Numerical simulations of subduction zones Effect of slab dehydration on the mantle wedge dynamics
In oceanic subduction zones, dehydration of slab's minerals may favor asthenospheric flow in the mantle wedge by decreasing rocks strength. This should enhance the upper plate base reheating and markedly alter its thermal structure. To quantify this phenomenon, we model slab subduction within a...
Saved in:
| Published in | Physics of the earth and planetary interiors Vol. 149; no. 1-2; pp. 133 - 153 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier
15.03.2005
|
| Online Access | Get full text |
| ISSN | 0031-9201 0031-9201 |
| DOI | 10.1016/j.pepi.2004.08.020 |
Cover
| Abstract | In oceanic subduction zones, dehydration of slab's minerals may favor asthenospheric flow in the mantle wedge by decreasing rocks strength. This should enhance the upper plate base reheating and markedly alter its thermal structure. To quantify this phenomenon, we model slab subduction within a viscous mantle, dehydration-hydration processes, and the rock strength dependence on water content. We use accurate phase diagrams for a H sub(2)O- satured mantle peridotite and a gabbroic crust to determine at each time step the amount of water released or absorbed by each unit of rock. Transition phases are supposed to be not metastable. Water is released from the oceanic crust and from the altered peridotite portion of the slab. Dehydration of the subducting lithosphere occurs first at 60-75 km depth, when the crust is eclogitized, and second, deeper around 105 km when serpentine and chlorite in serpentinite layer below the crust become unstable. For high convergence rates, because of cold, P,-, T,-, t, paths in the slab, serpentine can be transformed into the hydrated phase A and water is recycled by the slab until great depth. However, in all investigated cases, the released water is sufficient to hydrate by dissolution the whole mantle wedge until, 217 plus or minus 55, km away from the trench and, as it goes up, to form hydrated minerals in the overlying lithosphere over a significant volume. The convergence rate slightly shifts dehydration fronts location, and consequently widens or reduces the hydrated mantle wedge. Note that for the dynamic corner flow modelled here, with a non- Newtonian rheology, the slab surface is significantly warmer than for an isoviscous analytical corner flow model, yielding plausible crust melting. We assume a strength reduction associated to hydration larger for rocks containing nominally hydrous minerals than for rocks with only dissolved water. The rock strength thus becomes quite uniform at the base of the hydrated upper plate and in the wedge. This results in cooler temperatures along the slab top, but in an enhanced corner flow effect on the upper plate thermal structure. For large hydration strength reductions, a strong thermal erosion of the overlapping lithosphere develops in less than 15 Myr due to convective destabilization. This weakens drastically the upper plate at a distance from 110 to 220 km away from the trench. The geometry of the eroded region could correspond to the low- velocity zone observed below the arc region. |
|---|---|
| AbstractList | In oceanic subduction zones, dehydration of slab's minerals may favor asthenospheric flow in the mantle wedge by decreasing rocks strength. This should enhance the upper plate base reheating and markedly alter its thermal structure. To quantify this phenomenon, we model slab subduction within a viscous mantle, dehydration-hydration processes, and the rock strength dependence on water content. We use accurate phase diagrams for a H sub(2)O- satured mantle peridotite and a gabbroic crust to determine at each time step the amount of water released or absorbed by each unit of rock. Transition phases are supposed to be not metastable. Water is released from the oceanic crust and from the altered peridotite portion of the slab. Dehydration of the subducting lithosphere occurs first at 60-75 km depth, when the crust is eclogitized, and second, deeper around 105 km when serpentine and chlorite in serpentinite layer below the crust become unstable. For high convergence rates, because of cold, P,-, T,-, t, paths in the slab, serpentine can be transformed into the hydrated phase A and water is recycled by the slab until great depth. However, in all investigated cases, the released water is sufficient to hydrate by dissolution the whole mantle wedge until, 217 plus or minus 55, km away from the trench and, as it goes up, to form hydrated minerals in the overlying lithosphere over a significant volume. The convergence rate slightly shifts dehydration fronts location, and consequently widens or reduces the hydrated mantle wedge. Note that for the dynamic corner flow modelled here, with a non- Newtonian rheology, the slab surface is significantly warmer than for an isoviscous analytical corner flow model, yielding plausible crust melting. We assume a strength reduction associated to hydration larger for rocks containing nominally hydrous minerals than for rocks with only dissolved water. The rock strength thus becomes quite uniform at the base of the hydrated upper plate and in the wedge. This results in cooler temperatures along the slab top, but in an enhanced corner flow effect on the upper plate thermal structure. For large hydration strength reductions, a strong thermal erosion of the overlapping lithosphere develops in less than 15 Myr due to convective destabilization. This weakens drastically the upper plate at a distance from 110 to 220 km away from the trench. The geometry of the eroded region could correspond to the low- velocity zone observed below the arc region. |
| Author | Tric, E Doin, M-P Arcay, D |
| Author_xml | – sequence: 1 givenname: D surname: Arcay fullname: Arcay, D – sequence: 2 givenname: E surname: Tric fullname: Tric, E – sequence: 3 givenname: M-P surname: Doin fullname: Doin, M-P |
| BackLink | https://hal.science/hal-00407419$$DView record in HAL |
| BookMark | eNpNkE9Lw0AQxRepYFv9Ap72JHhInN3N32Mp1QpFL3oOk92J3bJJajZR6qc3bT0IA2_emx8zMDM2adqGGLsVEAoQycMu3NPehhIgCiELQcIFmwIoEeQSxORff8Vm3u8AQCippgxfhpo6q9Fxb-vBYW_bxvO24n4ozaCPlv-MxzxfVRXp_jRyWHJD24PpTjwfq98Sr7HpHfFvMh_EzaHB2mp_zS4rdJ5u_nTO3h9Xb8t1sHl9el4uNgGKVPVBCZRKAUmeASIkEehMK42izGUcSUNIeYxViUqbLKM8AcxkZOIqEmhkmmg1Z_fnvVt0xb6zNXaHokVbrBeb4piNv4E0EvmXGNm7M7vv2s-BfF_U1mtyDhtqB1-IPIJYQqx-ARFeahw |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | F1W H96 L.G 1XC |
| DOI | 10.1016/j.pepi.2004.08.020 |
| DatabaseName | ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Hyper Article en Ligne (HAL) |
| DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 0031-9201 |
| EndPage | 153 |
| ExternalDocumentID | oai:HAL:hal-00407419v1 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFRF ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F1W FDB FIRID FNPLU FYGXN G-Q H96 HZ~ IHE IMUCA J1W KOM L.G LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OZT P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SHN SPC SPCBC SPD SSE SSZ T5K TN5 UNMZH ZMT ~02 ~G- ~HD 1XC 29O 85H AAQXK ABFNM AETEA AFFNX AFJKZ AGQPQ AIGII APXCP ASPBG AVWKF AZFZN FEDTE FGOYB G-2 GBLVA HMA HME HVGLF MZR OHT P-8 R2- SEP SEW T9H WUQ XJT ZZE |
| ID | FETCH-LOGICAL-a173t-b0e72106980aa0640c8c3ca1b92542deae95afba3cd88e960a824d5f41ad276c3 |
| ISSN | 0031-9201 |
| IngestDate | Tue Oct 14 20:23:04 EDT 2025 Sun Sep 28 05:08:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a173t-b0e72106980aa0640c8c3ca1b92542deae95afba3cd88e960a824d5f41ad276c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9546-4005 0000-0001-6773-0807 |
| PQID | 19405205 |
| PQPubID | 23462 |
| PageCount | 21 |
| ParticipantIDs | hal_primary_oai_HAL_hal_00407419v1 proquest_miscellaneous_19405205 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-03-15 |
| PublicationDateYYYYMMDD | 2005-03-15 |
| PublicationDate_xml | – month: 03 year: 2005 text: 2005-03-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationTitle | Physics of the earth and planetary interiors |
| PublicationYear | 2005 |
| Publisher | Elsevier |
| Publisher_xml | – name: Elsevier |
| SSID | ssj0001323 |
| Score | 2.2138226 |
| Snippet | In oceanic subduction zones, dehydration of slab's minerals may favor asthenospheric flow in the mantle wedge by decreasing rocks strength. This should enhance... |
| SourceID | hal proquest |
| SourceType | Open Access Repository Aggregation Database |
| StartPage | 133 |
| Title | Numerical simulations of subduction zones Effect of slab dehydration on the mantle wedge dynamics |
| URI | https://www.proquest.com/docview/19405205 https://hal.science/hal-00407419 |
| Volume | 149 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 0031-9201 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001323 issn: 0031-9201 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 0031-9201 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001323 issn: 0031-9201 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 0031-9201 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001323 issn: 0031-9201 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 0031-9201 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001323 issn: 0031-9201 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB6WiuCLeMVq1UF8CwmZZLLJ-LZY66rtUrCFvoW5hd1Su8smqbQP_hn_qGcu2aS1D1VYQpiBIcn59sw5c775BqH3jJNCC6khLdEspLSKw0JkeQjBCVM5Jyq3UkoHs_H0mH49yU5Go98D1lLbiEhe3bqv5H-sCm1gV7NL9h8suxkUGuAe7AtXsDBc72TjWevqLWdBvfjRDlhtdSuUk4UNrowYv038vVCx6QbTB0rPL5W3v6sYGCorDBv8NGtsgXJn1dfD8NXyRWXdEQvgX-J3xq0MZ7YxDDyjP7FeLPsi0WQtuSvVR5tlAnho64Q3LbtLp2VwEIWH0bWViMxQsdxeTLc85ufyobtNScgSv1qhb2nrXLCTLe2w5jdEOpdKnFCGn52Jkxb-y_G7NYjTaKVXC5v1W2HWJO6nua60P518Lw9398r9L7Nv13sH1MTpZB-uc34WGi8HURe7gBT7XgJThzkfJPrV84ggnffKzu69_M4sRyK8-TgQwcwN4fbGvG-DmaNH6KHPQvDEQeoxGunzJ-j-Z3vK8-VTJDfAwgNg4WWFe2BhCyz8ATtY2U6AFR7ACsMPYIIdrLCFFe5g9Qwd7306-jgN_WkcISd52oQi1nlC4jErYs5N_VcWMpWcCJZkNFGaa5bxSvBUqqLQkBjzIqEqqyjhCr6bTJ-jrXN4shcIpwKCRiF4BTeUU8kKOS6UFmkGswfV6TZ6B1-pXDm9ldIooINBStPWm2Mbve0-Ygku0dS5AOnLti4Jo4bdlb28yzCv0IMeyztoq1m3-jXEmY14Y-38BweBfgA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+of+subduction+zones+%3A+Effect+of+slab+dehydration+on+the+mantle+wedge+dynamics&rft.jtitle=Physics+of+the+earth+and+planetary+interiors&rft.au=Arcay%2C+D.&rft.au=Tric%2C+E.&rft.au=Doin%2C+M.-P.&rft.date=2005-03-15&rft.pub=Elsevier&rft.issn=0031-9201&rft.eissn=0031-9201&rft.volume=149&rft.issue=1-2&rft.spage=133&rft.epage=153&rft_id=info:doi/10.1016%2Fj.pepi.2004.08.020&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00407419v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9201&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9201&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9201&client=summon |