healthcare Decisions -- 2.1 Virtual Assistants in Drug Development -- 2.2 Intelligent Medical Devices -- 2.3 Ambient Healthcare Monitoring System -- 3 Use Cases of Soft Computing in Basic Sciences and Diagnostics -- 3.1 Soft Computing in Basic Sciences -- 3.2 Soft Computing in Medical Diagnosis -- 4 Soft Computing Techniques in Healthcare Decision Systems -- 4.1 Artificial Neural Networks -- 4.2 Fuzzy Logic -- 4.3 Genetic Algorithms -- 5 Further Applications of Soft Computing in Healthcare Decision Making -- 5.1 Fuzzy Logic in Remote Healthcare Monitoring -- 5.2 Risk Assessment of Cervical Cancer in Women-Based on Convolutional Neural Network -- 5.3 Diagnosis of Depression Using Neuro-fuzzy Model of Soft Computing -- 6 Hybrid Techniques Used in Healthcare -- 6.1 Hybrid Solution for Skin Cancer Detection -- 7 Soft Computing in Clinical Applications -- 7.1 Soft Computing in Cardiology -- 7.2 Soft Computing in Neurology -- 7.3 Soft Computing in Medicine and Rehabilitation -- 7.4 Soft Computing in Other Clinical Areas -- 8 Conclusion -- References
Title Advanced soft computing techniques in data science, IoT and cloud computing
URI https://cir.nii.ac.jp/crid/1130853166183664663
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6799439
http://link.springer.com/10.1007/978-3-030-75657-4
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030756574
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9swGBZrdth6affF0rVDjB0GnUdsyZJ1bENK6bqdstKdhG3J1I1xYLbL2K_fK1myk64wNggiNrIk9IhXj94vIfSexSTPY0IDCiUcUAQJ0ozlQVwQlWlCIqFNoPCXr-z8G724jq_Hez5tdEmbfcp_PRhX8j-owjvA1UTJ_gOyQ6PwAv4DvlACwlDeI7_Do3Mt9pb7BqSodQvv-gsffEbW3ss1bdNjt8VZWbBe9mFs1bpT41ejsrq56R11bvuANWdbspc-GQlzo2vVHVun7NFqNERan9yW7aBbviydHvp7V7n151QLUXhPteBVi1tHTmKkgmGB_EEBvOlzATUDU5W7OJ7tvNan89BwO8ZnO2iHczg4Pz5ZXFxeDRqyCLZNRkMTkOP77DM5bozB26ldquCtPnfRbtqsYKuAbaRtgDvUZbl1jnjSrMqqMkD9YQa37GK5jyYm4uQZeqTr52jP37OBndh9gT57uLFpBQ_A4RFuXNbYwI0d3B8xgI0BbGzBHr95ia7OFsv5eeAuwQhSYHaUBJGOBA1FNhPAJGJOlMqpULGCc2ChhQpN0jZd0FirIoXtJ415AbMWhzyfwQ-E9is0qde1fo2wTsNEUVFw01ShoUVoJ2FcgxBmiiRT9G5jxuRdZQ32jdyYck6n6AgmUualKUOgQED4QmB5CWGMAn-dIuynWNrvnZexXJzOGRcCGDBUGaZe2i4i-pPLbNXY0P6E02iKPnhE-hrS59eGwUgiYTjSjkfSg78M6A16Oi7uQzRpf3T6CJhkm711S-43sjllfg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Advanced+soft+computing+techniques+in+data+science%2C+IoT+and+cloud+computing&rft.au=Dash%2C+Sujata&rft.au=Pani%2C+Subhendu+Kumar&rft.au=Abraham%2C+Ajith&rft.au=Liang%2C+Yulan&rft.date=2021-01-01&rft.pub=Springer&rft.isbn=9783030756567&rft_id=info:doi/10.1007%2F978-3-030-75657-4&rft.externalDocID=BC11059670
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830307%2F9783030756574.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-030-75657-4