Numerical simulations of subduction zones Effect of slab dehydration on the mantle wedge dynamics

In oceanic subduction zones, dehydration of slab's minerals may favor asthenospheric flow in the mantle wedge by decreasing rocks strength. This should enhance the upper plate base reheating and markedly alter its thermal structure. To quantify this phenomenon, we model slab subduction within a...

Full description

Saved in:
Bibliographic Details
Published inPhysics of the earth and planetary interiors Vol. 149; no. 1-2; pp. 133 - 153
Main Authors Arcay, D, Tric, E, Doin, M-P
Format Journal Article
LanguageEnglish
Published Elsevier 15.03.2005
Online AccessGet full text
ISSN0031-9201
0031-9201
DOI10.1016/j.pepi.2004.08.020

Cover

Abstract In oceanic subduction zones, dehydration of slab's minerals may favor asthenospheric flow in the mantle wedge by decreasing rocks strength. This should enhance the upper plate base reheating and markedly alter its thermal structure. To quantify this phenomenon, we model slab subduction within a viscous mantle, dehydration-hydration processes, and the rock strength dependence on water content. We use accurate phase diagrams for a H sub(2)O- satured mantle peridotite and a gabbroic crust to determine at each time step the amount of water released or absorbed by each unit of rock. Transition phases are supposed to be not metastable. Water is released from the oceanic crust and from the altered peridotite portion of the slab. Dehydration of the subducting lithosphere occurs first at 60-75 km depth, when the crust is eclogitized, and second, deeper around 105 km when serpentine and chlorite in serpentinite layer below the crust become unstable. For high convergence rates, because of cold, P,-, T,-, t, paths in the slab, serpentine can be transformed into the hydrated phase A and water is recycled by the slab until great depth. However, in all investigated cases, the released water is sufficient to hydrate by dissolution the whole mantle wedge until, 217 plus or minus 55, km away from the trench and, as it goes up, to form hydrated minerals in the overlying lithosphere over a significant volume. The convergence rate slightly shifts dehydration fronts location, and consequently widens or reduces the hydrated mantle wedge. Note that for the dynamic corner flow modelled here, with a non- Newtonian rheology, the slab surface is significantly warmer than for an isoviscous analytical corner flow model, yielding plausible crust melting. We assume a strength reduction associated to hydration larger for rocks containing nominally hydrous minerals than for rocks with only dissolved water. The rock strength thus becomes quite uniform at the base of the hydrated upper plate and in the wedge. This results in cooler temperatures along the slab top, but in an enhanced corner flow effect on the upper plate thermal structure. For large hydration strength reductions, a strong thermal erosion of the overlapping lithosphere develops in less than 15 Myr due to convective destabilization. This weakens drastically the upper plate at a distance from 110 to 220 km away from the trench. The geometry of the eroded region could correspond to the low- velocity zone observed below the arc region.
AbstractList In oceanic subduction zones, dehydration of slab's minerals may favor asthenospheric flow in the mantle wedge by decreasing rocks strength. This should enhance the upper plate base reheating and markedly alter its thermal structure. To quantify this phenomenon, we model slab subduction within a viscous mantle, dehydration-hydration processes, and the rock strength dependence on water content. We use accurate phase diagrams for a H sub(2)O- satured mantle peridotite and a gabbroic crust to determine at each time step the amount of water released or absorbed by each unit of rock. Transition phases are supposed to be not metastable. Water is released from the oceanic crust and from the altered peridotite portion of the slab. Dehydration of the subducting lithosphere occurs first at 60-75 km depth, when the crust is eclogitized, and second, deeper around 105 km when serpentine and chlorite in serpentinite layer below the crust become unstable. For high convergence rates, because of cold, P,-, T,-, t, paths in the slab, serpentine can be transformed into the hydrated phase A and water is recycled by the slab until great depth. However, in all investigated cases, the released water is sufficient to hydrate by dissolution the whole mantle wedge until, 217 plus or minus 55, km away from the trench and, as it goes up, to form hydrated minerals in the overlying lithosphere over a significant volume. The convergence rate slightly shifts dehydration fronts location, and consequently widens or reduces the hydrated mantle wedge. Note that for the dynamic corner flow modelled here, with a non- Newtonian rheology, the slab surface is significantly warmer than for an isoviscous analytical corner flow model, yielding plausible crust melting. We assume a strength reduction associated to hydration larger for rocks containing nominally hydrous minerals than for rocks with only dissolved water. The rock strength thus becomes quite uniform at the base of the hydrated upper plate and in the wedge. This results in cooler temperatures along the slab top, but in an enhanced corner flow effect on the upper plate thermal structure. For large hydration strength reductions, a strong thermal erosion of the overlapping lithosphere develops in less than 15 Myr due to convective destabilization. This weakens drastically the upper plate at a distance from 110 to 220 km away from the trench. The geometry of the eroded region could correspond to the low- velocity zone observed below the arc region.
Author Tric, E
Doin, M-P
Arcay, D
Author_xml – sequence: 1
  givenname: D
  surname: Arcay
  fullname: Arcay, D
– sequence: 2
  givenname: E
  surname: Tric
  fullname: Tric, E
– sequence: 3
  givenname: M-P
  surname: Doin
  fullname: Doin, M-P
BackLink https://hal.science/hal-00407419$$DView record in HAL
BookMark eNpNkE9Lw0AQxRepYFv9Ap72JHhInN3N32Mp1QpFL3oOk92J3bJJajZR6qc3bT0IA2_emx8zMDM2adqGGLsVEAoQycMu3NPehhIgCiELQcIFmwIoEeQSxORff8Vm3u8AQCippgxfhpo6q9Fxb-vBYW_bxvO24n4ozaCPlv-MxzxfVRXp_jRyWHJD24PpTjwfq98Sr7HpHfFvMh_EzaHB2mp_zS4rdJ5u_nTO3h9Xb8t1sHl9el4uNgGKVPVBCZRKAUmeASIkEehMK42izGUcSUNIeYxViUqbLKM8AcxkZOIqEmhkmmg1Z_fnvVt0xb6zNXaHokVbrBeb4piNv4E0EvmXGNm7M7vv2s-BfF_U1mtyDhtqB1-IPIJYQqx-ARFeahw
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID F1W
H96
L.G
1XC
DOI 10.1016/j.pepi.2004.08.020
DatabaseName ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Hyper Article en Ligne (HAL)
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 0031-9201
EndPage 153
ExternalDocumentID oai:HAL:hal-00407419v1
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFRF
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F1W
FDB
FIRID
FNPLU
FYGXN
G-Q
H96
HZ~
IHE
IMUCA
J1W
KOM
L.G
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SHN
SPC
SPCBC
SPD
SSE
SSZ
T5K
TN5
UNMZH
ZMT
~02
~G-
~HD
1XC
29O
85H
AAQXK
ABFNM
AETEA
AFFNX
AFJKZ
AGQPQ
AIGII
APXCP
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
GBLVA
HMA
HME
HVGLF
MZR
OHT
P-8
R2-
SEP
SEW
T9H
WUQ
XJT
ZZE
ID FETCH-LOGICAL-a173t-b0e72106980aa0640c8c3ca1b92542deae95afba3cd88e960a824d5f41ad276c3
ISSN 0031-9201
IngestDate Tue Oct 14 20:23:04 EDT 2025
Sun Sep 28 05:08:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a173t-b0e72106980aa0640c8c3ca1b92542deae95afba3cd88e960a824d5f41ad276c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9546-4005
0000-0001-6773-0807
PQID 19405205
PQPubID 23462
PageCount 21
ParticipantIDs hal_primary_oai_HAL_hal_00407419v1
proquest_miscellaneous_19405205
PublicationCentury 2000
PublicationDate 2005-03-15
PublicationDateYYYYMMDD 2005-03-15
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-15
  day: 15
PublicationDecade 2000
PublicationTitle Physics of the earth and planetary interiors
PublicationYear 2005
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0001323
Score 2.2138226
Snippet In oceanic subduction zones, dehydration of slab's minerals may favor asthenospheric flow in the mantle wedge by decreasing rocks strength. This should enhance...
SourceID hal
proquest
SourceType Open Access Repository
Aggregation Database
StartPage 133
Title Numerical simulations of subduction zones Effect of slab dehydration on the mantle wedge dynamics
URI https://www.proquest.com/docview/19405205
https://hal.science/hal-00407419
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 0031-9201
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001323
  issn: 0031-9201
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 0031-9201
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001323
  issn: 0031-9201
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 0031-9201
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001323
  issn: 0031-9201
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 0031-9201
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001323
  issn: 0031-9201
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB6WiuCLeMVq1UF8CwmZZLLJ-LZY66rtUrCFvoW5hd1Su8smqbQP_hn_qGcu2aS1D1VYQpiBIcn59sw5c775BqH3jJNCC6khLdEspLSKw0JkeQjBCVM5Jyq3UkoHs_H0mH49yU5Go98D1lLbiEhe3bqv5H-sCm1gV7NL9h8suxkUGuAe7AtXsDBc72TjWevqLWdBvfjRDlhtdSuUk4UNrowYv038vVCx6QbTB0rPL5W3v6sYGCorDBv8NGtsgXJn1dfD8NXyRWXdEQvgX-J3xq0MZ7YxDDyjP7FeLPsi0WQtuSvVR5tlAnho64Q3LbtLp2VwEIWH0bWViMxQsdxeTLc85ufyobtNScgSv1qhb2nrXLCTLe2w5jdEOpdKnFCGn52Jkxb-y_G7NYjTaKVXC5v1W2HWJO6nua60P518Lw9398r9L7Nv13sH1MTpZB-uc34WGi8HURe7gBT7XgJThzkfJPrV84ggnffKzu69_M4sRyK8-TgQwcwN4fbGvG-DmaNH6KHPQvDEQeoxGunzJ-j-Z3vK8-VTJDfAwgNg4WWFe2BhCyz8ATtY2U6AFR7ACsMPYIIdrLCFFe5g9Qwd7306-jgN_WkcISd52oQi1nlC4jErYs5N_VcWMpWcCJZkNFGaa5bxSvBUqqLQkBjzIqEqqyjhCr6bTJ-jrXN4shcIpwKCRiF4BTeUU8kKOS6UFmkGswfV6TZ6B1-pXDm9ldIooINBStPWm2Mbve0-Ygku0dS5AOnLti4Jo4bdlb28yzCv0IMeyztoq1m3-jXEmY14Y-38BweBfgA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+of+subduction+zones+%3A+Effect+of+slab+dehydration+on+the+mantle+wedge+dynamics&rft.jtitle=Physics+of+the+earth+and+planetary+interiors&rft.au=Arcay%2C+D.&rft.au=Tric%2C+E.&rft.au=Doin%2C+M.-P.&rft.date=2005-03-15&rft.pub=Elsevier&rft.issn=0031-9201&rft.eissn=0031-9201&rft.volume=149&rft.issue=1-2&rft.spage=133&rft.epage=153&rft_id=info:doi/10.1016%2Fj.pepi.2004.08.020&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00407419v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9201&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9201&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9201&client=summon